Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (5): 39-48.DOI: 10.13304/j.nykjdb.2023.0889
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Wenting ZHANG1,2(), Yang LI2, Shi QIU2, Guangming LU3, Dongshu GUO2, Baolong ZHANG1,2, Jinyan WANG1,2(
)
Received:
2023-12-04
Accepted:
2024-02-06
Online:
2025-05-15
Published:
2025-05-20
Contact:
Jinyan WANG
张文婷1,2(), 李阳2, 裘实2, 路光明3, 郭冬姝2, 张保龙1,2, 王金彦1,2(
)
通讯作者:
王金彦
作者简介:
张文婷 E-mail:1124081253@qq.com;
基金资助:
CLC Number:
Wenting ZHANG, Yang LI, Shi QIU, Guangming LU, Dongshu GUO, Baolong ZHANG, Jinyan WANG. Effects of Badh2 Gene on Rice Quality Based on CRISPR/Cas9 Gene Editing Technology[J]. Journal of Agricultural Science and Technology, 2025, 27(5): 39-48.
张文婷, 李阳, 裘实, 路光明, 郭冬姝, 张保龙, 王金彦. 基于CRISPR/Cas9基因编辑技术研究Badh2基因对稻米品质的影响[J]. 中国农业科技导报, 2025, 27(5): 39-48.
用途Purpose | 正向引物序列 Forward primer sequence(5’-3’) | 反向引物序列 Reverse primer sequence(5’-3’) |
---|---|---|
Badh2扩增 Badh2 amplification | GGCATATGGCTTCAGCTGCTCCTA | AAACTAGGAGCAGCTGAAGCCATA |
Badh2-CRISPR鉴定 Badh2-CRISPR identification | GGAACTATCCTCTCCTGATGGCA | ATTTTCTTGCATCCTGCTCGTCT |
Badh2定量 Badh2 qPCR | CTGAGCTGGCTAGACTAGAG | CCAACTACACCGATAGGCTC |
Actin定量 Actin qPCR | GGACCCAAGAATGCTAAGCC | TGGTACCCTCATCAGGCATC |
潮霉素鉴定 Hygromycin identification | ACAATCCCACTATCCTTCGCAAG | GTACTTCTACACAGCCATCGGTC |
Cas9鉴定 Cas9 identification | TTTCCCCAACCTCGTGTTGTTC | GAGGTTCTTCTTGATGGAGTGG |
Table 1 Information of primers
用途Purpose | 正向引物序列 Forward primer sequence(5’-3’) | 反向引物序列 Reverse primer sequence(5’-3’) |
---|---|---|
Badh2扩增 Badh2 amplification | GGCATATGGCTTCAGCTGCTCCTA | AAACTAGGAGCAGCTGAAGCCATA |
Badh2-CRISPR鉴定 Badh2-CRISPR identification | GGAACTATCCTCTCCTGATGGCA | ATTTTCTTGCATCCTGCTCGTCT |
Badh2定量 Badh2 qPCR | CTGAGCTGGCTAGACTAGAG | CCAACTACACCGATAGGCTC |
Actin定量 Actin qPCR | GGACCCAAGAATGCTAAGCC | TGGTACCCTCATCAGGCATC |
潮霉素鉴定 Hygromycin identification | ACAATCCCACTATCCTTCGCAAG | GTACTTCTACACAGCCATCGGTC |
Cas9鉴定 Cas9 identification | TTTCCCCAACCTCGTGTTGTTC | GAGGTTCTTCTTGATGGAGTGG |
Fig. 1 Badh2 gene editing and identification ofT-DNA-free plantsA: Badh2 gene structure map; B: Badh2 gene editing target site sequences; C: Badh2 gene expression, ** indicates significant difference at P<0.01 level;D: Hygromycin and Cas9 agarose gel electrophoresis,M—5 000 bp DNA marker,+ —Positive control,- —Negative control,1—badh2-1,2—badh2-2
序号 Number | 化合物 Compound | 分子式 Molecular formula | 相对含量 Relative content/% | ||
---|---|---|---|---|---|
WT | badh2-1 | badh2-2 | |||
1 | 邻苯二甲酸二丁酯 Dibutyl phthalate | C16H22O4 | — | 26.29 | 15.73 |
2 | 棕榈酸 Hexadecanoic acid | C16H32O2 | 27.55 | — | — |
3 | 壬醛 Nonanal | C9H18O | 4.81 | 9.58 | 14.27 |
4 | 邻苯二甲酸二异丁酯 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 17.53 | 11.72 | 8.44 |
