Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (4): 11-20.DOI: 10.13304/j.nykjdb.2021.0497
• AGRICULTURAL INNOVATION FORUM • Previous Articles Next Articles
Tao YANG(), Xiaoqian MA, Quan ZHANG, Hongliang ZHANG(
)
Received:
2021-06-17
Accepted:
2021-08-23
Online:
2022-04-15
Published:
2022-04-19
Contact:
Hongliang ZHANG
通讯作者:
张洪亮
作者简介:
杨涛 E-mail:b20203010051@cau.edu.cn;
基金资助:
CLC Number:
Tao YANG, Xiaoqian MA, Quan ZHANG, Hongliang ZHANG. Research Progress of Histone Modification in Rice[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 11-20.
杨涛, 马小倩, 张全, 张洪亮. 组蛋白修饰在水稻中的研究进展[J]. 中国农业科技导报, 2022, 24(4): 11-20.
组蛋白修饰类型 Histone modification type | 基因 Gene | 功能分析 Functional analysis | 参考文献Reference | |
---|---|---|---|---|
甲基化 Methylation | H3K4甲基化酶 H3K4 methylase | SDG701 | 孢子体生长发育,育性,开花 Spore growth and development, fertility, flowering | [ |
SDG721,SDG705 | GA信号,株高,细胞长度,穗分支 GA signal, plant height, cell length, panicle branch | [ | ||
H3K4去甲基化酶 H3K4 demethylase | JMJ703 | 茎秆,株高,粒型,叶角 Stem, plant height, grain type, leaf angle | [ | |
H3K9甲基化酶 H3K9 methylase | SDG714 | 基因组稳定性,毛状体发育 Genome stability, trichome development | [ | |
SDG710,SDG727 | 抑制逆转座子的转座 Inhibition of transposition of retrotransposons | [ | ||
SDG723 | 抽穗期 Heading date | [ | ||
H3K9去甲基化酶 H3K9 demethylase | JMJ706 | 花器官发育Floral organ development | [ | |
JMJ704 | 细菌枯萎病抗性Bacterial fusarium wilt resistance | [ | ||
H3K27甲基化酶 H3K27 methylase | SDG711 | 花序形状,抽穗期Inflorescence shape, heading date | [ | |
H3K27去甲基化酶 H3K27 demethylase | JMJ705 | 抗病性,茉莉酸信号Disease resistance, Jasmonic acid signal | [ | |
H3K36甲基化酶 H3K36 methylase | SDG708 | 抗旱性,抽穗期Drought resistance, heading date | [ | |
SDG724 | 光周期,抽穗期Photoperiod, heading date | [ | ||
SDG725 | 抽穗期Heading date | [ | ||
乙酰化 Acetylation | 乙酰化酶 Acetylase | HAT1 | 粒重,产量Grain weight, yield | [ |
GCN5 | 不定根,节间发育Adventitious roots, internode development | [ | ||
HDA704 | 株高,旗叶Plant height, flag leaf | [ | ||
HDA710 | 耐盐性,种子萌发,根生长Salt tolerance, seed germination, root growth | [ | ||
HDA716 | 种子萌发,根生长Seed germination, root growth | [ | ||
HDT702 | 叶片和茎发育Leaf and stem development | [ | ||
SRT1 | 氧化胁迫,细胞生长,胚乳发育Oxidative stress, cell growth, endosperm development | [ | ||
HDT1 | 抗病性,抽穗期,耐盐性Disease resistance, heading stage, salt tolerance | [ | ||
HDAC10 | 株高,结实率,耐盐性,发芽率Plant height, seed setting rate, salt tolerance, germination rate | [ | ||
去乙酰化酶 Deacetylase | HDA705 | 非生物胁迫,株高,结实率,发芽率Abiotic stress, plant height, seed setting rate, germination rate | [ | |
HDAC1 | 根长度Root length | [ | ||
HDAC2 | 抽穗期Heading date | [ | ||
HDA703 | 花序梗伸长,育性,抽穗期 Peduncle elongated, fertility,heading date | [ | ||
单泛素化 Mononbiguitination | 单泛素化酶 Monoubiquitinase | HUB1,HUB2 | 株高,分蘖数,育性Plant height, tiller number, fertility | [ |
Table 1 Part of cloned histone modification genes in rice
组蛋白修饰类型 Histone modification type | 基因 Gene | 功能分析 Functional analysis | 参考文献Reference | |
---|---|---|---|---|
甲基化 Methylation | H3K4甲基化酶 H3K4 methylase | SDG701 | 孢子体生长发育,育性,开花 Spore growth and development, fertility, flowering | [ |
SDG721,SDG705 | GA信号,株高,细胞长度,穗分支 GA signal, plant height, cell length, panicle branch | [ | ||
H3K4去甲基化酶 H3K4 demethylase | JMJ703 | 茎秆,株高,粒型,叶角 Stem, plant height, grain type, leaf angle | [ | |
H3K9甲基化酶 H3K9 methylase | SDG714 | 基因组稳定性,毛状体发育 Genome stability, trichome development | [ | |
SDG710,SDG727 | 抑制逆转座子的转座 Inhibition of transposition of retrotransposons | [ | ||
