Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (1): 89-98.DOI: 10.13304/j.nykjdb.2022.0650
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Received:
2022-08-09
Accepted:
2022-11-13
Online:
2024-01-15
Published:
2024-01-08
Contact:
Yusong JIANG
通讯作者:
姜玉松
作者简介:
郑果 E-mail:zhengguo@qq.com;
基金资助:
CLC Number:
Guo ZHENG, Yusong JIANG. Diagnosis of Crop Disease Based on Multi-task Learning[J]. Journal of Agricultural Science and Technology, 2024, 26(1): 89-98.
郑果, 姜玉松. 基于多任务学习农作物叶片病害诊断方法[J]. 中国农业科技导报, 2024, 26(1): 89-98.
植物 Plant | 类别编号 Class code | 类别名称 Class name | 图像数量 Number of images | 植物 Plant | 类别编号 Class code | 类别名称 Class name | 图像数量 Number of images |
---|---|---|---|---|---|---|---|
苹果Apple | C1 | 疮痂病Corky scab | 630 | C20 | 健康叶health | 1 478 | |
C2 | 黑腐病Black rot | 622 | 马铃薯 Potato | C21 | 早疫病Early blignt | 1 000 | |
C3 | 锈病Rust | 275 | C22 | 健康叶health | 152 | ||
C4 | 健康Health | 1 645 | C23 | 晚疫病Late blight | 1 000 | ||
蓝莓 Blueberry | C5 | 健康Health | 1 502 | C24 | 干腐病 Mummy disease | 371 | |
樱桃 Cherry | C6 | 健康Health | 854 | 大豆Soybean | C25 | 健康Health | 5 090 |
C7 | 白粉病 Powdery mildew | 1 052 | 南瓜Pumpkin | C26 | 白粉病 Powdery mildew | 1 835 | |
玉米 Corn | C8 | 灰斑病 Gray leaf spot | 513 | 草莓Strayberry | C27 | 健康Health | 456 |
C9 | 锈病Rust | 1 192 | C28 | 叶焦病Tipburn | 1 109 | ||
C10 | 健康Health | 1 162 | 番茄 Tomato | C29 | 斑点病Scab | 2 127 | |
C11 | 枯叶病Leaf blight | 985 | C30 | 早疫病Early blignt | 1 000 | ||
葡萄Grape | C12 | 黑腐病Black rot | 1 180 | C31 | 健康Health | 1 591 | |
C13 | 黑豆病Black bean | 1 383 | C32 | 晚疫病Late blight | 1 909 | ||
C14 | 健康Health | 423 | C33 | 叶霉病Leaf mold | 952 | ||
C15 | 枯叶病Leaf blight | 1 076 | C34 | 斑枯病Septoria | 1 771 | ||
桔子Orange | C16 | 黄龙病 Yellow shoot | 5 507 | C35 | 叶螨病Acariasis | 1 667 | |
桃Peach | C17 | 斑点病Scab | 2 297 | C36 | 轮斑病Zonate spot | 1 404 | |
C18 | 健康Health | 360 | C37 | 黄叶病Yellowtop | 373 | ||
辣椒Pepper | C19 | 斑点病Scab | 997 | C38 | 黄曲病 Yellow aspergillosis | 5 357 |
Table 1 Image information of PlantVillage dataset
植物 Plant | 类别编号 Class code | 类别名称 Class name | 图像数量 Number of images | 植物 Plant | 类别编号 Class code | 类别名称 Class name | 图像数量 Number of images |
---|---|---|---|---|---|---|---|
苹果Apple | C1 | 疮痂病Corky scab | 630 | C20 | 健康叶health | 1 478 | |
C2 | 黑腐病Black rot | 622 | 马铃薯 Potato | C21 | 早疫病Early blignt | 1 000 | |
C3 | 锈病Rust | 275 | C22 | 健康叶health | 152 | ||
C4 | 健康Health | 1 645 | C23 | 晚疫病Late blight | 1 000 | ||
蓝莓 Blueberry | C5 | 健康Health | 1 502 | C24 | 干腐病 Mummy disease | 371 | |
樱桃 Cherry | C6 | 健康Health | 854 | 大豆Soybean | C25 | 健康Health | 5 090 |
C7 | 白粉病 Powdery mildew | 1 052 | 南瓜Pumpkin | C26 | 白粉病 Powdery mildew | 1 835 | |
