Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (6): 58-69.DOI: 10.13304/j.nykjdb.2021.0692
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Lili WANG1,5(), Congpei YIN2(), Feng LI3, Zhimin YANG3, Fangming LIU1, Baisong LIN1, Xiaojing LIU1, Haijun LIU4, Jing SUN4, Dongdong SHAN4, Jianghui CUI2,5(), Zhenqing ZHANG4,5()
Received:
2021-08-12
Accepted:
2021-11-15
Online:
2022-06-15
Published:
2022-06-21
Contact:
Jianghui CUI,Zhenqing ZHANG
王莉莉1,5(), 殷丛培2(), 李峰3, 杨志敏3, 刘芳明1, 林柏松1, 刘晓静1, 刘海军4, 孙靖4, 单东东4, 崔江慧2,5(), 张振清4,5()
通讯作者:
崔江慧,张振清
作者简介:
王莉莉 E-mail:546156736@qq.com基金资助:
CLC Number:
Lili WANG, Congpei YIN, Feng LI, Zhimin YANG, Fangming LIU, Baisong LIN, Xiaojing LIU, Haijun LIU, Jing SUN, Dongdong SHAN, Jianghui CUI, Zhenqing ZHANG. Microbial Community Structure of Potato Rhizosphere Soil and Its Response to Drought Stress[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 58-69.
王莉莉, 殷丛培, 李峰, 杨志敏, 刘芳明, 林柏松, 刘晓静, 刘海军, 孙靖, 单东东, 崔江慧, 张振清. 马铃薯根际土壤细菌群落结构及其对干旱胁迫的响应[J]. 中国农业科技导报, 2022, 24(6): 58-69.
品种Variety | 处理Treatment | 净光合速率Pn/(µmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 气孔导度 Gs/(mol·m-2·s-1) | 胞间CO2浓度 Ci/(µmol·mol-1) |
---|---|---|---|---|---|
冀张薯8号 Jizhangshu 8 | T0 | 22.00±2.12 a | 2.35±0.33 a | 13.83±1.10 a | 170.33±10.66 a |
T1 | 24.80±9.04 a | 2.27±0.21 a | 10.33±0.74 b | 178.53±16.03 a | |
T2 | 17.44±3.10 ab | 2.01±0.21 ab | 8.50±0.89 bc | 182.67±9.18 a | |
T3 | 13.91±1.08 b | 1.79±0.05 ab | 6.00±0.47 c | 195.41±9.50 a | |
夏波蒂 Shepody | T0 | 28.01±2.22 a | 2.79±0.16 a | 13.76±1.35 a | 137.42±11.03 b |
T1 | 18.63±3.66 a | 2.17±0.45 b | 11.67±1.06 ab | 159.00±3.65 ab | |
T2 | 14.73±2.00 b | 1.58±0.32 b | 8.87±1.51 bc | 173.14±7.11 a | |
T3 | 8.97±1.82 c | 1.03±0.11 c | 4.80±1.08 c | 180.00±13.12 a |
Table 1 Photosynthetic characteristics of potato leaves under different treatments
品种Variety | 处理Treatment | 净光合速率Pn/(µmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 气孔导度 Gs/(mol·m-2·s-1) | 胞间CO2浓度 Ci/(µmol·mol-1) |
---|---|---|---|---|---|
冀张薯8号 Jizhangshu 8 | T0 | 22.00±2.12 a | 2.35±0.33 a | 13.83±1.10 a | 170.33±10.66 a |
T1 | 24.80±9.04 a | 2.27±0.21 a | 10.33±0.74 b | 178.53±16.03 a | |
T2 | 17.44±3.10 ab | 2.01±0.21 ab | 8.50±0.89 bc | 182.67±9.18 a | |
T3 | 13.91±1.08 b | 1.79±0.05 ab | 6.00±0.47 c | 195.41±9.50 a | |
