Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (7): 90-100.DOI: 10.13304/j.nykjdb.2024.0080
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Yaxin WANG(), Yangcheng LYU, Wenqi WANG, Qi LIU, Jie YANG, Guihong REN, Wuping ZHANG, Fuzhong LI(
)
Received:
2024-01-31
Accepted:
2024-06-08
Online:
2025-07-15
Published:
2025-07-11
Contact:
Fuzhong LI
王亚鑫(), 吕洋成, 王文琦, 刘琦, 杨杰, 任桂鸿, 张吴平, 李富忠(
)
通讯作者:
李富忠
作者简介:
王亚鑫 E-mail:1919447062@qq.com;
基金资助:
CLC Number:
Yaxin WANG, Yangcheng LYU, Wenqi WANG, Qi LIU, Jie YANG, Guihong REN, Wuping ZHANG, Fuzhong LI. Nondestructive Segmentation and Extraction of Stem and Leaf Phenotypes During Tomato Plant Growth[J]. Journal of Agricultural Science and Technology, 2025, 27(7): 90-100.
王亚鑫, 吕洋成, 王文琦, 刘琦, 杨杰, 任桂鸿, 张吴平, 李富忠. 番茄植株生长过程中茎叶表型的无损分割与提取[J]. 中国农业科技导报, 2025, 27(7): 90-100.
Fig. 2 Reconstruction and preprocessing of tomato plant point cloudA: Dense point cloud; B:Point cloud denoising; C:Point cloud reduction; D:Dynamic growth and reconstruction of tomato plants
Fig. 4 Schematic diagram of stem extractionA: Coordinate system conversion; B:Extract the highest point path of the skeleton; C:Height constraint; D:Radius constraint; E:Separated stem and leaves
Fig. 6 Phenotype parameter measurementA: Plant height; B:Stem thickness; C:Leaf inclination; D:Leaf point cloud; E:Leaf length and leaf width; F:Leaf area
参数 Parameter | 超体素块数量 Number of superstitial blocks | 运行时间 Running time/s | ||
---|---|---|---|---|
种子分辨率 | 体素分辨率 | 最小分割尺寸 | ||
0.05 | 0.01 | 0.10 | 378 | 21.23 |
0.05 | 0.05 | 0.20 | 386 | 20.79 |
0.10 | 0.01 | 0.10 | 291 | 18.44 |
0.10 | 0.05 | 0.20 | 274 | 18.03 |
0.15 | 0.05 | 0.20 | 191 | 15.97 |
0.25 | 0.10 | 0.30 | 123 | 14.22 |
0.25 | 0.15 | 0.40 | 108 | 13.76 |
0.35 | 0.10 | 0.35 | 56 | 10.17 |
0.45 | 0.10 | 0.30 | 19 | 7.66 |
0.45 | 0.15 | 0.40 | 10 | 7.31 |
Table 1 Statistics on the effect of different parameters on blade segmentation
参数 Parameter | 超体素块数量 Number of superstitial blocks | 运行时间 Running time/s | ||
---|---|---|---|---|
种子分辨率 | 体素分辨率 | 最小分割尺寸 | ||
0.05 | 0.01 | 0.10 | 378 | 21.23 |
0.05 | 0.05 | 0.20 | 386 | 20.79 |
0.10 | 0.01 | 0.10 | 291 | 18.44 |
0.10 | 0.05 | 0.20 | 274 | 18.03 |
0.15 | 0.05 | 0.20 | 191 | 15.97 |
0.25 | 0.10 | 0.30 | 123 | 14.22 |
0.25 | 0.15 | 0.40 | 108 | 13.76 |
0.35 | 0.10 | 0.35 | 56 | 10.17 |
0.45 | 0.10 | 0.30 | 19 | 7.66 |
0.45 | 0.15 | 0.40 | 10 | 7.31 |
Fig. 7 Leaf segmentation results with different algorithm parametersA:Parameter setting too small; B:Parameter setting too large; C:Moderate parameter setting
Fig. 8 Tomato stem and leaf segmentation results at different growth daysA:True value of manual segmentation; B:Algprithm segmentation results. The black circle represents the part of the algorithm that is segmented incorrectly
定植天数 Growth days/d | 准确率 Precision | 召回率 Recall | F1分数 F1-score |
---|---|---|---|
5 | 0.88 | 0.80 | 0.84 |
14 | 0.91 | 0.84 | 0.87 |
21 | 0.92 | 0.85 | 0.88 |
30 | 0.88 | 0.82 | 0.85 |
45 | 0.86 | 0.77 | 0.81 |
60 | 0.84 | 0.74 | 0.79 |
平均 Average | 0.88 | 0.80 | 0.84 |