玉米 Corn | C8 | 灰斑病 Gray leaf spot | 513 | 草莓Strayberry | C27 | 健康Health | 456 |
C9 | 锈病Rust | 1 192 | C28 | 叶焦病Tipburn | 1 109 | ||
C10 | 健康Health | 1 162 | 番茄 Tomato | C29 | 斑点病Scab | 2 127 | |
C11 | 枯叶病Leaf blight | 985 | C30 | 早疫病Early blignt | 1 000 | ||
葡萄Grape | C12 | 黑腐病Black rot | 1 180 | C31 | 健康Health | 1 591 | |
C13 | 黑豆病Black bean | 1 383 | C32 | 晚疫病Late blight | 1 909 | ||
C14 | 健康Health | 423 | C33 | 叶霉病Leaf mold | 952 | ||
C15 | 枯叶病Leaf blight | 1 076 | C34 | 斑枯病Septoria | 1 771 | ||
桔子Orange | C16 | 黄龙病 Yellow shoot | 5 507 | C35 | 叶螨病Acariasis | 1 667 | |
桃Peach | C17 | 斑点病Scab | 2 297 | C36 | 轮斑病Zonate spot | 1 404 | |
C18 | 健康Health | 360 | C37 | 黄叶病Yellowtop | 373 | ||
辣椒Pepper | C19 | 斑点病Scab | 997 | C38 | 黄曲病 Yellow aspergillosis | 5 357 |
模型Model | 准确率 Accuracy/% | 召回率 Recall/% | ||||
---|---|---|---|---|---|---|
作物 Crop | 病害 Disease | 病害程度 Disease grade | 作物 Crop | 病害 Disease | 病害程度 Disease grade | |
Non-DA | 95.23 | 96.67 | 92.76 | 94.28 | 95.86 | 93.67 |
DA | 98.73 | 97.26 | 93.99 | 97.49 | 97.17 | 95.36 |
Table 2 Effect of data augmentation on plant disease recognition
模型Model | 准确率 Accuracy/% | 召回率 Recall/% | ||||
---|---|---|---|---|---|---|
作物 Crop | 病害 Disease | 病害程度 Disease grade | 作物 Crop | 病害 Disease | 病害程度 Disease grade | |
Non-DA | 95.23 | 96.67 | 92.76 | 94.28 | 95.86 | 93.67 |
DA | 98.73 | 97.26 | 93.99 | 97.49 | 97.17 | 95.36 |
类别编号 Class code | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | ||
C1 | 92.86 | 93.65 | 93.78 | 93.89 | 94.32 | 95.68 | 95.23 | 95.26 | |
C2 | 98.40 | 97.58 | 98.82 | 99.12 | 96.53 | 95.61 | 96.79 | 97.32 | |
C3 | 100.00 | 100.00 | 99.98 | 100.00 | 98.65 | 99.22 | 99.38 | 99.62 | |
C4 | 99.39 | 96.96 | 98.96 | 100.00 | 92.43 | 93.95 | 94.62 | 96.25 | |
C5 | 100.00 | 100.00 | 100.00 | 100.00 | 95.42 | 96.98 | 95.54 | 95.89 | |
C6 | 97.08 | 98.83 | 98.89 | 98.65 | 98.26 | 97.88 | 98.32 | 98.15 | |
C7 | 99.00 | 99.00 | 99.13 | 99.20 | 95.24 | 96.32 | 96.85 | 97.24 | |
C8 | 83.50 | 92.23 | 90.85 | 91.84 | 86.48 | 92.23 | 92.27 | 90.62 | |
C9 | 98.74 | 100.00 | 99.78 | 99.69 | 96.64 | 97.04 | 96.93 | 96.89 | |
C10 | 99.57 | 99.98 | 99.92 | 100.00 | 97.88 | 98.06 | 98.17 | 98.56 | |
C11 | 93.88 | 90.36 | 93.81 | 94.23 | 94.56 | 93.86 | 94.32 | 94.72 | |
C12 | 98.73 | 99.58 | 99.18 | 99.35 | 97.92 | 98.88 | 98.30 | 97.45 | |
C13 | 97.84 | 98.56 | 98.49 | 98.52 | 98.26 | 98.89 | 98.56 | 98.43 | |
C14 | 96.47 | 100.0 | 98.93 | 99.88 | 95.39 | 96.03 | 97.35 | 98.48 | |
C15 | 99.07 | 99.07 | 99.18 | 99.28 | 97.35 | 96.98 | 97.46 | 97.88 | |
C16 | 99.30 | 99.40 | 99.47 | 99.50 | 96.26 | 97.87 | 97.92 | 98.12 | |
C17 | 98.03 | 98.26 | 99.03 | 98.54 | 97.34 | 97.25 | 97.17 | 97.96 | |