5 | 7,9-二叔丁基-1-氧杂螺(4.5)癸-6,9-二烯-2,8-二酮 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | C17H24O3 | — | 5.50 | 7.48 |
6 | 碳酸,二十烷基乙烯基酯 Carbonic acid, eicosyl vinyl ester | C23H44O3 | 7.91 | — | — |
7 | 十二烷 Dodecane | C12H26 | 2.75 | 4.75 | 2.54 |
8 | 2,6,10-三甲基十三烷 2,6,10-trimethyltridecane | C16H34 | 1.92 | 3.81 | 6.05 |
9 | 癸酸乙酯 Decanoic acid, ethyl ester | C12H24O2 | — | 5.38 | — |
10 | 植酮 6,10,14-trimethyl-2-pentadecanone | C18H36O | 4.37 | 4.39 | 5.75 |
11 | 5-乙基间二甲苯 1,2,3,5-tetramethyl-benzene | C10H14 | 2.74 | 1.86 | 5.11 |
12 | 癸酸 Decanoic acid | C10H20O2 | 1.16 | 4.48 | 3.73 |
13 | 癸醛 Decanal | C10H20O | 1.46 | 1.93 | 4.28 |
14 | 亚油酸 (Z,Z)-9,12-octadecadienoic acid | C18H36O2 | 5.19 | — | — |
15 | 乙酸硬脂基酯 Acetic acid n-octadecyl ester | C20H40O2 | 5.13 | — | — |
16 | 十八烷 Octadecane | C18H38 | 4.57 | — | — |
17 | 十四烷 Tetradecane | C14H30 | 2.01 | 5.38 | 3.54 |
18 | 2,6,10-三甲基十四烷 2,6,10-trimethyl-tetradecane | C17H36 | 3.81 | — | — |
19 | 顺-菖蒲烯 Cis-calamenene | C15H22 | 0.88 | 1.56 | 2.95 |
20 | 十二醛 Dodecanal | C12H24O | 0.69 | 1.15 | 2.54 |
21 | 1-辛醇 1-octanol | C8H18O | — | 1.28 | 2.53 |
22 | 2,3-二甲基环己醇 2,3-dimethyl-cyclohexanol | C8H16O | 0.47 | 1.19 | 2.51 |
Table 2 Main volatile flavor compounds of WT and mutants
序号 Number | 化合物 Compound | 分子式 Molecular formula | 相对含量 Relative content/% | ||
---|---|---|---|---|---|
WT | badh2-1 | badh2-2 | |||
1 | 邻苯二甲酸二丁酯 Dibutyl phthalate | C16H22O4 | — | 26.29 | 15.73 |
2 | 棕榈酸 Hexadecanoic acid | C16H32O2 | 27.55 | — | — |
3 | 壬醛 Nonanal | C9H18O | 4.81 | 9.58 | 14.27 |
4 | 邻苯二甲酸二异丁酯 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 17.53 | 11.72 | 8.44 |
5 | 7,9-二叔丁基-1-氧杂螺(4.5)癸-6,9-二烯-2,8-二酮 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | C17H24O3 | — | 5.50 | 7.48 |
6 | 碳酸,二十烷基乙烯基酯 Carbonic acid, eicosyl vinyl ester | C23H44O3 | 7.91 | — | — |
7 | 十二烷 Dodecane | C12H26 | 2.75 | 4.75 | 2.54 |
8 | 2,6,10-三甲基十三烷 2,6,10-trimethyltridecane | C16H34 | 1.92 | 3.81 | 6.05 |
9 | 癸酸乙酯 Decanoic acid, ethyl ester | C12H24O2 | — | 5.38 | — |
10 | 植酮 6,10,14-trimethyl-2-pentadecanone | C18H36O | 4.37 | 4.39 | 5.75 |
11 | 5-乙基间二甲苯 1,2,3,5-tetramethyl-benzene | C10H14 | 2.74 | 1.86 | 5.11 |
12 | 癸酸 Decanoic acid | C10H20O2 | 1.16 | 4.48 | 3.73 |
13 | 癸醛 Decanal | C10H20O | 1.46 | 1.93 | 4.28 |
14 | 亚油酸 (Z,Z)-9,12-octadecadienoic acid | C18H36O2 | 5.19 | — | — |
15 | 乙酸硬脂基酯 Acetic acid n-octadecyl ester | C20H40O2 | 5.13 | — | — |
16 | 十八烷 Octadecane | C18H38 | 4.57 | — | — |
17 | 十四烷 Tetradecane | C14H30 | 2.01 | 5.38 | 3.54 |
18 | 2,6,10-三甲基十四烷 2,6,10-trimethyl-tetradecane | C17H36 | 3.81 | — | — |
19 | 顺-菖蒲烯 Cis-calamenene | C15H22 | 0.88 | 1.56 | 2.95 |
20 | 十二醛 Dodecanal | C12H24O | 0.69 | 1.15 | 2.54 |
21 | 1-辛醇 1-octanol | C8H18O | — | 1.28 | 2.53 |