夏波蒂 Shepody | T0 | 28.01±2.22 a | 2.79±0.16 a | 13.76±1.35 a | 137.42±11.03 b |
T1 | 18.63±3.66 a | 2.17±0.45 b | 11.67±1.06 ab | 159.00±3.65 ab | |
T2 | 14.73±2.00 b | 1.58±0.32 b | 8.87±1.51 bc | 173.14±7.11 a | |
T3 | 8.97±1.82 c | 1.03±0.11 c | 4.80±1.08 c | 180.00±13.12 a |
品种Variety | 处理 Treatment | 超氧化物歧化酶活性 SOD activity/(U·min-1) | 过氧化物酶活性 POD activity /(U·min-1) | 过氧化氢酶活性 CAT activity /(U·min-1) |
---|---|---|---|---|
冀张薯8号 Jizhangshu 8 | T0 | 118.04±8.77 b | 73.50±2.45 c | 5.38±0.20 b |
T1 | 123.74±6.62 b | 93.76±4.71 b | 6.70±0.61 ab | |
T2 | 145.98±7.02 b | 98.35±5.03 b | 8.01±0.30 a | |
T3 | 240.01±9.22 a | 119.98±6.73 a | 5.30±0.40 b | |
夏波蒂 Shepody | T0 | 44.98±5.66 c | 74.03±2.07 c | 4.66±0.31 a |
T1 | 58.06±4.08 b | 94.03±3.99 b | 4.76±0.58 a | |
T2 | 67.02±5.31 ab | 97.77±3.22 b | 4.72±0.57 a | |
T3 | 87.96±6.33 a | 118.03±4.14 a | 3.13±0.71 b |
Table 2 Enzyme activities of potato leaves under different treatments
品种Variety | 处理 Treatment | 超氧化物歧化酶活性 SOD activity/(U·min-1) | 过氧化物酶活性 POD activity /(U·min-1) | 过氧化氢酶活性 CAT activity /(U·min-1) |
---|---|---|---|---|
冀张薯8号 Jizhangshu 8 | T0 | 118.04±8.77 b | 73.50±2.45 c | 5.38±0.20 b |
T1 | 123.74±6.62 b | 93.76±4.71 b | 6.70±0.61 ab | |
T2 | 145.98±7.02 b | 98.35±5.03 b | 8.01±0.30 a | |
T3 | 240.01±9.22 a | 119.98±6.73 a | 5.30±0.40 b | |
夏波蒂 Shepody | T0 | 44.98±5.66 c | 74.03±2.07 c | 4.66±0.31 a |
T1 | 58.06±4.08 b | 94.03±3.99 b | 4.76±0.58 a | |
T2 | 67.02±5.31 ab | 97.77±3.22 b | 4.72±0.57 a | |
T3 | 87.96±6.33 a | 118.03±4.14 a | 3.13±0.71 b |
处理 Treatment | 有效序列数 Sequence number | 碱基数 Base number | 平均长度 Mean length/bp | 最短序列长度 Min. length/bp | 最长序列长度 Max. length/bp |
---|---|---|---|---|---|
对照土CK soil | 173 462 | 72 743 138 | 419.36 | 257 | 480 |
S-T0 | 150 075 | 62 852 665 | 418.84 | 276 | 472 |
S-T1 | 125 549 | 52 301 567 | 416.60 | 289 | 455 |
S-T2 | 159 305 | 66 521 294 | 417.57 | 243 | 476 |
S-T3 | 178 086 | 74 359 015 | 417.53 | 271 | 471 |
JZS-T0 | 171 403 | 71 496 233 | 417.13 | 214 | 468 |
JZS-T1 | 157 105 | 65 548 212 | 417.20 | 271 | 474 |
JZS-T2 | 161 144 | 67 378 509 | 418.09 | 240 | 504 |
JZS-T3 | 161 222 | 67 470 566 | 418.48 | 235 | 490 |
Table 3 Sequencing quantity of rhizosphere bacteria under different treatments