C18 | 95.83 | 97.22 | 97.59 | 98.12 | 96.46 | 96.29 | 97.92 | 97.82 | |
C19 | 100.0 | 96.48 | 98.94 | 100.0 | 98.13 | 97.68 | 98.37 | 98.80 | |
C20 | 93.58 | 97.97 | 96.42 | 96.80 | 96.36 | 98.34 | 98.41 | 97.87 | |
C21 | 93.50 | 96.50 | 96.52 | 96.32 | 96.34 | 98.56 | 97.78 | 97.93 | |
C22 | 83.33 | 93.33 | 93.90 | 94.86 | 92.42 | 94.13 | 94.87 | 95.46 | |
C23 | 91.00 | 97.50 | 97.83 | 98.21 | 93.32 | 96.62 | 96.07 | 97.31 | |
C24 | 100.0 | 100.00 | 99.95 | 100.0 | 98.34 | 97.89 | 99.18 | 99.12 | |
C25 | 98.72 | 97.45 | 97.98 | 98.45 | 98.72 | 97.92 | 97.52 | 97.86 | |
C26 | 100.0 | 99.18 | 99.93 | 100.0 | 98.12 | 97.48 | 98.52 | 99.04 | |
C27 | 97.80 | 97.80 | 98.15 | 98.24 | 96.47 | 96.93 | 97.16 | 97.72 | |
C28 | 100.0 | 97.30 | 98.95 | 100.0 | 98.42 | 97.94 | 98.37 | 98.60 | |
C29 | 99.53 | 93.41 | 98.86 | 99.80 | 99.13 | 94.76 | 97.20 | 96.81 | |
C30 | 70.00 | 68.00 | 75.26 | 76.21 | 86.34 | 88.67 | 89.50 | 89.45 | |
C31 | 95.91 | 89.31 | 95.97 | 96.42 | 96.23 | 92.39 | 96.91 | 96.82 | |
C32 | 84.25 | 90.58 | 91.62 | 90.68 | 89.34 | 91.50 | 90.82 | 91.88 | |
C33 | 96.84 | 90.53 | 97.28 | 97.65 | 95.89 | 93.59 | 96.17 | 96.25 | |
C34 | 83.90 | 90.40 | 91.59 | 92.78 | 90.42 | 91.47 | 92.09 | 92.18 | |
C35 | 97.31 | 90.15 | 98.10 | 98.34 | 96.34 | 95.89 | 96.39 | 96.82 | |
C36 | 81.14 | 91.81 | 92.19 | 92.60 | 90.23 | 91.90 | 90.45 | 91.96 | |
C37 | 97.33 | 100.0 | 99.39 | 99.78 | 98.46 | 99.00 | 98.28 | 98.38 | |
C38 | 98.79 | 95.14 | 98.38 | 98.90 | 96.34 | 96.89 | 97.14 | 97.27 | |
均值Average | 95.02 | 95.62 | 96.92 | 97.26 | 95.99 | 95.98 | 96.43 | 97.17 |
Table 3 Results of plant disease recognition
类别编号 Class code | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | ||
C1 | 92.86 | 93.65 | 93.78 | 93.89 | 94.32 | 95.68 | 95.23 | 95.26 | |
C2 | 98.40 | 97.58 | 98.82 | 99.12 | 96.53 | 95.61 | 96.79 | 97.32 | |
C3 | 100.00 | 100.00 | 99.98 | 100.00 | 98.65 | 99.22 | 99.38 | 99.62 | |
C4 | 99.39 | 96.96 | 98.96 | 100.00 | 92.43 | 93.95 | 94.62 | 96.25 | |
C5 | 100.00 | 100.00 | 100.00 | 100.00 | 95.42 | 96.98 | 95.54 | 95.89 | |
C6 | 97.08 | 98.83 | 98.89 | 98.65 | 98.26 | 97.88 | 98.32 | 98.15 | |
C7 | 99.00 | 99.00 | 99.13 | 99.20 | 95.24 | 96.32 | 96.85 | 97.24 | |
C8 | 83.50 | 92.23 | 90.85 | 91.84 | 86.48 | 92.23 | 92.27 | 90.62 | |
C9 | 98.74 | 100.00 | 99.78 | 99.69 | 96.64 | 97.04 | 96.93 | 96.89 | |
C10 | 99.57 | 99.98 | 99.92 | 100.00 | 97.88 | 98.06 | 98.17 | 98.56 | |
C11 | 93.88 | 90.36 | 93.81 | 94.23 | 94.56 | 93.86 | 94.32 | 94.72 | |
C12 | 98.73 | 99.58 | 99.18 | 99.35 | 97.92 | 98.88 | 98.30 | 97.45 | |
C13 | 97.84 | 98.56 | 98.49 | 98.52 | 98.26 | 98.89 | 98.56 | 98.43 | |
C14 | 96.47 | 100.0 | 98.93 | 99.88 | 95.39 | 96.03 | 97.35 | 98.48 | |
