Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (12): 33-38.DOI: 10.13304/j.nykjdb.2022.1040
• INNOVATION BASIS • Previous Articles Next Articles
Xianwei SONG(), Shanjie TANG, Xiaofeng CAO
Received:
2022-11-28
Accepted:
2022-12-06
Online:
2022-12-15
Published:
2023-02-06
作者简介:
宋显伟 E-mail:xwsong@genetics.ac.cn
基金资助:
CLC Number:
Xianwei SONG, Shanjie TANG, Xiaofeng CAO. Epigenetic Regulation and Crop Breeding[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 33-38.
宋显伟, 唐善杰, 曹晓风. 表观遗传调控与作物育种[J]. 中国农业科技导报, 2022, 24(12): 33-38.
1 | WEI L, GU L F, SONG X W,et al.. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice [J]. Proc. Natl. Acad. Sci. USA, 2014, 111(10): 3877-3882. |
2 | SONG X, CAO X. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice [J]. Curr. Opin. Plant Biol., 2017,36:111-118. |
3 | SCHMITZ R J, SCHUITZ M D, LEWSEY M G, et al.. Transgenerational epigenetic instability is a source of novel methylation variants [J]. Science, 2011,334(6054):369-373. |
4 | HEARD E, MARTIENSSEN R A. Transgenerational epigenetic inheritance: myths and mechanisms [J].Cell,2014,157(1):95-109. |
5 | JIANG C, BELFIELD E J, CAO Y, et al.. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations [J]. Genome Res., 2014,24:1821-1829. |
6 | HU L, LI N, XU C, et al.. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality [J]. Proc. Natl. Acad. Sci. USA, 2014,111(29):10642-10647. |
7 | WEI L Y, CAO X F. The effect of transposable elements on phenotypic variation: insights from plants to humans [J]. Sci. China Life Sci., 2016,59( 1): 24-37. |
8 | MARTIN A, TROADEC C, BOUALEM A, et al.. A transposon-induced epigenetic change leads to sex determination in melon [J]. Nature, 2009,461:1135-1138. |
9 | QUADRANA L, ALMEIDA J, ASIS R, et al.. Natural occurring epialleles determine vitamin E accumulation in tomato fruits [J/OL]. Nat. Commun., 2014,5:4027 [2022-11-30]. . |
10 | ONG-ABDULLAH M, ORDWAY J M, JIANG N, et al.. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm [J]. Nature, 2015,525:533-537. |
11 | YANG Q, LI Z, LI W Q, et al.. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize [J]. Proc. Natl. Acad. Sci. USA, 2013,110(42):16969-16974. |
12 | HUANG C, SUN H, XU D, et al.. ZmCCT9 enhances maize adaptation to higher latitudes [J]. Proc. Natl. Acad. Sci. USA,2018, 115:334-341. |
13 | ZHANG X Q, SUN J, CAO X F, et al.. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice [J]. Plant Physiol.,2015,169:2118-2128. |
14 | DENG Y, ZHAI K, XIE Z, et al.. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance [J]. Science, 2017, 355(6328):962-965. |
15 | CHANG L, HU M, NING J, et al.. The genetic control of glabrous glume during African rice domestication [J]. J. Genet. Genomics, 2022, 49(5):427-436. |
16 | ZHANG L, YU H, MA B, et al.. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice [J/OL]. Nat. Commun.,2017, 8:14789 [2022-11-30]. . |
17 | ZHANG L G, CHENG Z J, QIN R Z, et al.. Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice [J]. Plant Cell, 2012,24(11):4407-4421. |
18 | LUAN X, LIU S C, KE S W, et al.. Epigenetic modification of ESP, encoding a putative long noncoding RNA, affects panicle architecture in rice [J/OL]. Rice,2019,12:20 [2022-11-30]. . |
19 | SONG X W, LI Y, CAO X F, et al.. DENG X, SONG X W, WEI L Y,et al.. Epigenetic regulation and epigenomic landscape in rice [J]. Natl. Sci. Rev., 2016, 3(3):309-327. |
20 | SONG X W, LI Y, CAO X F, et al.. MicroRNAs and their regulatory roles in plant-environment interactions [J]. Annu. Rev. Plant Biol., 2019,70:489-525. |
21 | JIAO Y Q, WANG Y H, XUE A W, et al.. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice [J]. Nat. Genet., 2010,42:541-544. |