Table 2 Precision of stem and leaf segmentation in tomato on different growth days
定植天数 Growth days/d | 准确率 Precision | 召回率 Recall | F1分数 F1-score |
---|---|---|---|
5 | 0.88 | 0.80 | 0.84 |
14 | 0.91 | 0.84 | 0.87 |
21 | 0.92 | 0.85 | 0.88 |
30 | 0.88 | 0.82 | 0.85 |
45 | 0.86 | 0.77 | 0.81 |
60 | 0.84 | 0.74 | 0.79 |
平均 Average | 0.88 | 0.80 | 0.84 |
Fig. 9 Segmentation effects of different algorithmsA: This research method; B:A method based on skeleton extraction; C:Normal differential method; D:Regional growth segmentation method;E:Segmentation method based on concavity and convexity
方法 Method | 平均准确率 Average of precision | 平均召回率 Average of recall | 平均F1分数 Average of F1-score |
---|---|---|---|
本研究方法 This research method | 0.88 | 0.80 | 0.84 |
基于骨架提取的分割方法 Segmentation method based on skeleton extraction | 0.77 | 0.63 | 0.76 |
法线微分差异法 Normal differential method | 0.64 | 0.59 | 0.57 |
区域生长分割法 Regional growth segmentation method | 0.58 | 0.53 | 0.59 |
基于凹凸性的分割方法 Segmentation method based on concavity and convexity | 0.54 | 0.57 | 0.62 |
Table 3 Comparison of stem and leaf segmentation accuracy among five methods
方法 Method | 平均准确率 Average of precision | 平均召回率 Average of recall | 平均F1分数 Average of F1-score |
---|---|---|---|
本研究方法 This research method | 0.88 | 0.80 | 0.84 |
基于骨架提取的分割方法 Segmentation method based on skeleton extraction | 0.77 | 0.63 | 0.76 |
法线微分差异法 Normal differential method | 0.64 | 0.59 | 0.57 |
区域生长分割法 Regional growth segmentation method | 0.58 | 0.53 | 0.59 |
基于凹凸性的分割方法 Segmentation method based on concavity and convexity | 0.54 | 0.57 | 0.62 |
指标Index | 点云重建 Point cloud reconstruction | 茎叶分割 Stem and leaf segmentation | 表型提取 Phenotypic extraction | 总计 Total |
---|---|---|---|---|
最小处理时间Minimum processing time/min | 7.37 | 3.26 | 1.72 | 12.35 |
最大处理时间Maximum processing time/min | 26.44 | 7.26 | 3.59 | 37.29 |
平均处理时间Average processing time/min | 17.89 | 5.25 | 2.97 | 26.11 |
Table 4 Algorithm efficiency statistics
指标Index | 点云重建 Point cloud reconstruction | 茎叶分割 Stem and leaf segmentation | 表型提取 Phenotypic extraction | 总计 Total |
---|---|---|---|---|
最小处理时间Minimum processing time/min | 7.37 | 3.26 | 1.72 | 12.35 |
最大处理时间Maximum processing time/min | 26.44 | 7.26 | 3.59 | 37.29 |
平均处理时间Average processing time/min | 17.89 | 5.25 | 2.97 | 26.11 |
[1] | CHITWOOD-BROWN J, VALLAD G E, LEE T G,et al..Breeding for resistance to Fusarium wilt of tomato:a review [J/OL].Genes, 2021,12(11): 1673 [2023-12-30]. . |
[2] | ROOHANITAZIANI R, DE MAAGD R A, LAMMERS M, et al.. Exploration of a resequenced tomato core collection for phenotypic and genotypic variation in plant growth and fruit quality traits [J/OL]. Genes,2020,11(11):1278 [2023-12-30]. . |
[3] | SHAKOOR N, LEE S, MOCKLER T C.High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field [J]. Curr. Opin. Plant Biol., 2017, 38: 184-192. |
[4] | 张慧春, 张萌, 边黎明, 等. 基于YOLO v5的植物叶绿素含量估测与可视化技术[J].农业机械学报, 2022,53(4): 313-321. |
ZHANG H C, ZHANG M, BIAN L M,et al.. Estimation and visualization of chlorophyll content in plant based on YOLO v5 [J].Trans. Chin. Soc. Agric. Mach., 2022, 53(4): 313-321. | |