处理 Treatment | 有效序列数 Sequence number | 碱基数 Base number | 平均长度 Mean length/bp | 最短序列长度 Min. length/bp | 最长序列长度 Max. length/bp |
---|---|---|---|---|---|
对照土CK soil | 173 462 | 72 743 138 | 419.36 | 257 | 480 |
S-T0 | 150 075 | 62 852 665 | 418.84 | 276 | 472 |
S-T1 | 125 549 | 52 301 567 | 416.60 | 289 | 455 |
S-T2 | 159 305 | 66 521 294 | 417.57 | 243 | 476 |
S-T3 | 178 086 | 74 359 015 | 417.53 | 271 | 471 |
JZS-T0 | 171 403 | 71 496 233 | 417.13 | 214 | 468 |
JZS-T1 | 157 105 | 65 548 212 | 417.20 | 271 | 474 |
JZS-T2 | 161 144 | 67 378 509 | 418.09 | 240 | 504 |
JZS-T3 | 161 222 | 67 470 566 | 418.48 | 235 | 490 |
处理 Treatment | 测序深度 Sequencing depth coverage | 丰度指数 Richness index | 多样性指数 Diversity index | 均匀度指数 Evenness index | ||||
---|---|---|---|---|---|---|---|---|
Sobs | Chao | ACE | Shannon | Simpson | Shannon | Simpson | ||
对照土CK soil | 0.956 3 | 2 871.00±46.89 a | 4 019.46±124.69 a | 4 226.19±454.79 a | 6.30±0.04 e | 0.007±0.001 b | 0.791±0.003 e | 0.049±0.005 cd |
S-T0 | 0.963 4 | 3 034.00±126.57 a | 4 300.03±193.64 a | 4 285.13±178.17 a | 6.64±0.04 b | 0.004±0.001 bcd | 0.828±0.007 b | 0.076±0.009 b |
S-T1 | 0.962 7 | 2 914.33±332.18 a | 4 168.09±393.31 a | 4 306.80±129.02 a | 6.75±0.03 a | 0.003±0.000 d | 0.846±0.008 a | 0.117±0.016 a |
S-T2 | 0.969 5 | 2 891.67±143.07 a | 4 154.81±341.77 a | 4 412.31±699.81 a | 6.49±0.04 cd | 0.004±0.000 bcd | 0.813±0.001 bcd | 0.078±0.002 b |
S-T3 | 0.972 9 | 3 093.67±146.73 a | 4 318.33±190.86 a | 4 331.86±175.96 a | 6.53±0.02 cd | 0.005±0.000 bcd | 0.813±0.002 cd | 0.066±0.001 bc |
JZS-T0 | 0.967 6 | 3 123.00±187.28 a | 4 409.18±296.88 a | 4 391.73±254.61 a | 6.46±0.12 d | 0.010±0.004 a | 0.802±0.015 de | 0.036±0.018 d |
JZS-T1 | 0.970 9 | 2 999.00±184.52 a | 4 260.66±277.70 a | 4 209.69±243.27 a | 6.58±0.03 bc | 0.004±0.000 cd | 0.822±0.003 bc | 0.085±0.010 b |
JZS-T2 | 0.970 0 | 3 011.67±127.44 a | 4 273.25±239.49 a | 4 240.67±228.24 a | 6.52±0.06 cd | 0.005±0.001 bcd | 0.814±0.009 bcd | 0.075±0.015 b |
JZS-T3 | 0.969 6 | 3 015.67±100.95 a | 4 256.61±110.02 a | 4 253.03±136.65 a | 6.45±0.07 d | 0.006±0.001 bc | 0.804±0.010 de | 0.054±0.009 cd |
Table 4 Alpha diversity index of rhizosphere soil samples in each treatment
处理 Treatment | 测序深度 Sequencing depth coverage | 丰度指数 Richness index | 多样性指数 Diversity index | 均匀度指数 Evenness index | ||||
---|---|---|---|---|---|---|---|---|