22 | 2,3-二甲基环己醇 2,3-dimethyl-cyclohexanol | C8H16O | 0.47 | 1.19 | 2.51 |
序号 Number | 化合物 Compound | 分子式 Molecular formula | 相对含量 Relative content/% | ||
---|---|---|---|---|---|
WT | badh2-1 | badh2-2 | |||
23 | 3-甲基十三烷 3-methyl-tridecane | C14H30 | 1.82 | 1.18 | 1.45 |
24 | 壬酸 Nonanoic acid | C9H18O2 | 1.06 | — | — |
25 | 十六烷基硫醇 Tert-hexadecanethiol | C16H34S | 0.98 | — | — |
26 | 甲基 2-乙基己基邻苯二甲酸酯 Methyl 2-ethylhexyl phthalate | C17H24O4 | — | 1.69 | — |
27 | 棕榈酸异丁酯 Hexadecanoic acid, 2-methylpropyl ester | C20H40O2 | — | 1.53 | 0.87 |
28 | 十六醇 1-hexadecanol | C16H34O | — | 1.44 | 1.38 |
29 | 香叶基丙酮 Geranylacetone | C13H22O | — | 1.33 | 1.93 |
30 | 十一醛 Undecanal | C11H22O | 0.47 | — | 1.81 |
31 | 十九烷 Nonadecane | C19H40 | 0.70 | 0.86 | 1.75 |
32 | 2-甲基-1-十六烷醇 2-methyl-1-hexadecanol | C17H36O | — | 0.61 | 1.71 |
33 | 三(1-氯-2-丙基)磷酸酯 1-chloro-, 2-propanol, phosphate (3:1) | C9H18Cl3O4P | — | 1.10 | 1.64 |
Continued Table 2 Main volatile flavor compounds of WT and mutants
序号 Number | 化合物 Compound | 分子式 Molecular formula | 相对含量 Relative content/% | ||
---|---|---|---|---|---|
WT | badh2-1 | badh2-2 | |||
23 | 3-甲基十三烷 3-methyl-tridecane | C14H30 | 1.82 | 1.18 | 1.45 |
24 | 壬酸 Nonanoic acid | C9H18O2 | 1.06 | — | — |
25 | 十六烷基硫醇 Tert-hexadecanethiol | C16H34S | 0.98 | — | — |
26 | 甲基 2-乙基己基邻苯二甲酸酯 Methyl 2-ethylhexyl phthalate | C17H24O4 | — | 1.69 | — |
27 | 棕榈酸异丁酯 Hexadecanoic acid, 2-methylpropyl ester | C20H40O2 | — | 1.53 | 0.87 |
28 | 十六醇 1-hexadecanol | C16H34O | — | 1.44 | 1.38 |
29 | 香叶基丙酮 Geranylacetone | C13H22O | — | 1.33 | 1.93 |
30 | 十一醛 Undecanal | C11H22O | 0.47 | — | 1.81 |
31 | 十九烷 Nonadecane | C19H40 | 0.70 | 0.86 | 1.75 |
32 | 2-甲基-1-十六烷醇 2-methyl-1-hexadecanol | C17H36O | — | 0.61 | 1.71 |
33 | 三(1-氯-2-丙基)磷酸酯 1-chloro-, 2-propanol, phosphate (3:1) | C9H18Cl3O4P | — | 1.10 | 1.64 |
材料 Material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% | 每穗粒数 Grain number per panicle | 有效分蘖 Effective tillers | 株高 Plant heigh/cm |
---|---|---|---|---|---|---|---|
WT | 7.55±0.12 a | 3.45±0.07 a | 24.72±0.19 ab | 79.71±1.65 b | 95.85±3.36 b | 13±2 a | 96.67±2.83 a |
badh2-1 | 7.60±0.14 a | 3.46±0.11 a | 24.64±0.09 b | 84.38±2.53 a | 100.89±4.41 a | 12±2 a | 89.00±4.14 b |
badh2-2 | 7.58±0.22 a | 3.45±0.09 a | 24.85±0.10 a | 83.10±3.45 ab | 104.00±2.41 a | 11±2 b | 97.24±5.34 a |
Table 3 Agronomic traits of WT and mutants
材料 Material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% | 每穗粒数 Grain number per panicle | 有效分蘖 Effective tillers | 株高 Plant heigh/cm |
---|---|---|---|---|---|---|---|
WT | 7.55±0.12 a | 3.45±0.07 a | 24.72±0.19 ab | 79.71±1.65 b | 95.85±3.36 b | 13±2 a | 96.67±2.83 a |
badh2-1 | 7.60±0.14 a | 3.46±0.11 a | 24.64±0.09 b | 84.38±2.53 a | 100.89±4.41 a | 12±2 a | 89.00±4.14 b |