[5] | LU C P, LIAW J J, WU T C, et al.. Development of a mushroom growth measurement system applying deep learning for image recognition [J/OL]. Agronomy, 2019, 9(1):32 [2023-12-30]. . |
[6] | WANG D D, LI C Y, SONG H B, et al.. Deep learning approach for apple edge detection to remotely monitor apple growth in orchards [J]. IEEE Access, 2020, 8: 26911-26925. |
[7] | 陆健强, 兰玉彬, 毋志云, 等. 植物三维建模ICP点云配准优化[J]. 农业工程学报, 2022,38(2): 183-191. |
LU J Q, LAN Y B, WU Z Y,et al.. Optimization of ICP point cloud registration in plants 3D modeling [J]. Trans. Chin. Soc.Agric. Eng., 2022, 38(2): 183-191. | |
[8] | 杨征鹤, 喻晨, 杨会民, 等. 基于LiDAR的温室番茄冠层几何参数提取[J]. 新疆农业科学, 2021, 58(10): 1909-1917. |
YANG Z H, YU C, YANG H M,et al.. Geometric parameters extraction of tomato canopy in greenhouse based on LiDAR [J].Xinjiang Agric. Sci., 2021, 58(10): 1909-1917. | |
[9] | 陈海波, 刘圣搏, 王乐乐, 等. 基于Kinect V3的单株作物自动化三维重建与验证[J]. 农业工程学报, 2022, 38(16): 215-223. |
CHEN H B, LIU S B, WANG L L, et al.. Automatic 3D reconstruction and verification of an individual crop using Kinect V3 [J]. Trans. Chin. Soc. Agric. Eng., 2022, 38(16): 215-223. | |
[10] | JIN S C, SU Y J, WU F F, et al.. Stem-leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data [J]. IEEE Trans. Geosci. Remote. Sens., 2019,57(3): 1336-1346. |
[11] | 李玉超. 基于多视角图像的苗期玉米植株三维重建和表型测量研究[D]. 保定: 河北农业大学, 2022. |
LI Y C. Three-dimensional reconstruction and phenotype measurement of maize plants at seedling stage based on multi-view images [D]. Baoding: Hebei Agricultural University, 2022. | |
[12] | ROSE J C, PAULUS S, KUHLMANN H.Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level [J]. Sensors, 2015, 15(5): 9651-9665. |
[13] | 贾奥博, 董天浩, 张彦, 等. 基于三维点云和集成学习的大田烟草株型特征识别[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 393-402. |
JIA A B, DONG T H, ZHANG Y, et al.. Recognition of field-grown tobacco plant type characteristics based on three-dimensional point cloud and ensemble learning [J]. J. Zhejiang Univ. (Agric. Life Sci.), 2022, 48(3): 393-402. | |
[14] | 肖奕同, 刘帅, 侯晨连, 等. 基于三维点云的大豆植株器官分割及表型分析[J]. 中国农业科技导报, 2023, 25(8): 115-125. |
XIAO Y T, LIU S, HOU C L, et al.. Organ segmentation and phenotypic analysis of soybean plants based on three-dimensional point clouds [J]. J. Agric. Sci. Technol., 2023, 25(8): 115-125. | |
[15] | 阳旭. 基于多时相点云数据的作物表型参数获取及动态量化方法研究[D]. 武汉: 华中农业大学, 2019. |
YANG X. Research on crop phenotypic parameter acquisition and dynamic quantification method based on multi-temporal point cloud data [D]. Wuhan: Huazhong Agricultural University, 2019. | |
[16] | 李少辰, 张爱武, 张希珍, 等. 叶片尺度的玉米幼苗三维表型信息提取方法[J]. 激光与光电子学进展, 2023, 60(2): 61-69. |
LI S C, ZHANG A W, ZHANG X Z, et al.. 3D phenotypic information extraction method of maize seedlings at leaf scale [J]. Laser Optoelectron. Prog., 2023, 60(2): 61-69. | |
[17] | WANG Y H, HU S T, REN H, et al.. 3DPhenoMVS: a low-cost 3D tomato phenotyping pipeline using 3D reconstruction point cloud based on multiview images [J/OL]. Agronomy, 2022,12(8):1865 [2023-12-30]. . |