C15 | 99.07 | 99.07 | 99.18 | 99.28 | 97.35 | 96.98 | 97.46 | 97.88 | |
C16 | 99.30 | 99.40 | 99.47 | 99.50 | 96.26 | 97.87 | 97.92 | 98.12 | |
C17 | 98.03 | 98.26 | 99.03 | 98.54 | 97.34 | 97.25 | 97.17 | 97.96 | |
C18 | 95.83 | 97.22 | 97.59 | 98.12 | 96.46 | 96.29 | 97.92 | 97.82 | |
C19 | 100.0 | 96.48 | 98.94 | 100.0 | 98.13 | 97.68 | 98.37 | 98.80 | |
C20 | 93.58 | 97.97 | 96.42 | 96.80 | 96.36 | 98.34 | 98.41 | 97.87 | |
C21 | 93.50 | 96.50 | 96.52 | 96.32 | 96.34 | 98.56 | 97.78 | 97.93 | |
C22 | 83.33 | 93.33 | 93.90 | 94.86 | 92.42 | 94.13 | 94.87 | 95.46 | |
C23 | 91.00 | 97.50 | 97.83 | 98.21 | 93.32 | 96.62 | 96.07 | 97.31 | |
C24 | 100.0 | 100.00 | 99.95 | 100.0 | 98.34 | 97.89 | 99.18 | 99.12 | |
C25 | 98.72 | 97.45 | 97.98 | 98.45 | 98.72 | 97.92 | 97.52 | 97.86 | |
C26 | 100.0 | 99.18 | 99.93 | 100.0 | 98.12 | 97.48 | 98.52 | 99.04 | |
C27 | 97.80 | 97.80 | 98.15 | 98.24 | 96.47 | 96.93 | 97.16 | 97.72 | |
C28 | 100.0 | 97.30 | 98.95 | 100.0 | 98.42 | 97.94 | 98.37 | 98.60 | |
C29 | 99.53 | 93.41 | 98.86 | 99.80 | 99.13 | 94.76 | 97.20 | 96.81 | |
C30 | 70.00 | 68.00 | 75.26 | 76.21 | 86.34 | 88.67 | 89.50 | 89.45 | |
C31 | 95.91 | 89.31 | 95.97 | 96.42 | 96.23 | 92.39 | 96.91 | 96.82 | |
C32 | 84.25 | 90.58 | 91.62 | 90.68 | 89.34 | 91.50 | 90.82 | 91.88 | |
C33 | 96.84 | 90.53 | 97.28 | 97.65 | 95.89 | 93.59 | 96.17 | 96.25 | |
C34 | 83.90 | 90.40 | 91.59 | 92.78 | 90.42 | 91.47 | 92.09 | 92.18 | |
C35 | 97.31 | 90.15 | 98.10 | 98.34 | 96.34 | 95.89 | 96.39 | 96.82 | |
C36 | 81.14 | 91.81 | 92.19 | 92.60 | 90.23 | 91.90 | 90.45 | 91.96 | |
C37 | 97.33 | 100.0 | 99.39 | 99.78 | 98.46 | 99.00 | 98.28 | 98.38 | |
C38 | 98.79 | 95.14 | 98.38 | 98.90 | 96.34 | 96.89 | 97.14 | 97.27 | |
均值Average | 95.02 | 95.62 | 96.92 | 97.26 | 95.99 | 95.98 | 96.43 | 97.17 |
编号 Code | 植物 Plant | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文 Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | |||
P1 | 苹果Apple | 95.56 | 96.25 | 96.58 | 97.82 | 92.25 | 91.86 | 92.08 | 93.62 | |
P2 | 蓝莓Cherry | 93.40 | 92.68 | 94.87 | 95.42 | 94.46 | 93.89 | 95.13 | 96.82 | |
P3 | 樱桃Cherry | 99.20 | 99.31 | 99.53 | 100.0 | 98.80 | 98.82 | 99.05 | 99.86 | |
P4 | 玉米Corn | 98.67 | 97.99 | 98.92 | 100.0 | 96.58 | 96.82 | 98.13 | 97.56 | |
P5 | 葡萄Grape | 100.0 | 100.0 | 99.95 | 100.0 | 95.82 | 94.67 | 95.19 | 95.25 | |
P6 | 橘子Orange | 95.88 | 97.89 | 97.68 | 98.65 | 96.78 | 95.96 | 97.32 | 99.45 | |
P7 | 桃Peach | 98.90 | 99.10 | 99.09 | 99.20 | 96.86 | 98.65 | 97.94 | 98.84 | |
P8 | 辣椒Pepper | 93.50 | 98.23 | 98.15 | 96.35 | 92.59 | 96.73 | 96.82 | 96.42 | |
P9 | 土豆Potato | 99.89 | 99.92 | 99.96 | 99.88 | 96.88 | 97.80 | 96.51 | 96.98 | |