Sobs | Chao | ACE | Shannon | Simpson | Shannon | Simpson | ||
对照土CK soil | 0.956 3 | 2 871.00±46.89 a | 4 019.46±124.69 a | 4 226.19±454.79 a | 6.30±0.04 e | 0.007±0.001 b | 0.791±0.003 e | 0.049±0.005 cd |
S-T0 | 0.963 4 | 3 034.00±126.57 a | 4 300.03±193.64 a | 4 285.13±178.17 a | 6.64±0.04 b | 0.004±0.001 bcd | 0.828±0.007 b | 0.076±0.009 b |
S-T1 | 0.962 7 | 2 914.33±332.18 a | 4 168.09±393.31 a | 4 306.80±129.02 a | 6.75±0.03 a | 0.003±0.000 d | 0.846±0.008 a | 0.117±0.016 a |
S-T2 | 0.969 5 | 2 891.67±143.07 a | 4 154.81±341.77 a | 4 412.31±699.81 a | 6.49±0.04 cd | 0.004±0.000 bcd | 0.813±0.001 bcd | 0.078±0.002 b |
S-T3 | 0.972 9 | 3 093.67±146.73 a | 4 318.33±190.86 a | 4 331.86±175.96 a | 6.53±0.02 cd | 0.005±0.000 bcd | 0.813±0.002 cd | 0.066±0.001 bc |
JZS-T0 | 0.967 6 | 3 123.00±187.28 a | 4 409.18±296.88 a | 4 391.73±254.61 a | 6.46±0.12 d | 0.010±0.004 a | 0.802±0.015 de | 0.036±0.018 d |
JZS-T1 | 0.970 9 | 2 999.00±184.52 a | 4 260.66±277.70 a | 4 209.69±243.27 a | 6.58±0.03 bc | 0.004±0.000 cd | 0.822±0.003 bc | 0.085±0.010 b |
JZS-T2 | 0.970 0 | 3 011.67±127.44 a | 4 273.25±239.49 a | 4 240.67±228.24 a | 6.52±0.06 cd | 0.005±0.001 bcd | 0.814±0.009 bcd | 0.075±0.015 b |
JZS-T3 | 0.969 6 | 3 015.67±100.95 a | 4 256.61±110.02 a | 4 253.03±136.65 a | 6.45±0.07 d | 0.006±0.001 bc | 0.804±0.010 de | 0.054±0.009 cd |
分组Group | R值R value | P值P value |
---|---|---|
A | 0.416 7 | 0.001 |
B | 0.774 4 | 0.001 |
C | 0.907 2 | 0.001 |
Table 5 Analysis of similarties
分组Group | R值R value | P值P value |
---|---|---|
A | 0.416 7 | 0.001 |
B | 0.774 4 | 0.001 |
C | 0.907 2 | 0.001 |
Fig. 2 Effects of planted potato on bacterial diversityA:OTUs analysis;B:Relative abundance of dominant bacteria at phylum level;C:Differences between CK and rhizosphere soils;D:PCoA analysis.*,** and *** indicate significant differences at P<0.05,P<0.01 and P<0.001 levels,respectively.
Fig. 3 Bacterial community abundance in potato rhizosphere under drought stressA: OTUs analysis; B: Phylum level; C: Genus level in potato rhizosphere
Fig. 4 Difference and distribution of rhizosphere soils under drought stressNote:A—Phylum level; B—Genus level; C—PCoA analysis on Phylum level. *, ** and *** indicate significant differences at P<0.05, P<0.01 and P<0.001 levels, respectively.