badh2-2 | 7.58±0.22 a | 3.45±0.09 a | 24.85±0.10 a | 83.10±3.45 ab | 104.00±2.41 a | 11±2 b | 97.24±5.34 a |
材料 Material | 糙米率 Brown rice rate/% | 精米率 Milled rice rate/% | 整精米率 Head milled rice rate/% | 垩白度 Chalkiness degree | 垩白粒率 Chalkiness rate/% |
---|---|---|---|---|---|
WT | 83.38±0.12 b | 75.87±0.51 a | 74.29±0.69 a | 0.04±0.03 b | 0.25±0.14 b |
badh2-1 | 83.85±0.09 a | 75.50±0.70 a | 73.50±1.10 a | 0.15±0.07 a | 0.88±0.25 a |
Badh2-2 | 82.82±0.21 c | 75.49±0.45 a | 73.98±0.69 a | 0.06±0.05 ab | 0.44±0.32 ab |
Table 4 Milling and appearance quality of WT and mutants
材料 Material | 糙米率 Brown rice rate/% | 精米率 Milled rice rate/% | 整精米率 Head milled rice rate/% | 垩白度 Chalkiness degree | 垩白粒率 Chalkiness rate/% |
---|---|---|---|---|---|
WT | 83.38±0.12 b | 75.87±0.51 a | 74.29±0.69 a | 0.04±0.03 b | 0.25±0.14 b |
badh2-1 | 83.85±0.09 a | 75.50±0.70 a | 73.50±1.10 a | 0.15±0.07 a | 0.88±0.25 a |
Badh2-2 | 82.82±0.21 c | 75.49±0.45 a | 73.98±0.69 a | 0.06±0.05 ab | 0.44±0.32 ab |
材料 Material | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 食味值 Taste value | 外观 Appearance | 硬度 Hardness | 黏度 Viscosity | 平衡度 Balance degree |
---|---|---|---|---|---|---|---|
WT | 9.50±0.10 a | 18.03±0.12 b | 61.00±2.65 b | 4.87±0.38 b | 8.13±0.15 a | 6.90±0.56 b | 5.13±0.42 b |
badh2-1 | 9.00±0.10 b | 19.30±0.17 a | 74.67±9.29 a | 6.87±1.29 a | 7.93±0.32 ab | 9.07±0.67 a | 7.20±1.35 a |
badh2-2 | 9.20±0.17 b | 19.43±0.32 a | 72.67±2.52 a | 6.67±0.31 ab | 7.57±0.06 b | 8.37±1.01 ab | 6.20±0.79 ab |
Table 5 Amylose content, protein content and taste value of WT and mutants
材料 Material | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 食味值 Taste value | 外观 Appearance | 硬度 Hardness | 黏度 Viscosity | 平衡度 Balance degree |
---|---|---|---|---|---|---|---|
WT | 9.50±0.10 a | 18.03±0.12 b | 61.00±2.65 b | 4.87±0.38 b | 8.13±0.15 a | 6.90±0.56 b | 5.13±0.42 b |
badh2-1 | 9.00±0.10 b | 19.30±0.17 a | 74.67±9.29 a | 6.87±1.29 a | 7.93±0.32 ab | 9.07±0.67 a | 7.20±1.35 a |
badh2-2 | 9.20±0.17 b | 19.43±0.32 a | 72.67±2.52 a | 6.67±0.31 ab | 7.57±0.06 b | 8.37±1.01 ab | 6.20±0.79 ab |
材料 Material | 峰值黏度 Peak viscosity/cP | 保持黏度 Through viscosity/cP | 崩解值 Break-down/cP | 最终黏度 Final viscosity/cP | 消减值 Setback/cP | 糊化温度 Pasting temperature/℃ |
---|---|---|---|---|---|---|
WT | 2 715.00±15.87 a | 2 084.00±240.42 a | 725.67±61.89 a | 3 088.33±47.69 a | 373.33±35.08 a | 74.70±0.35 a |
badh2-1 | 2 683.67±6.03 b | 1 954.67±64.81 a | 726.00±67.00 a | 2 967.67±19.55 b | 284.00±23.07 b | 73.67±0.29 b |
badh2-2 | 2 621.67±14.98 c | 2 135.75±327.30 a | 649.33±15.70 a | 2 919.67±15.88 b | 298.33±19.66 b | 73.30±0.43 b |
Table 6 Characteristic value of RVA parameters of WT and mutants