P10 | 大豆Soybean | 98.45 | 99.96 | 98.87 | 99.68 | 96.42 | 98.98 | 96.82 | 97.82 | |
P11 | 南瓜Pumpkin | 97.87 | 96.84 | 97.56 | 98.60 | 96.82 | 97.56 | 98.23 | 98.62 | |
P12 | 草莓Strayberry | 95.39 | 98.93 | 99.53 | 98.89 | 94.32 | 98.26 | 96.95 | 97.88 | |
P13 | 番茄Tomato | 98.78 | 95.14 | 96.68 | 98.96 | 97.72 | 96.84 | 97.84 | 98.26 | |
平均Average | 97.35 | 97.86 | 98.26 | 98.73 | 95.87 | 96.68 | 96.77 | 97.49 |
Table 4 Results of plant recognition
编号 Code | 植物 Plant | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文 Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | |||
P1 | 苹果Apple | 95.56 | 96.25 | 96.58 | 97.82 | 92.25 | 91.86 | 92.08 | 93.62 | |
P2 | 蓝莓Cherry | 93.40 | 92.68 | 94.87 | 95.42 | 94.46 | 93.89 | 95.13 | 96.82 | |
P3 | 樱桃Cherry | 99.20 | 99.31 | 99.53 | 100.0 | 98.80 | 98.82 | 99.05 | 99.86 | |
P4 | 玉米Corn | 98.67 | 97.99 | 98.92 | 100.0 | 96.58 | 96.82 | 98.13 | 97.56 | |
P5 | 葡萄Grape | 100.0 | 100.0 | 99.95 | 100.0 | 95.82 | 94.67 | 95.19 | 95.25 | |
P6 | 橘子Orange | 95.88 | 97.89 | 97.68 | 98.65 | 96.78 | 95.96 | 97.32 | 99.45 | |
P7 | 桃Peach | 98.90 | 99.10 | 99.09 | 99.20 | 96.86 | 98.65 | 97.94 | 98.84 | |
P8 | 辣椒Pepper | 93.50 | 98.23 | 98.15 | 96.35 | 92.59 | 96.73 | 96.82 | 96.42 | |
P9 | 土豆Potato | 99.89 | 99.92 | 99.96 | 99.88 | 96.88 | 97.80 | 96.51 | 96.98 | |
P10 | 大豆Soybean | 98.45 | 99.96 | 98.87 | 99.68 | 96.42 | 98.98 | 96.82 | 97.82 | |
P11 | 南瓜Pumpkin | 97.87 | 96.84 | 97.56 | 98.60 | 96.82 | 97.56 | 98.23 | 98.62 | |
P12 | 草莓Strayberry | 95.39 | 98.93 | 99.53 | 98.89 | 94.32 | 98.26 | 96.95 | 97.88 | |
P13 | 番茄Tomato | 98.78 | 95.14 | 96.68 | 98.96 | 97.72 | 96.84 | 97.84 | 98.26 | |
平均Average | 97.35 | 97.86 | 98.26 | 98.73 | 95.87 | 96.68 | 96.77 | 97.49 |
病害等级 Disease level | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | ||
L1 | 92.88 | 93.78 | 93.97 | 95.86 | 93.26 | 94.68 | 95.36 | 96.82 | |
L2 | 91.90 | 92.18 | 93.12 | 93.49 | 92.56 | 92.45 | 93.26 | 93.89 | |
L3 | 90.50 | 91.05 | 91.35 | 92.68 | 91.46 | 92.42 | 92.39 | 92.76 | |
L4 | 92.56 | 93.88 | 93.99 | 93.92 | 94.65 | 95.68 | 96.83 | 97.98 | |
平均Average | 91.96 | 92.72 | 93.11 | 93.99 | 92.98 | 93.80 | 94.46 | 95.36 |
Table 5 Results of plant disease level recognition
病害等级 Disease level | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | ||
L1 | 92.88 | 93.78 | 93.97 | 95.86 | 93.26 | 94.68 | 95.36 | 96.82 | |
L2 | 91.90 | 92.18 | 93.12 | 93.49 | 92.56 | 92.45 | 93.26 | 93.89 | |
L3 | 90.50 | 91.05 | 91.35 | 92.68 | 91.46 | 92.42 | 92.39 | 92.76 | |
L4 | 92.56 | 93.88 | 93.99 | 93.92 | 94.65 | 95.68 | 96.83 | 97.98 | |
平均Average | 91.96 | 92.72 | 93.11 | 93.99 | 92.98 | 93.80 | 94.46 | 95.36 |