SDG723 | 抽穗期 Heading date | [ | ||
H3K9去甲基化酶 H3K9 demethylase | JMJ706 | 花器官发育Floral organ development | [ | |
JMJ704 | 细菌枯萎病抗性Bacterial fusarium wilt resistance | [ | ||
H3K27甲基化酶 H3K27 methylase | SDG711 | 花序形状,抽穗期Inflorescence shape, heading date | [ | |
H3K27去甲基化酶 H3K27 demethylase | JMJ705 | 抗病性,茉莉酸信号Disease resistance, Jasmonic acid signal | [ | |
H3K36甲基化酶 H3K36 methylase | SDG708 | 抗旱性,抽穗期Drought resistance, heading date | [ | |
SDG724 | 光周期,抽穗期Photoperiod, heading date | [ | ||
SDG725 | 抽穗期Heading date | [ | ||
乙酰化 Acetylation | 乙酰化酶 Acetylase | HAT1 | 粒重,产量Grain weight, yield | [ |
GCN5 | 不定根,节间发育Adventitious roots, internode development | [ | ||
HDA704 | 株高,旗叶Plant height, flag leaf | [ | ||
HDA710 | 耐盐性,种子萌发,根生长Salt tolerance, seed germination, root growth | [ | ||
HDA716 | 种子萌发,根生长Seed germination, root growth | [ | ||
HDT702 | 叶片和茎发育Leaf and stem development | [ | ||
SRT1 | 氧化胁迫,细胞生长,胚乳发育Oxidative stress, cell growth, endosperm development | [ | ||
HDT1 | 抗病性,抽穗期,耐盐性Disease resistance, heading stage, salt tolerance | [ | ||
HDAC10 | 株高,结实率,耐盐性,发芽率Plant height, seed setting rate, salt tolerance, germination rate | [ | ||
去乙酰化酶 Deacetylase | HDA705 | 非生物胁迫,株高,结实率,发芽率Abiotic stress, plant height, seed setting rate, germination rate | [ | |
HDAC1 | 根长度Root length | [ | ||
HDAC2 | 抽穗期Heading date | [ | ||
HDA703 | 花序梗伸长,育性,抽穗期 Peduncle elongated, fertility,heading date | [ | ||
单泛素化 Mononbiguitination | 单泛素化酶 Monoubiquitinase | HUB1,HUB2 | 株高,分蘖数,育性Plant height, tiller number, fertility | [ |
1 | BERGER S L, KOUZARIDES T, SHIEKHATTAR R, et al.. An operational definition of epigenetics [J]. Genes Dev., 2009, 23(7):781-783. |
2 | KORNBERG R D, LORCH Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome [J]. Cell, 1999, 98(3):285-294. |
3 | LOIDL P. A plant dialect of the histone language [J]. Trends Plant Sci., 2004, 9(2):84-90. |
4 | KOUZARIDES T. Chromatin modifications and their function [J]. Cell, 2007, 128(4):693-705. |
5 | BHAUMIK S R, SMITH E, SHILATIFARD A. Covalent modifications of histones during development and disease pathogenesis [J]. Nat. Struct. Mol. Biol., 2007, 14(11):1008-1016. |
6 | SANTOS-ROSA H, SCHNEIDER R, BANNISTER A J, et al.. Active genes are tri-methylated at K4 of histone H3 [J]. Nature, 2002, 419(6905):407-411. |
7 | GREWAL S I S, MOAZED D. Heterochromatin and epigenetic control of gene expression [J]. Science, 2003, 301(5634):798-802. |
8 | MARTIN C, ZHANG Y. The diverse functions of histone lysine methylation [J]. Nat. Rev. Mol. Cell Biol., 2005, 6(11):838-849. |
9 | KOUZARIDES T. Chromatin modifications and their function [J]. Cell, 2007, 128(4):693-705. |
10 | SHI Y, FEI L, MATSON C, et al.. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 [J]. Cell, 2004, 119(7):941-953. |
11 | SUN Q, ZHOU D X. Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development [J]. Proc. Natl. Acad. Sci. USA, 2008, 105(36):13679-13684. |
12 | MICHAEL F, ZOYA A. ATX1/AtCOMPASS and the H3K4me3 marks: how do they activate Arabidopsis genes? [J]. Curr. Opin. Plant Biol., 2014, 21:75-82. |
13 | QIN F J, SUN Q W, HUANG L M, et al.. Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression [J]. Mol. Plant, 2010, 3(4):773-782. |
14 | LI B, CAREY M, WORKMAN J L. The role of chromatin during transcription [J]. Cell, 2007, 128(4):707-719. |
15 | JIANG D, WANG Y, WANG Y, et al.. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components [J/OL]. PLoS One, 2008, 3(10): e3404 [2020-06-15]. . |