材料 Material | 峰值黏度 Peak viscosity/cP | 保持黏度 Through viscosity/cP | 崩解值 Break-down/cP | 最终黏度 Final viscosity/cP | 消减值 Setback/cP | 糊化温度 Pasting temperature/℃ |
---|---|---|---|---|---|---|
WT | 2 715.00±15.87 a | 2 084.00±240.42 a | 725.67±61.89 a | 3 088.33±47.69 a | 373.33±35.08 a | 74.70±0.35 a |
badh2-1 | 2 683.67±6.03 b | 1 954.67±64.81 a | 726.00±67.00 a | 2 967.67±19.55 b | 284.00±23.07 b | 73.67±0.29 b |
badh2-2 | 2 621.67±14.98 c | 2 135.75±327.30 a | 649.33±15.70 a | 2 919.67±15.88 b | 298.33±19.66 b | 73.30±0.43 b |
1 | 季新,李猛,杨阳,等.基于CRISPR/Cas9技术创制宜直播香型水稻[J].分子植物育种,2023,21(19):6381-6389. |
JI X, LI M, YANG Y, et al.. Production of adapted direct-seeding fragrant rice based on CRISPR/Cas9 technology [J]. Mol. Plant Breed., 2023, 21(19):6381-6389. | |
2 | 吴明基,林艳,刘华清,等.CRISPR/Cas9编辑Badh2基因改良优质粳稻品种香味性状[J].福建农业学报,2020,35(5):465-473. |
WU M J, LIN Y, LIU H Q, et al.. Development of fragrant japonica rice by CRISPR/Cas9-targeted editing on Badh2 [J]. Fujian J. Agric. Sci., 2020, 35(5):465-473. | |
3 | 彭凯雄,唐群勇,郑钰涵,等.大米中挥发性风味物质的研究进展[J].食品安全质量检测学报,2022,13(15):4794-4801. |
PENG K X, TANG Q Y, ZHENG Y H, et al.. Research progress of volatile flavor substances in rice [J]. J. Food Saf. Food Qual., 2022, 13(15):4794-4801. | |
4 | ASHRAF U, HUSSAIN S, NAVEED SHAHID M, et al.. Alternate wetting and drying modulated physio-biochemical attributes, grain yield, quality, and aroma volatile in fragrant rice [J/OL]. Physiol. Plant, 2022, 174(6):e13833 [2023-11-23]. . |
5 | DU P, LUO H, HE J, et al.. Different tillage induces regulation in 2-acetyl-1-pyrroline biosynthesis in direct-seeded fragrant rice [J/OL]. BMC Plant Biol., 2019, 19(1):30810 [2023-11-23]. . |
6 | 姚祥滨,罗昊文,韦剑娇,等.不同增香施肥处理对香稻产量、品质和香气风味挥发物的影响[J].中国稻米,2023,29(5):66-70. |
YAO X B, LUO H W, WEI J J, et al.. Effects of different fragrance-enhancing fertilization treatments on yield, quality, and aroma volatile compounds of fragrant rice [J]. China Rice, 2023, 29(5):66-70. | |
7 | PRODHAN Z H, QINGYAO S. Rice aroma: a natural gift comes with price and the way forward [J]. Rice Sci., 2020, 27(2):86-100. |
8 | PACHAURI V, SINGH M K, SINGH A K, et al.. Origin and genetic diversity of aromatic rice varieties, molecular breeding and chemical and genetic basis of rice aroma [J]. J. Plant Biochem. Biotechnol., 2010, 19(2):127-143. |
9 | HUI S, LI H, MAWIA A M, et al.. Production of aromatic three-line hybrid rice using novel alleles of BADH2 [J]. Plant Biotechnol. J., 2022, 20(1):59-74. |
10 | OKPALA N E, MO Z, DUAN M, et al.. The genetics and biosynthesis of 2-acetyl-1-pyrroline in fragrant rice [J]. Plant Physiol. Biochem., 2019, 135:272-276. |
11 | 刘之熙,闵军,刘三雄,等.水稻香味基因Badh2的功能和效应分析[J].湖南农业科学,2023(10):1-6. |
LIU Z X, MIN J, LIU S X, et al.. Function and effect analysis of Badh2 gene in rice [J]. Hunan Agric. Sci., 2023(10):1-6. | |