Fig. 5 Taxonomic analysis through phylogenetic tree and microbial functional featuresA: Phylogenetic analysis; B: Functional features of rhizosphere microbe
1 | AKSOY E, DEMİREL U, ÖZTÜRK Z N, et al.. Recent advances in potato genomics, transcriptomics, and transgenics under drought and heat stresses: a review [J]. Turkish J. Bot., 2015, 39:920-940. |
2 | BOUDSOCQ M, LAURIERE C. Osmotic signaling in plants: multiple pathways mediated by emerging kinase families [J]. Plant Physiol., 2005, 138:1185-1194. |
3 | XU Y, ZHENG X, SONG Y, et al.. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum [J/OL]. Sci. Rep., 2018, 8:8873 [2021-07-10]. . |
4 | XU L, NAYLOR D, DONG Z, et al.. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria [J]. Proc. Natl. Acad. Sci. USA, 2018, 115(18):4284-4293. |
5 | YUAN Q, DRUZHININA I S, PAN X, et al.. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture [J]. Biotechnol. Adv., 2016, 34(7):1245-1259. |
6 | ZHANG L, ZHANG J, WEI Y, et al.. Microbiome-wide association studies reveal correlations between the structure and metabolism of the rhizosphere microbiome and disease resistance in Cassava [J]. Plant Biotechnol. J., 2021, 19(4):689-701. |
7 | HOU S, THIERGART T, VANNIER N, et al.. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light [J]. Nat. Plants, 2021, 7:1078-1092. |
8 | WAGNER M R, TANG C, SALVATO F, et al.. Microbe-dependent heterosis in maize [J/OL]. Proc. Natl. Acad. Sci. USA, 2021, 118(30): e2021965118 [2021-07-10]. . |
9 | EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al.. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proc. Natl. Acad. Sci. USA, 2015, 112 (8):911-920. |
10 | GENG L L, SHAO G X, RAYMOND B, et al.. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome [J]. Microbiol. Res., 2018, 211:13-20. |
11 | BAI Y, MULLER D B, SRINIVAS G, et al.. Functional overlap of the Arabidopsis leaf and root microbiota [J]. Nature, 2015, 528(7582): 364-369. |
12 | SAREH R, MAJID T, BAHRAM B, et al.. The role of plant growth-promoting rhizobacteria (PGPR) in improving iron acquisition by altering physiological and molecular responses in quince seedlings [J]. Plant Physiol. Biochem., 2020, 155:406-415. |
13 | VAROQUAUX N, COLE B, GAO C, et al.. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses [J]. Proc. Natl. Acad. Sci. USA, 2019, 116:27124-27132. |
14 | VRIES F T, GRIFFITHS R I, KNIGHT C G, et al.. Harnessing rhizosphere microbiomes for drought-resilient crop production [J]. Science, 2020, 368(6488):270-274. |
15 | XU L, DONG Z, CHINIQUY D, et al.. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics [J/OL]. Nat. Commun., 2021, 12(1): 3209 [2021-07-10]. . |
16 | XU L, COLEMAN-DERR D. Causes and consequences of a conserved bacterial root microbiome response to drought stress [J]. Curr. Opin. Microbiol., 2019, 49:1-6. |
17 | 高玉坤,杨溥原,项晓冬,等.不同耐盐高粱品种全生育期对盐胁迫的响应[J].华北农学报,2020,35(6):113-121. |
GAO Y K, YANG P Y, XIANG X D, et al.. Response of different salt tolerant sorghum varieties to salt stress in the whole growth period [J]. Acta Agric. Boreali-Sin., 2020, 35(6):113-121. | |
18 | XU N, TAN G, WANG H, et al.. Effect of biochar additions to soil on nitr ogen leaching, microbial biomass and bacterial community structure [J]. Eur. J. Soil Biol., 2016, 74:1-8. |
19 | 抗艳红,龚学臣,赵海超,等.不同生育时期干旱胁迫对马铃薯生理生化指标的影响[J].中国农学通报, 2011, 27(15): 97-101. |
KANG Y H, GONG X C, ZHAO H C, et al.. Physiological and biochemical response of potato under the drought stress in different growth period [J]. Chin. Agric. Sci. Bull., 2011, 27(15):97-101. | |