16 | BLANC R S, RICHARD S. Arginine methylation: the coming of age [J]. Mol. Cell, 2017, 65(1):8-24. |
17 | YANG Y, MCBRIDE K, HENSLEY S, et al.. Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation [J]. Mol. Cell, 2014, 53(3):484-497. |
18 | YANG Y, BEDFORD M T. Protein arginine methyltransferases and cancer [J]. Nat. Rev. Cancer, 2013, 13(1):37-50. |
19 | AHMAD A, YONG Z, CAO X F. Decoding the epigenetic language of plant development [J]. Mol. Plant, 2010, 3(4):719-728. |
20 | AHMAD A, CAO X. Plant PRMTs broaden the scope of arginine methylation [J]. J. Genet. Genomics, 2012, 39(5):195-208. |
21 | PEI Y X, NIU L F, LU F L, et al.. Mutations in the type Ⅱ protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis [J]. Plant Physiol., 2007, 144:1913-1923. |
22 | WANG X, ZHANG Y, MA Q B, et al.. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis [J]. EMBO J., 2007, 26:1934-1941. |
23 | SCHMITZ RJ, SUNG S, AMASINO RM. Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana [J]. Proc. Natl. Acad. Sci. USA, 2008, 105:411-416. |
24 | LIU H, MA X, HAN H N, et al.. AtPRMT5 regulates shoot regeneration through mediating histone H4R3 dimethylation on KRPs and Pre-mRNA splicing of RKP in Arabidopsis [J]. Mol. Plant, 2016(12):1634-1646. |
25 | AHMAD A, DONG Y Z, CAO X F. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation [J/OL]. PLoS One, 2011, 6(8): e22664 [2021-06-15]. |
26 | LEE K K, WORKMAN J L. Histone acetyltransferase complexes: one size doesn't fit all [J]. Nat. Rev. Mol. Cell Biol., 2007, 8:284-295. |
27 | AKATSUKI K, KAZUKO M, MASAMI H. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes [J]. J. Biochem., 2005(6):647-662. |
28 | KLEFF S, ANDRULIS E D, ANDERSON C W, et al.. Identification of a gene encoding a yeast histone H4 acetyltransferase [J]. J. Biol. Chem., 1995, 270(42):24674-24677. |
29 | GRANT P A, DUGGAN L, COTE J, et al.. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex [J]. Genes Dev., 1997, 11(13):1640-1650. |
30 | WANG L, DENT S Y. Functions of SAGA in development and disease [J]. Epigenomics, 2014, 6(3):329-339. |
31 | WEAKE V M, WORKMAN J L. SAGA function in tissue-specific gene expression [J]. Trends Cell Biol., 2012, 22(4):177-184. |
32 | PANDEY R, MÜLLER A, NAPOLI C A, et al.. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes [J]. Nucl. Acids Res., 2002, 30(23):5036-5055. |
33 | LUSSER A, BROSCH G, LOIDL A, et al.. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein [J]. Science, 1997, 277:88-91. |
34 | CIELA J, FRCZYK T, RODE W. Phosphorylation of basic amino acid residues in proteins: important but easily missed [J]. Acta Biochim. Pol., 2011, 58(2):137-148. |
35 | FISCHLEWOLFGANG. Molecular mechanisms of histone modification function [J]. Biochim. Biophys. Acta, 2014, 1839:621-622. |
36 | HAY R T. SUMO: A history of modification [J]. Mol. Cell, 2005, 18(1):1-12. |
37 | MENG X X, BAINE J M, YAN T C, et al.. Comprehensive analysis of lysine lactylation in Rice (Oryza sativa) grains [J/OL]. J. Agric. Food Chem., 2021, 1c00760 [2021-06-15]. . |
38 | LIU K P, YU Y, DONG A W, et al.. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development [J]. New Phytol., 2017, 215(2):609-623. |
39 | JIANG P, WANG S, IKRAM A U, et al.. SDG721 and SDG705 are required for rice growth [J]. J. Integr. Plant Biol., 2018, 60(7):530-535. |