1 | KAUR S, PANDEY S, GOEL S. Plants disease identification and classification through leaf images: a survey [J]. Arch. Comp. Methods Eng., 2018, 26(4): 507-530. |
2 | ESGARIO J G, KROHLING R A, VENTURA J A, et al.. Deep learning for classification and severity estimation of coffee leaf biotic stress [J]. Comp. Electron. Agric., 2020, 16(9): 155-162. |
3 | 张帅堂,王紫烟,邹修国,等. 基于高光谱图像和遗传优化神经网络的茶叶病斑识别[J]. 农业工程学报, 2017, 33(22): 200-207. |
ZHANG S T, WANG Z Y, ZOU X G, et al.. Recognition of tea disease spot based on hyperspectral image and genetic optimization neural network [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(22): 200-207. | |
4 | 孙俊,谭文军,毛罕平,等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. |
SUN J, TAN W J, MAO H P, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(19): 209-215. | |
5 | MOHANTY S P, HUGHES D P, SALATHE M, et al.. Using deep learning for image-based plant disease detection [J]. Front. Plant Sci., 2016, 7(1): 1-10. |
6 | 马浚诚,杜克明,郑飞翔,等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2018, 34(12): 186-192. |
MA J C, DU K M, ZHENG F X, et al.. Disease recognition system for greenhouse cucumbers based on deep convolutional neural network [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(12):186-192 | |
7 | 张建华,孔繁涛,吴建寨,等. 基于改进VGG卷积神经网络的棉花病害识别模型[J].中国农业大学学报, 2018, 23(11): 167-177. |
ZHANG J H, KONG F T, WU J Z, et al.. Image recognition of cotton leaf diseases based on improved VGG convolutional neural network [J]. J. Chin. Agric. Univ., 2018,23(11):167-177. | |
8 | 刘瑾蓉,林剑辉,李婷婷. 基于卷积神经网络的银杏叶片患病程度识别[J]. 中国农业科技导报, 2018, 20(6):55-61. |
LIU J R, LIN J H, LI T T. Identification of leaf disease grade based on convolutional neural network [J]. J. Agric. Sci. Tech., 2018, 20(6):55-61. | |
9 | 曾伟辉,李淼,张健,等.面向农作物病害识别的高阶残差卷积神经网络研究[J].中国科学技术大学学报,2019,49(10):781-791. |
ZENG W H, LI M, HUANG J, et al.. Research on high-order residual convolution neural network for crop disease recognition application [J]. J. Univ. Sci. Tech. Chin. 2019, 49(10):781-791. | |
10 | 李淼,王敬贤,李华龙,等.基于CNN 和迁移学习的农作物病害识别方法研究[J].智慧农业, 2019, 1(3): 46-55. |
LI M, WANG J X, LI H L, et al.. Method for identifying crop disease based on CNN and transfer learning [J]. Smart Agric., 2019, 1(3):46-55. | |
11 | 魏超,范自柱,张泓,等. 基于深度学习的农作物病害检测[J]. 江苏大学学报(自然科学版), 2019, 40(2): 71-77. |
WEI C, WEI C, FAN Z Z, ZHANG H, et al.. Crop disease detection based on deep learning [J]. J. Jiangsu Univ. (Nat. Sci.), 2019, 40(2):71-77. | |
12 | 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204. |
LIU Y, FENG Q, WANG S Z. Plant disease identification method based on lightweight CNN and mobile application [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(17):194-204. | |