12 | TANG Y, ABDELRAHMAN M, LI J, et al.. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice [J]. Plant Biotechnol. J., 2021, 19(4):642-654. |
13 | 韦新宇,曾跃辉,杨旺兴,等.利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J].作物学报,2023,49(8):2144-2159. |
WEI X Y, ZENG Y H, YANG W X, et al.. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agron. Sin., 2023, 49(8):2144-2159. | |
14 | 李景芳,温舒越,赵利君,等.基于CRISPR/Cas9技术创制耐盐香稻[J].中国水稻科学,2023,37(5):478-85. |
LI J F, WEN S Y, ZHAO L J, et al.. Development of aromatic salt-tolerant rice based on CRISPR/Cas9 technology [J]. Chin. J. Rice Sci., 2023, 37(5):478-485. | |
15 | MA X, ZHANG Q, ZHU Q, et al.. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Mol. Plant, 2015, 8(8):1274-1284. |
16 | MÄDE D, DEGNER C, GROHMANN L. Detection of genetically modified rice:a construct-specific real-time PCR method based on DNA sequences from transgenic Bt rice [J]. Eur. Food Res. Technol., 2006, 224(2):271-8. |
17 | 唐瑞明,龙伶俐,朱之光,等. 优质稻谷: [S].北京:中国标准出版社,2017. |
18 | 安红周,陈会会,尹文婷,等.加工精度对大米食用品质及风味的影响[J].中国粮油学报,2021,36(1):1-7. |
AN H Z, CHEN H H, YIN W T, et al.. Effect of milling degree on the edible quality and flavor of rice [J]. J. Chin. Cereals Oils Assoc., 2021, 36(1):1-7. | |
19 | 潘阳阳,黄道强,王重荣,等.香稻Badh2基因单倍型及香气成分2-乙酰-1-吡咯啉代谢通路的研究进展[J].广东农业科学,2021,48(7):9-16. |
PAN Y Y, HUANG D Q, WANG C R, et al.. Research advances of haplotype variation at Badh2 gene and 2-acetyl-1-pyrroline biosynthetic pathway in aromatic rice [J]. Guangdong Agric. Sci., 2021, 48(7):9-16. | |
20 | CHEN M, WEI X, SHAO G, et al.. Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2 [J]. Plant Breed., 2012, 131(5):584-590. |
21 | IMRAN M, SHAFIQ S, TANG X. CRISPR-Cas9-mediated editing of BADH2 gene triggered fragrance revolution in rice [J]. Physiol. Plant., 2023, 175(1):3871-3892. |
22 | XIE W, ASHRAF U, ZHONG D, et al.. Application of gamma-aminobutyric acid (GABA) and nitrogen regulates aroma biochemistry in fragrant rice [J]. Food Sci. Nutr., 2019, 7(11):3784-3896. |
23 | SHUOCHEN J, LIHE Z, FENQIN H, et al.. Zinc supplementation and light intensity affect 2-acetyl-1-pyrroline (2AP) formation in fragrant rice [J/OL]. BMC Plant Biol.,2023,23(1):19410 [2023-11-23]. . |
24 | 张楠,麦一鸣,王在满,等.γ-氨基丁酸和光照对香稻稻米品质和干物质积累的影响[J].作物研究,2023,37(5):435-442. |
ZHANG N, MAI Y M, WANG Z M, et al.. Effects of γ-aminobutyric acid and light on grain quality and dry matter accumulation of fragrant rice [J]. Crop Res., 2023, 37(5):435-442. | |
25 | 唐秀英,龙起樟,王会民,等.利用CRISPR/Cas9技术创制香稻[J].江西农业大学学报,2021,43(1):18-24. |
TANG X Y, LONG Q Z, WANG H M, et al.. Creation of fragrant rice by means of CRISPR/Cas9 technology [J]. Acta Agric. Univ. Jiangxiensis, 2021, 43(1):18-24. | |
26 | 胡培松,邵雅芳,朱智伟,等. 食用稻品种品质: [S].北京:中国标准出版社,2021. |