20 | 黄文莉,马杰,江敏,等.干旱胁迫对马铃薯抗旱生理影响及相关基因的表达[J].分子植物育种,2021, 19(21):7213-7221. |
HUANG W L, MA J, JIANG M, et al.. Changes in drought resistance physiology and related gene expression of potato upon drought stresses [J]. Mol. Plant Breeding, 2021, 19(21):7213-7221. | |
21 | 曹逼力,李炜蔷,徐坤.干旱胁迫下硅对番茄叶片光合荧光特性的影响[J].植物营养与肥料学报,2016, 22(2):495-501. |
CAO B L, LI W Q, XU K, et al.. Effects of silicon on photosynthetic and fluorescence characteristics of tomato leaves under drought stress [J]. Plant Nutr. Fert. Sci., 2016, 22(2):495-501. | |
22 | 梁丽娜,刘雪,唐勋,等.干旱胁迫对马铃薯叶片生理生化指标的影响[J].基因组学与应用生物学,2018,37(3):1343-1348. |
LIANG L N, LIU X, TANG X, et al.. Effect of drought stress on physiological and biochemical indexes of potato leaves [J]. Genom. Appl. Biol., 2018, 37(3):1343-1348. | |
23 | 颜朗,张义正,方志荣,等.不同马铃薯基因型对根际细菌群落结构的影响[J].四川大学学报(自然科学版),2020,57(2):383-390. |
YAN L, ZHANG Y Z, FANG Z R, et al.. Effects of potato genotype on rhizosphere bacterial community structure [J]. J. Sichuan Univ. (Nat. Sci.), 2020, 57(2):383-390. | |
24 | GSCHWENDTNER S, ESPERSCHÜTZ J, BUEGGER F, et al.. Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates [J]. FEMS Microbiol. Ecol., 2011, 76:564-575. |
25 | BULGARELLI D, GARRIDO-OTER R, MUNCH P C, et al.. Structure and function of the bacterial root microbiota in wild and domesticated barley [J]. Cell Host Microbiol., 2015, 17:392-403. |
26 | DAI L, ZHANG G, YU Z, et al.. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil [J/OL]. Int. J. Mol. Sci., 2019, 20(9): 2265 [2021-07-10]. . |
27 | LUNDBERG D S, LEBEIS S L, PAREDES S H, et al.. Defining the core Arabidopsis thaliana root microbiome [J]. Nature, 2012, 488:86-90. |
28 | GAO Y K, CUI J H, REN G Z, et al.. Changes in the root-associated bacteria of sorghum are driven by the combined effects of salt and sorghum development [J]. Environ. Microbiome, 2021, 16:14-24. |
29 | DEBRUYN J M, NIXON L T, FAWAZ M N, et al.. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil [J]. Appl. Environ. Microbiol., 2011, 77:6295-6300. |
30 | FOZO E M, QUIVEY R G J. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments [J]. Appl. Environ. Microbiol., 2004, 70:929-936. |
31 | 孙建平,刘雅辉,左永梅,等.盐地碱蓬根际土壤细菌群落结构及其功能[J].中国生态农业学报(中英文),2020,28(10):1618-1629. |
SUN J P, LIU Y H, ZUO Y M, et al.. The bacterial community structure and function of Suaeda salsa rhizosphere soil [J]. Chin. J. Eco-Agric., 2020, 28(10):1618-1629. | |
32 | VACHERON J, DESBROSSES G, BOUFFAUD M L, et al.. Plant growth-promoting rhizobacteria and root system functioning [J/OL]. Front. Plant Sci., 2013, 4: 356 [2021-07-10]. . |
33 | NUMAN M, BASHIR S, KHAN Y, et al.. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review [J]. Microbiol. Res., 2018, 209:21-32. |
34 | GUAN P, WANG J, LI H, et al.. SENSITIVE TO SALT1, an endoplasmic reticulum-localized chaperone, positively regulates salt resistance [J]. Plant Physiol., 2018, 178:1390-1405. |
35 | WU L, WANG J, WU H, et al.. Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture [J/OL]. Int. J. Mol. Sci., 2018, 19:2394 [2021-07-10]. . |
36 | 吴林坤,林向民,林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报,2014,38(3):298-310. |
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates [J]. Chin. J. Plant Ecol., 2014, 38(3):298-310. |
[1] | Li YANG, Li YU, Zhuo SUN, Tongyu ZHANG, Yang ZHANG, Limin YANG. Allelopathic Effects of Organic Acids and Saponins in Ginseng Root Exudates on Pathogenic and Biocontrol Bacteria [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 145-155. |