40 | LIU X, ZHOU S, WANG W, et al.. Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem [J]. Plant Cell, 2015, 27(5):1428-1444. |
41 | CUI X K, JIN P, CUI X, et al.. Control of transposon activity by a histone H3K4 demethylase in rice [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(5):1953-1958. |
42 | DING Y, WANG X, SU L, et al.. SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice [J]. Plant Cell, 2007, 19(1):9-22. |
43 | LIU X, ZHOU S, WANG W, et al.. Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem [J]. Plant Cell, 2015, 27(5):1428-1444. |
44 | LUO M, PLATTEN D, CHAUDHURY A, et al.. Expression, imprinting, and evolution of rice homologs of the polycomb group genes [J]. Mol. Plant, 2009, 2(4):711-723. |
45 | CHOI S C, LEE S Y, KIM S R, et al.. Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3 [J]. Plant Physiol., 2014, 164(3):1326-1337. |
46 | JIANG P F, WANG S L, JIANG H Y, et al.. The COMPASS-Like complex promotes flowering and panicle branching in rice [J]. Plant Physiol., 2018,176(4):2761-2771. |
47 | HOU Y X, WANG L Y, WANG L, et al.. JMJ 704 positively regulates rice defense response against Xanthomonas oryzae pv. Oryzae infection via reducing H3K4me2/3 associated with negative disease resistance regulators [J/OL]. BMC Plant Biol., 2015, 15(1):286 [2021-06-15]. . |
48 | LIU X, LUO J, LI T, et al.. SDG711 is involved in rice seed development through regulation of starch metabolism gene expression in coordination with other histone modifications [J]. Rice, 2021,14(1):1-13. |
49 | LIU X, ZHOU C, ZHAO Y, et al.. The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time [J/OL]. Front. Plant Sci., 2014, 5:591 [2021-06-15]. |
50 | LI T, CHEN X, ZHONG X, et al.. Jumonji C domain protein JMJ705-Mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice [J]. Plant Cell, 2013, 25(11):4725-4736. |
51 | LIU B, WEI G SHI J L, et al.. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa) [J]. New Phytol., 2016, 210 (2):577-588. |
52 | CHEN K, DU K X, SHI Y C, et al.. H3K36 methyltransferase SDG708 enhances drought tolerance by promoting abscisic acid biosynthesis in rice [J]. New Phytol., 2021, 230(5):1967-1984. |
53 | SUN C H, FANG J, ZHAO T L, et al.. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and Promotes flowering in rice [J]. Plant Cell, 2012, 24(8):3235-3247. |
54 | LIU B, LIU Y H, WANG B H, et al.. The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment [J/OL]. Nat. Commun., 2019, 10(1):2999[2021-06-15]. . |
55 | SONG X J, KUROHA T, AYANO M, et al.. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J]. Proc. Natl. Acad. Sci. USA, 2015, 112(1):76-81. |
56 | ZHOU S L, JIANG W, LONG F, et al.. Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem [J]. Plant Cell, 2017, 29(5):1088-1104. |
57 | HU Y F, QIN F J, HUANG L M, et al.. Rice histone deacetylase genes display specific expression patterns and developmental functions[J]. Biochem. Biophys. Res. Commun., 2009, 388(2):266-271. |
58 | ZHANG H, GUO F, QI P, et al.. OsHDA710-mediated histone deacetylation regulates callus formation of rice mature embryo [J]. Plant Cell Physiol., 2020, 61(9):1646-1660. |
59 | ULLAH F, XU Q, ZHAO Y, et al.. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice [J]. J. Intergr. Plant Biol., 2021, 63:451-467. |
60 | ZHANG H, LU Y, YU Z, et al.. OsSRT1 is involved in rice seed development through regulation of starch metabolism gene expression [J]. Plant Sci., 2016, 248:28-36. |