[18] | 彭程, 李帅, 苗艳龙, 等. 基于三维点云的番茄植株茎叶分割与表型特征提取[J]. 农业工程学报, 2022, 38(9): 187-194. |
PENG C, LI S, MIAO Y L, et al.. Stem-leaf segmentation and phenotypic trait extraction of tomatoes using three-dimensional point cloud [J]. Trans. Chin. Soc. Agric. Eng., 2022, 38(9): 187-194. | |
[19] | 李百明, 吴茜, 吴劼, 等. 基于多视角自动成像系统的作物三维点云重建策略优化[J]. 农业工程学报, 2023, 39(9): 161-171. |
LI B M, WU Q, WU J, et al.. Optimization of crop 3D point cloud reconstruction strategy based on the multi-view automatic imaging system [J]. Trans. Chin. Soc. Agric. Eng., 2023, 39(9): 161-171. | |
[20] | CAO J J, TAGLIASACCHI A, OLSON M, et al.. Point cloud skeletons via Laplacian based contraction[C]//2010 Shape Modeling International Conference. IEEE, 2010: 187-197. |
[21] | WANG Y W, CHEN Y F, ZHANG X N, et al.. Research on measurement method of leaf length and width based on point cloud [J/OL]. Agriculture, 2021, 11(1): 63 [2024-12-30]. . |
[22] | DIJKSTRA E W. A note on two problems in connexion with graphs [J]. Numer. Math., 1959, 1(1): 269-271. |
[23] | 任栋宇, 李晓娟, 林涛, 等. 基于Kinect v2传感器的果树枝干三维重建方法[J]. 农业机械学报, 2022, 53(): 197-203. |
REN D Y, LI X J, LIN T, et al.. 3D reconstruction method for fruit tree branches based on Kinect v2 sensor [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(S2): 197-203. | |
[24] | WU Q H, LIU J C, GAO C, et al.. Improved RANSAC point cloud spherical target detection and parameter estimation method based on principal curvature constraint [J/OL].Sensors, 2022, 22(15): 5850 [2023-12-30]. . |
[25] | LIAO L F, TANG S J, LIAO J H, et al.. A supervoxel-based random forest method for robust and effective airborne LiDAR point cloud classification [J/OL]. Remote. Sens., 2022,14(6):1516 [2024-12-30]. . |
[26] | ZHENG L, WANG L, WANG M, et al.. Automatic 3D point cloud reconstruction of Leaf lettuce based on Kinect camera [J]. Trans. Chin. Soc. Agric. Mach., 2021, 52(7): 159-168. |
[27] | 赖亦斌, 陆声链, 钱婷婷, 等. 植物三维点云分割[J]. 应用科学学报, 2021, 39(4): 660-671. |
LAI Y B, LU S L, QIAN T T, et al.. Three-dimensional point cloud segmentation for plants [J]. J. Appl. Sci., 2021, 39(4):660-671. | |
[28] | ZHANG Z C, MA X D, GUAN H O, et al.. A method for calculating the leaf inclination of soybean canopy based on 3D point clouds [J]. Int. J. Remote. Sens., 2021, 42(15): 5719-5740. |
[1] | Jianglin LAN, Rongfeng XIAO, Jieping WANG, Haifeng ZHANG, Bo LIU. Effects of Integrated Microbiome Agent on Tomato Plant Growth and Rhizosphere Bacterial Community Diversity [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 173-181. |
[2] | Mingjie ZHU, Wei LIAO, Zhen XU, Yilin TIAN. Study on Fish Body Length Measurement Method Based on Segmentation Mask and Binocular Vision [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 116-124. |
[3] | Jincheng LUO, Xiaolin ZHU, Xiaohong WEI, Xian WANG, Baoqiang WANG, Xuefen DU. Effect of Exogenous NO on Expression of Tomato Antioxidant Enzyme Gene Under Tomato Yellowing Leaf Curl Virus Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 125-135. |