[2] | Liangxiang DAI, Guanchu ZHANG, Hong DING, Yang XU, Zhimeng ZHANG. Effects of Organic Fertilizer and Calcium Fertilizer on Peanut Rhizosphere Bacterial Community Structure in Saline-alkali Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 189-201. |
[3] | Chenke CUI, Tao LIN, Yanbo AN, Peng CUI. Genetic Diversity Analysis of Different Characteristics of Sweetpotato Varieties by ISSR Molecular Marker [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 68-75. |
[4] | Fangling WANG, Mingyue ZHANG, Yaru ZHOU, Qinglin GUAN, Xinyan LI, Qiu ZHONG, Mingqin ZHAO. Effect of TS-PAA Water Retaining Agent on Growth and Photosynthetic Characteristics of Cigar under Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 162-172. |
[5] | Jiangyan LI, Xianhua ZHANG, Xiaoqiang YUAN. Drought Resistance Index Screening and Drought Resistance Evaluation of Dactylisglomerata Germplasm Resources During Seedling [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 84-94. |
[6] | Wei ZHANG, Zhixin LI, Xue ZHAO, Jinpeng ZHANG, Chunjiang FU, Weiping LIU, Qianqian YU. Development of a Colloidal Gold Immunochromatographic Test Strip for Detection of Potato Virus X, Virus Y and Virus S [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 211-217. |
[7] | Xiaochun SUN, Wenjing HUANG, Bo LI. Effects of Exogenous Salicylic Acid on Physiological and Biochemical Indexes and Related Gene Expression in Platycodongrandiflorus Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 63-70. |
[8] | LI Chengchen, SUO Haicui, LUO Huanming, AN Kang, LIU Jitao, WANG Li, SHAN Jianwei, YANG Shaohai, LI Xiaobo. Effects of Reduced Fertilizer Application and Fertilization Methods on Potato Yield and Tuber Nitrogen Accumulation [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 173-182. |
[9] | YU Xianfeng, ZHANG Xucheng, MIAO Pinggui, FANG Yanjie, MA Yifan, WANG Hongli, HOU Huizhi. Effect of Deep Fertilization on Water Use Efficiency and Yield of Potato Under Vertical Rotary Tillage [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 182-190. |
[10] | LIU Yuan, ZHANG Xiuyan, XU Miaoyun, ZHENG Hongyan, ZOU Junjie, ZHANG Lan, WANG Lei. Global Small RNA Transcriptome Profiling of Rice Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 23-32. |
[11] | HU Yang, LI Gangtie, LI Xing, JIA Shouyi. Growth and Physiological Index of Tamarix leptostachys Bunge Seedlings Under Soil Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 43-50. |
[12] | ZHANG Haoyang, JIN Yinan, SUN Yanxin, LI Ziwei, GUO Xiaoheng, XU Zicheng*. Research Progress of Plant microRNAs in Drought Stress Response [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 27-36. |
[13] | WANG Deyun1,2, LIU Peipei1, CHEN Yunting1, XU Yueying1, ZHOU Li1, LUO Guangming1*. Effect of Drought Stress on Endogenous Hormone Content of Gardenia jasminoides Ellis [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 58-63. |
[14] | SU Yumeng§, ZHANG Xuting§, Terigele, TIAN Min, SHANG Xiaorui, LI Guojing, WANG Ruigang*. Identification of microRNAs in Caragana intermedia Kuang by High Throughput Sequencing Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 51-57. |
[15] | ZHANG Zhidong1, GU Meiying1, TANG Qiyong1, CHU Min1, ZHU Jing1, SUN Jian1, YANG Rong1, XU Wanli2*. Screening of Salt-tolerant and Growth-promoting Bacteria in the Rhizosphere of Kalidium foliatum and the Functional Identification in Pot Experiments [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 186-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||