61 | FANG C Y, ZHANG H, WAN J, et al.. Control of leaf senescence by a MeOH-jasmonates cascade that is epigenetically regulated by OsSRT1 in rice [J]. Mol. Plant, 2016, 9(10):1366-1378. |
62 | LI C, HUANG L M, XU C G, et al.. Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice [J/OL]. PLoS ONE, 2011, 6(7): e21789 [2021-06-15]. . |
63 | WEI H, WANG X L, HE Y Q, et al.. Clock component OsPRR 73 positively regulates rice salt tolerance by modulating OsHKT2;1 mediated sodium homeostasis [J/OL]. EMBO J., 2020, 40(3):86 [2021-06-15]. . |
64 | XU Q T, LIU Q, CHEN Z T, et al.. Histone deacetylases control lysine acetylation of ribosomal proteins in rice [J]. Nucleic Acids Res., 2021, 49(8):4613-4628. |
65 | ZHAO J H, LI M Z, GU D C, et al.. Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses [J]. Biochem. Biophys. Res. Commun., 2016, 470(2):439-444. |
66 | CHUNG P J, KIM Y S, JIN S J, et al.. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice [J]. Plant J., 2010, 59(5):764-776. |
67 | GENG Y K, ZHANG P X, LIU Q, et al.. Rice homolog of Sin3-associated polypeptide 30, OsSFL1, mediates histone deacetylation to regulate flowering time during short days [J]. Plant Biotechnol. J., 2020, 18(2):325-327. |
68 | WANG H C, JIAO X M, KONG X Y, et al.. The histone deacetylase HDA703 interacts with OsBZR1 to regulate rice brassinosteroid signaling, growth and heading date through repression of Ghd7 expression [J]. Plant J., 2020, 104(2):447-459. |
69 | CAO H, LI X Y, WANG Z, et al.. Histone H2B monoubiqui-tination mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 is involved in anther development by regulating tapetum degradation-related genes in rice [J]. Plant Physiol., 2015, 168(4):1389-1405. |
70 | WU K, WANG S S, SONG W Z, et al.. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice [J/OL]. Science, 2020, 367(6478):2046 [2021-06-15]. |
71 | YOON J, CHO L H, LEE S, et al.. Chromatin interacting factor OsVIL2 is required for outgrowth of axillary buds in rice [J]. Mol. Cells, 2019, 42(12):858-868. |
72 | JIN J, SHI J L, LIU B, et al.. MORF-RELATED GENE702, a reader protein of trimethylated histone H3 lysine 4 and histone H3 lysine 36, is involved in brassinosteroid-regulated growth and flowering time control in rice [J]. Plant Physiol., 2015,168(4):1275-1285. |
73 | DU Y W, HE W, DENG C W, et al.. Flowering-related RING Protein 1 (FRRP1) regulates flowering time and yield potential by affecting histone H2B monoubiquitination in rice (Oryza Sativa) [J/OL]. PLoS ONE, 2016, 11(3):e0150458 [2021-06-15]. . |
74 | LI Y, XIAO Y, YU X, et al.. Identification of a novel function of a component in the jasmonate signaling pathway for intensive pesticide degradation in rice and environment through an epigenetic mechanism [J/OL]. Environ. Pollut., 2020, 268: 115802 [2021-06-15]. . |
[1] | Nanrui TANG, Yong ZHOU, Guozhong ZHANG, Fang LIANG, Huibin KE. Performance Simulation and Experiment of Stirred and Bunch Rice Seeding Device [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 107-115. |
[2] | Linlin DONG, Jinfang ZHA, Mingxing SHEN, Haihou WANG, Linlin SHI, Yueyue TAO, Xinwei ZHOU, Changying LU. Effect of Long-term Straw Returning on Soil Organic Carbon Fractions Composition in Rice-Wheat Rotation Ecosystem [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 166-175. |