22 | WANG J, ZHOU L, SHI H, et al.. A single transcription factor promotes both yield and immunity in rice [J]. Science,2018,361(6406):1026-1028. |
23 | CHE R H, TONG H N, SHI B H, et al.. Control of grain size and rice yield by GL2-mediated brassinosteroid responses [J/OL]. Nat. Plants,2016,2:15195 [2022-11-30]. . |
24 | DUAN P G, NI S, WANG J M . et al .. Regulation of OsGRF4 OsmiRby396 controls grain size and yield in rice [J/OL]. Nat. Plants, 2016,2:15203 [2022-11-30]. . |
25 | GAO F, WANG K, LIU Y,et al.. Blocking miR396 increases rice yield by shaping inflorescence architecture [J/OL]. Nat. Plants, 2016, 2:15196 [2022-11-30]. . |
26 | HU J, WANG Y X, FANG Y X, et al.. A rare allele of GS2 enhances grain size and grain yield in rice [J]. Mol. Plant,2015,89(10):1455-1465. |
27 | ZHANG Y C, YU Y, WANG C Y, et al.. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching [J]. Nat. Biotechnol., 2013,31:848-852. |
28 | XUE C, YAO J L, QIN M F, et al.. PbrmiR397a regulates lignification during stone cell development in pear fruit [J]. Plant Biotechnol. J., 2019, 17(1):103-117. |
29 | PENG T, QIAO M M, LIU H P, et al.. A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants [J]. Mol. Plant, 2018,11(11):1400-1417. |
30 | ZHANG J P, YANG Y, ZHAO F Y, et al.. MiR408 regulates grain yield and photosynthesis via a phytocyanin protein [J]. Plant Physiol., 2017,175(3):1175-1185. |
31 | HOUSTON K, MCKIM S M, COMADRAN J, et al. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence [J]. Proc. Natl. Acad. Sci. USA, 2013,110(41):16675-16680. |
32 | ARAKI S, LE N T, KOIZUMI K, et al.. miR2118-dependent U-rich phasiRNA production in rice anther wall development [J/OL]. Nat. Commun., 2020,11: 3115 [2022-11-30]. . |
33 | TENG C, ZHANG H, HAMMOND R, et al.. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize [J/OL]. Nat. Commun.,2020, 11:2912 [2022-11-30]. . |
34 | LEE Y S, MAPLE R, DURR J, et al.. A transposon surveillance mechanism that safeguards plant male fertility during stress [J]. Nat. Plants,2021,7:34-41. |
35 | SONG X W, WANG D K, MA L J, et al.. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development [J]. Plant J., 2012,71(3):378-389. |
36 | DING J H, LU Q, OUYANG Y D, et al.. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(7): 2654-2659. |
37 | FAN Y R, YANG J Y, MATHIONI S M, et al.. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(52), 15144-15149. |
38 | ZHOU H, LIU Q J, LI J, et al.. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA [J]. Cell Res., 2012,22:649-660. |
39 | SI F Y, LUO H F, YANG C, et al.. Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice [J/OL]. Sci. China Life Sci., 2022 [2022-11-30]. . |
40 | MAO H, WANG H W, LIU S X, et al.. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings [J/OL]. Nat. Commun., 2015,6:8326 [2022-11-30]. . |
41 | ZHANG H T, TAO Z, HONG H M, et al.. Transposon-derived small RNA is responsible for modified function of WRKY45 locus [J]. Nat. Plants, 2016, 2:16016 [2022-11-30]. . |
42 | YU Q, LIU S, YU L, et al.. RNA demethylation increases the yield and biomass of rice and potato plants in field trials [J]. Nat. Biotechnol.,2021,39:1581-1588. |
43 | RAVI M, CHAN S W. Haploid plants produced by centromere-mediated genome elimination [J]. Nature,2010,464(7288):615-618. |
44 | KELLIHER T, STARR D, WANG W L, et al.. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize [J/OL]. Front. Plant Sci., 2016,7:414 [2022-11-30]. . |
45 | LV J, YU K, WEI J, et al.. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3 [J]. Nat. Biotechnol.,2020,38 (12):1397-1401. |
46 | VAN DE PEER Y, MIZRACHI E, MARCHAL K. The evolutionary significance of polyploidy [J]. Nat. Rev. Genet., 2017,18:411-424. |
47 | YANG X Y, SU H D, ZHANG M Z, et al.. Polyploidization and domestication [J]. Sci. Sin. Vitae, 2021,51(10):1457-1466. |