27 | 姜树坤,王立志,杨贤莉,等.不同生育时期增温对寒地水稻产量和品质的影响[J].中国农业科技导报,2021,23(6):130-139. |
JIANG S K, WANG L Z, YANG X L, et al.. Effect of increasing temperature in different growth stages on rice yield and quality in cold regions [J]. J. Agric. Sci. Technol., 2021, 23(6):130-139. | |
28 | 车阳,程爽,田晋钰 等.不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J].作物学报,2021,47(10):1953-1965. |
CHE Y, CHENG S, TIAN J Y, et al.. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields [J]. Acta Agron. Sin., 2021, 47(10):1953-1965. | |
29 | 叶全宝,张洪程,李华,等.施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响[J].作物学报,2005(1):124-130. |
YE Q B, ZHANG H C, LI H, et al.. Effects of amount of nitrogen applied and planting density on RVA profile characteristic of Japonica rice [J]. Acta Agron. Sin., 2005(1):124-130. | |
30 | 张诚信,郭保卫,唐健,等.灌浆结实期低温弱光复合胁迫对稻米品质的影响[J].作物学报,2019,45(8):1208-1220. |
ZHANG C X, GUO B W, TANG J, et al.. Combined effects of low temperature and weak light at grain-filling stageon rice grain quality [J]. Acta Agron. Sin., 2019, 45(8):1208-1220. | |
31 | 徐善斌,郑洪亮,刘利锋,等.利用CRISPR/Cas9技术高效创制长粒香型水稻[J].中国水稻科学,2020,34(5):406-412. |
XU S B, ZHENG H L, LIU L F, et al.. lmprovement of grain shape and fragrance by using CRISPR/Cas9 system [J]. Chin. J. Rice Sci., 2020, 34(5):406-412. | |
32 | 王石光,陆展华,刘维,等.应用CRISPR/Cas9技术与分子标记辅助选择创制广东丝苗米新种质[J].中国水稻科学,2023,37(1):29-36. |
WANG S G, LU Z H, LIU W, et al.. Generating guangdong simiao rice germplasms by applying CRISPR/Cas9 gene editing and marker-assisted selection technology [J]. Chin. J. Rice Sci., 2023, 37(1):29-36. |
[1] | Jialiang YUAN, Runnan LIAN, Wuping ZHANG. Accurate Identification and Grading Method for Daylily Flower Buds [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 103-112. |
[2] | Darong LI, Xiaoling LI, Wuxian ZHOU, Meide ZHANG, Xiaogang JIANG, Jinwen YOU, Hua WANG. Effects of Partial Substitution of Chemical Fertilizer with Organic Fertilizer on Growth and Soil Properties of Fritillaria hupehensis [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 216-226. |
[3] | Junya DUAN, Yuanyuan ZHAO, Tingting WANG, Jianyu WEI, Zheng WANG, Dexun WANG, Juan LI, Hongzhi SHI. Effects of Nitrogen Reduction Combined with Polyaspartic Acid on Nitrogen Utilization, Yield and Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 227-238. |
[4] | Dexuan ZHO, Peng GAO, Xiaolei WEN, Shifeng MU, Suhong GAO, Lina FENG, Weiming SUN, Huixia QI. Effect of Chinese Chestnut Yellow Crinkle Disease on Quality of Chestnut [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 136-140. |
[5] | Ruyue WANG, Haifang HU, Shasha LUO, Ziyi ZHEN, Yeyong XU, Xiaojing HU. Fruit Quality Analysis of Prunus domestica × armeniaca at Different Harvest Maturity Levels [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 158-169. |