13 | JIANG P, CHEN Y, LIU B, et al.. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks [J]. IEEE Access, 2019, 7: 59069-59080. |
14 | 许景辉,邵明烨,王一琛,等.基于迁移学习的卷积神经网络玉米病害图像识别[J].农业机械学报,2020,51(2):230-236. |
XU J H, SHAO M Y, WANG Y C, et al.. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network [J]. Tans. Chin. Soc. Agric. Mach., 2020, 51(2):230-236. | |
15 | CHEN J, ZHANG D, NANEHKARAN Y A. Identifying plant diseases using deep transfer learning and enhanced lightweight network [J]. Multimedia Tools App., 2020, 79(7): 31497-31515. |
16 | 赵立新,侯发东,吕正超,等.基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报,2020,36(7):184-191. |
ZHAO L X, HOU F D, LYU Z C, et al.. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(7):184-191. | |
17 | 王春山,周冀,吴华瑞,.改进Multi-scale ResNet的蔬菜叶部病害识别[J].农业工程学报,2020, 36(20):217-225. |
WANG C S, ZHOU J, WU H R, et al.. Identification of vegetable leaf diseases based on improved multi-scale ResNet [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(20):217-225. | |
18 | 刘阳,高国琴. 采用改进的 SqueezeNet 模型识别多类叶片病害[J]. 农业工程学报,2021,37(2) :187-195. |
LIU Y, GAO G Q. Identification of multiple leaf diseases using improved SqueezeNet model [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(2) :187-195. | |
19 | HOWARD A., SANDLER M., CHEN B., et al.. Searching for MobileNetV3 [C]// Proceedigns of IEEE/CVF International Conference on Computer Vision (ICCV). South Korea, 2019: 1314-1324. |
20 | SANGHYUN W, JONGCHAN P, JOON-YOUNG L, et al.. CBAM: convolutional block attention module [C]// Proceedings of European Conference on Computer Vision. Munich, Germany: 2018: 3-19. |
21 | SENER O, KOLTUN V. Multi-task learning as multi-objective optimization [J/OL]. arXiv:1810.04650v2 [cs.LG]. [2023-08-30] . . |
22 | LIN T Y, DOLLAR P, GIRSHICK R., et al.. Feature pyramid networks for object detection [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2017:936-944. |
23 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al.. Rethinking the inception architecture for computer vision [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 2818-2826. |
24 | WANG C Y, ALEXEY B, LIAO H Y., YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [J/OL]. arXiv:2207.02696v1 [cs.CV] [2023-08-30]. . |
[1] | Zheng QIAN, Sunzhe YANG, Guoqing ZHANG, Ziwei GUO, Linpeng ZHANG, Jiaxing WAN, Hongyun YANG. Rice Nitrogen Nutrition Diagnosis Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 113-121. |
[2] | Kaiyan LIN, Fei MEI, Junhui WU, Wengang GUO, Jie CHEN, Huiping SI. Design and Research of Crop Disease Monitoring Service Platform Based on Computer Vision [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 89-96. |