[3] | Zhenjia HE, Wangtao FAN, Yichun DU, Qilong WANG. Effects of Water and Fertilizer Coupling on the Physical and Chemical Properties of Rice Soil and Yield Based on Soil Organic Reconstruction [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 176-185. |
[4] | Wei YAN, Yutao WANG, Yonghao ZHANG, Haixia LIU, Dayong HAN, Aiwen ZHU. Study on Expressions of CNR1 and FABP4 Genes in Ovine Intramuscular Preadipocytes [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 95-102. |
[5] | Hui XU, Yangyang ZHAO, Dongyue SUN, Yuanyuan KE, Lele ZHANG, Xiang CHEN, Fengzhen WEI, Jincai LI. Progress in Integrated Rice-crayfish Farming System [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 160-168. |
[6] | Xiaoqian MA, Tao YANG, Quan ZHANG, Hongliang ZHANG. Development Status and Prospect of Rice New Breeding Technology [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 24-30. |
[7] | Xiaochun SUN, Wenjing HUANG, Bo LI. Effects of Exogenous Salicylic Acid on Physiological and Biochemical Indexes and Related Gene Expression in Platycodongrandiflorus Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 63-70. |
[8] | XI Min, XU Youzun, SUN Xueyuan, WU Wenge, ZHOU Yongjin. Effects of Nitrogen Fertilizer Topdressing on Grain Filling and Milling Quality of the Rice with High Grain Chalkiness [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 144-151. |
[9] | BAI Hao, LI Xiaofan, ZHONG Li, SONG Qianqian, LIU Benshuai, ZHANG Xin, ZHANG Yang, WANG Zhixiu, JIANG Yong, XU Qi, CHANG Guobin, CHEN Guohong, . Mineral Element Depositions and Gene Expression Across Different Tissues of the Runzhou White Crested Ducks [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 63-73. |
[10] | WU Zishuai, LI Hu, HUANG Qiuyao, CHEN Chuanhua, LUO Qunchang, ZHOU Xinmin, WU Jiaju, LIU Guanglin. Influences of Nitrogen Fertilizer Application Rate and Planting Density on the Yield and Rice Quality of Guiyu 11 [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 154-162. |
[11] | WENG Wenan, CHENG Shuang, LI Shaoping, TIAN Jinyu, TAO Yu, HU Qun, HU Yajie, GUO Baowei, WEI Haiyan, XING Zhipeng, ZHANG Hongcheng. Effects of One-off Nitrogen Basal Fertilization on Yield of Direct Seeding Conventional Japonica Rice Under Different Panicle Formation Types [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 163-172. |
[12] | JIANG Xuehai, LUO Deqiang, LI Min, JI Guangmei, JIANG Mingjin, LI Lijiang, Li Ganghua, ZHOU Weijia, ZHANG Jiafeng. Influences of Planting Density on Yield and Nitrogen Use Efficiency in New Indica Hybrid Rice Varieties by Bowl-Seedling-Mechanical-Transplanting [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 173-184. |
[13] | ZHOU Xuan, KANG Xingrong, PENG Jianwei, YANG Xiangdong, ZHONG Xuemei, HU Wenfeng, LONG Junyou. Effects of Reduction Application of Polyurethane Coated Urea on Growth, Yield and Economic Benefit of Double-cropping Early Rice [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 153-161. |
[14] | LUO Youyi, WANG Weiqin, ZHENG Huabin, LIU Gongyi, CHAO Ying, XU Cai, ZHENG Zhigang, LI Xueqian, WEI Yinlan, TANG Qiyuan. Influences of Different Mechanical and Orderly Planting Methods on Growth Characteristics and Yield of rice [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 162-171. |
[15] | LIU Yuan, ZHANG Xiuyan, XU Miaoyun, ZHENG Hongyan, ZOU Junjie, ZHANG Lan, WANG Lei. Global Small RNA Transcriptome Profiling of Rice Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 23-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||