[6] | Qiang WU, Conglian WU, Xiaoyun WU, Jian WU, Xuanmei XU, Junsheng LAI, Weiyun HU, Bangchu GONG, Xibing JIANG. Effect of Different Fertilization Treatments on Yield and Fruit Quality of Castanea henryi [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 228-237. |
[7] | Baozhen ZENG, Yongjuan CHENG, Juanbo YANG, Lili CHE, Jing LIANG, Shixiong LU, Guoping LIANG, Zonghuan MA, Juan MAO. Determination of the Best Harvesting Period for ‘Muhe White’ Grape in Minqin District, Gansu Province [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 70-79. |
[8] | Ting WANG, Jinghan DU, Guangdi ZHANG, Jianglong WANG, Yinan JIA, Yu WANG, Wenyi BAO. Study on Quality and Volatile Substances of New Excellent Cabbage Varieties in Mountainous Area of Southern Ningxia [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 165-180. |
[9] | Yawen ZHAO, Shaowen LI. Construction and Recommendations for a Credible Traceability System for Agricultural Product Quality and Safety [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 17-24. |
[10] | Zhenyu XUE, Kangkang ZHANG, Yuanyuan ZHANG, Qiangqiang YAN, Lirong YAO, Hong ZHANG, Yaxiong MENG, Erjing SI, Baochun LI, Xiaole MA, Huajun WANG, Juncheng WANG. Screening and Functional Gene Detection of High-quality and Drought-resistant Wheat Germplasms [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 35-49. |
[11] | Lanting XIANG, Shuhui SONG, Lijuan LIU, Xiaoling SHE, Jiahua ZHOU, Baogang WANG, Hong CHANG, Chao ZHANG, Daqi FU, Yunxiang WANG. Effect of Different Storage Temperatures on Quality of Jingcai 1 Watermelon [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 137-145. |
[12] | Lei JI, Tianhong LIU, Ying WANG, Xiao LI, Hongyan LI, Xiaodong JIANG, Yuanqin SUN, Shuaizhong ZHANG. Effect of Glycosylation on Quality and Volatile Flavor Characteristics of rainbow trout (Oncorhynchus mykiss) Floss [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 159-172. |
[13] | Zhefeng XU, Chunshuo LIU, Xudong LIAO, Jiahong SUI, Yuqiu CHEN, Changbao CHEN, Tao ZHANG, Lina WEI. Effects of Ecological Factors on Quality Difference Between Forestland Ginseng and Farmland Ginseng [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 213-223. |
[14] | Bo PANG, Shengmei LI, Yanlin LI, Tao YANG, Weiwei LIANG, Ru ZHANG, Yajie HUANG, Dan REN, Jinxin CUI, Jing LI, Jingjing MA, Wenwei GAO. Genetic Diversity Analysis in 192 Gossypium hirsutum L. F1 Hybrids [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 34-50. |
[15] | Shijian BAI, Jinge HU, Chao LI, Junshe CAI. Effects of 3 Trellis Systems on Cultivation Characters and Berry Quality of ‘Xinyu’ Grape [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 63-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||