48 | WENDEL J F, JACKSON S A, MEYERS B C, et al.. Evolution of plant genome architecture [J/OL]. Genome Biol.,2016,17:37 [2022-11-30]. . |
49 | HAN J L, LOPEZ-ARREDONDO D, YU G R, et al.. Genome-wide chromatin accessibility analysis unveils open chromatin convergent evolution during polyploidization in cotton [J/OL]. Proc. Natl. Acad. Sci. USA, 2022,119(44):e2209743119 [2022-11-30]. . |
50 | YUAN J Y, SUN H J, WANG Y J, et al.. Open chromatin interaction maps reveal functional regulatory elements and chromatin architecture variations during wheat evolution [J/OL]. Genome Biol., 2022, 23(1):34 [2022-11-30]. . |
51 | GROVER C E, GALLAGHER J P, SZADKOWSKI E P, et al.. Homoeolog expression bias and expression level dominance in allopolyploids [J]. New Phytol.,2012,196(4):966-971. |
52 | HA M, LU J, TIAN L, et al.. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids [J]. Proc. Natl. Acad. Sci. USA,2009,106(42):17835-17840. |
53 | WANG M Y, LI Z J, ZHANG Y, et al.. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses [J]. Plant Cell, 2021,33(4):865-881. |
54 | ZHU H C, Li C, GAO C X. Applications of CRISPR-Cas in agriculture and plant biotechnology [J]. Nat. Rev. Mol. Cell. Biol., 2021,21(11):661-677. |
55 | LIU X S, WU H, JI X, et al.. Editing DNA methylation in the mammalian genome [J]. Cell, 2016, 167(1):233-247. |
56 | GALLEGO-BARTOLOME J, GARDINER J, LIU W L, et al.. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain [J]. Proc. Natl. Acad. Sci. USA, 2018, 115(9): E2125-E2134. |
57 | PAPIKIAN A, LIU W L, GALLEGO-BARTOLOME J, et al.. Site-specific manipulation of arabidopsis loci using CRISPR-Cas9 SunTag systems [J/OL]. Nat. Commun., 2019,10(1):729 [2022-11-30]. . |
58 | TANG S J, YANG C, WANG D, et al.. Targeted DNA demethylation produces heritable epialleles in rice [J]. Sci. China Life Sci.,2021,65(4):753-756. |
59 | REINDERS J, WULFF B B H, MIROUZE M, et al.. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes [J]. Genes Dev., 2009,23(8):939-950. |
60 | JOHANNES F, PORCHER E, TEIXEIRA F K, et al.. Assessing the impact of transgenerational epigenetic variation on complex traits [J/OL]. PLoS Genet., 2009,5(6):e1000530 [2022-11-30]. . |
[1] | Beibei FAN, Jin LI, Chen MA. Digital Development of China’s Crop Industry: Achievements, Difficulties and Prospects [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 25-32. |
[2] | Jingkun ZHANG, Wenjia LI, Peng ZENG, Xiangbing MENG, Hong YU, Jiayang LI. Innovation and Progresses in de novo Domestication of Crops [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 68-77. |
[3] | Weijun GUO, Dongwei LI, Shang XIE, Liwen YANG, Cong LI, Jian TIAN, Li PU, Xiaofeng GU. Artificial Intelligence Accelerates Epigenetics and Plant Breeding [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 90-100. |
[4] | LI Yuan-yuan1,2, CAO Qing-he1,2*. Mechanism of Brassinosteroid Involved in Regulating Plant Development, Stress Resistance and its Application in Breeding [J]. , 2015, 17(2): 25-32. |
[5] | ZHAO Jun-xing1, YUE Wan-fu2. Control of Skeletal Muscle Myogenesis by Epigenetic Regulations [J]. , 2014, 16(3): 42-47. |
[6] | ZHANG Fu1,2, GAO Wang-sheng1. The Development Process and Strategy of High-tech Research on Crops Breeding in China [J]. , 2010, 12(3): 67-72. |
[7] | WEI Hua-li, YANG Wen-hua, HAN Su-ying, QI Li-wang. Research Strategy of Epigenetics and its Utilization in Wooden Plants [J]. , 2009, 11(2): 10-16. |
[8] | ZHENG Xiao-mei, WU Ning-feng. Biological Function of DNA Methylation [J]. , 2009, 11(1): 33-39. |
[9] | LIU Bao, HA0 Shui. Epigenetic Variation Associated With Plant Wide |Hybridization and Polyploidy [J]. , 2007, 9(6): 18-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||