[3] | Chao YANG, Haibin HAN, Bo WEI, Heng ZHANG, Chen SHANG, Bing SU, Siyuan LIU, Peiwei JIANG, Delong XIANG. Construction of Method for Age Identification of Sardinops sagax in the North Pacific Ocean [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 225-233. |
[4] | Yue ZHAO, Yong WEI, Huiyong SHAN, Zhimin MU, ZHANGJianxin, Haiyun WU, Hui ZHAO, Jianlong HU. Wheat Ear Detection Method Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 96-105. |
[5] | Haitao LIU, Xin HAN, Yubin LAN, Lili YI, Baoju WANG, Lihua CUI. Precise Recognition Method of Cotton Top Buds Based on YOLOv4 Network [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 99-108. |
[6] | Kui FANG, Cheng LI, Xiao HE, Yineng CHEN. Research on Multi-angle Identification of Grape Leaf Disease Based on 3D Reconstruction [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 86-96. |
[7] | Jianwei WU, Jie HUANG, Xiaofei XIONG, Han GAO, Xiangyang QIN. Research and Application of Intelligent Recognition Method of Peach Tree Diseases Based on AI [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 111-118. |
[8] | Yinyan GAO, Yi SUN, Baochun LI. Estimating of Wheat Ears Number in Field Based on RGB Images Using Unmanned Aerial Vehicle [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 103-110. |
[9] | Hao HUANG, Shengqiao XIE, Du CHEN, Heng WANG. Application and Research Advances on Deep Learning in Apple’s Industry Chain [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 79-89. |
[10] | ZHOU Huiru, WU Boming. Advances in Research on Deep Learning for Crop Disease Image Recognition [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 61-68. |
[11] | LYU Chunyang, LIU Shengping, GUO Xiuming, XIAO Shunfu, LIU Dazhong, YANG Feifei, LI Luhua. Detection of Honeybee Based on SSD Model [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 98-107. |
[12] | XU Beibei1, WANG Wensheng1,2*, GUO Leifeng1, CHEN Guipeng3. A Review and Future Prospects on Cattle Recognition Based on Non-contact Identification [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 79-89. |
[13] | DONG Wei1, QIAN Rong1, ZHANG Jie 2*, ZHANG Liping1, CHEN Hongbo2, ZHANG Meng1, ZHU Jingbo1, BU Yingqiao3. Vegetable Lepidopteran Pest Auto Recognition and Detection Counting Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2019, 21(12): 76-84. |
[14] | LIU Jinrong, LIN Jianhui*, LI Tingting. Identification of Leaf Disease Grade Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 55-61. |
[15] | CHEN Yi-fei. Intelligent Agriculture (IA): Looking Forward to Progress of Chinese Agricultural Science and Technology in 12th Five-Year Plan Period [J]. , 2010, 12(6): 1-4. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||