[4] | Chunjiao MI, Hongren SUN, Jiping ZHANG, Yucai LYU, Yandi ZHANG. Abundance-deficiency Index of Soil Available Phosphorus and Recommended Phosphorus Fertilizer Application Rates for Tomato in China [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 222-232. |
[5] | Xianguo LI, Qi DAI, Zepeng WANG, Zhaolong CHEN, Huizhuan YAN, Ning LI. Identification and Phylogenetic Analysis of Tomato CCCH-like Zinc Finger Protein Family [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 80-95. |
[6] | Junlei ZHANG, Xiaotong GE, Zhengting ZHAO, Di LIU, Jinfeng WANG, Ning JIANG, Yating LIU. Establishment and Optimization of RT-LAMP Assay System for Tobacco Tomato Spotted Wilt Virus [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 140-150. |
[7] | Fulin ZHANG, Rui XI, Yuxiang LIU, Zhaolong CHEN, Qinghui YU, Ning LI. Genome-wide Identification and Expression Analysis of Tomato BURP Structural Domain Gene Family [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 51-62. |
[8] | Zifan WANG, Yan LI, Qingyin ZHANG, Dandan WANG, Jianhua SHI, Xiaobin GENG, Dongliang TIAN, Zengming ZHONG, Xiaoming ZHAO, Lianfen QI. Effect of Microbicides on Main Diseases and Soil Microbial Communities of Tomatoes in Facilities [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 102-112. |
[9] | Mingbo LI, Yule LIU, Zhimin MU, Junwang GUO, Yong WEI, Dongyue REN, Jishen JIA, Zezhong WEI, Yuhong LI. Tomato Fruit Recognition Based on YOLOX-L-TN Model [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 97-105. |
[10] | Daye HUANG, Zhibin YU, Zhongyi WAN, Dan YANG, Jinping LI, Chunxia CAO. Study on Control Effect of Streptomyces phaeoluteichromatogenes HEBRC45958 Strain on Corynespora Leaf Spot of Tomato [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 136-142. |
[11] | Xiubo XIA, Tao LI, Shoujun CAO, Jiangang YAO, Hongyun WANG, Lili ZHANG. Effect of Liquid Organic Fertilizer Partial Replacing Chemical Fertilizer on Bacterial Community in Greenhouse Tomato Root Zone [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 187-196. |
[12] | Kui FANG, Cheng LI, Xiao HE, Yineng CHEN. Research on Multi-angle Identification of Grape Leaf Disease Based on 3D Reconstruction [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 86-96. |
[13] | LIU Qianjie, CHENG Yunxia, JIA Kai, SHI Zhenyu, ZHANG Jing, WEI Shaowei, WU Hui*. Influences of Nitrogen Application on Nitrogen Metabolism Enzymes Activities, Yield and Quality of Tomato in Composite Sand Culture [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 183-191. |
[14] | GU Huimin1, CHEN Bolang1*, SUN Jin2. Influences of Mycorrhizal Seedling on Growth and Physiological Characteristics of Processing Tomato Under Salt Stress#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 166-177. |
[15] | CHEN Xiaojie, LYU Desheng, WANG Zhenhua, LI Wenhao, ZONG Rui, WEN Yue, ZOU Jie. Effects of Water and Nitrogen Coupling on the Yield and Quality of Processing Tomato Under Aerated Irrigation [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 191-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||