Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (2): 24-32.DOI: 10.13304/j.nykjdb.2023.0260
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Zhikang SUN(), Liqun LI, Jie HAO(
), Han WU, Na WU, Chao ZHENG, Qiang JI, Xuanwen LI, Chen CHEN
Received:
2023-04-06
Accepted:
2023-05-05
Online:
2025-02-15
Published:
2025-02-14
Contact:
Jie HAO
孙志康(), 李力群, 郝捷(
), 吴晗, 吴娜, 郑超, 季嫱, 李选文, 陈晨
通讯作者:
郝捷
作者简介:
孙志康 E-mail:18331273389@163.com;
基金资助:
CLC Number:
Zhikang SUN, Liqun LI, Jie HAO, Han WU, Na WU, Chao ZHENG, Qiang JI, Xuanwen LI, Chen CHEN. Recent Advances of CRISPR-Cas System in Genome Editing of Bacillus subtilis[J]. Journal of Agricultural Science and Technology, 2025, 27(2): 24-32.
孙志康, 李力群, 郝捷, 吴晗, 吴娜, 郑超, 季嫱, 李选文, 陈晨. CRISPRCas系统在枯草芽孢杆菌基因组编辑中的研究进展[J]. 中国农业科技导报, 2025, 27(2): 24-32.
分类 Classification | Cas | 应用效果 Application | 参考文献 Reference |
---|---|---|---|
单质粒系统 Single-plasmid | Cas9 | 25.1 kb片段敲除(89%)以及4.1 kb片段敲除(97%) 25.1 kb fragment knockout (89%) and 4.1 kb fragment knockout (97%) | [ |
Cas9 | 单基因编辑(97%) Single gene editing(97%) | [ | |
Cas9 | 单基因编辑(89%) Single gene editing(89%) | [ | |
dCas9 | 单基因编辑(Cas9有3个突变位点时效率100%,Cas9有4个突变位点时效率50%) Single gene editing (The efficiency is 100% when Cas9 has 3 mutation sites, and 50% when Cas9 has 4 mutation sites) | [ | |
Cas9 | 单基因编辑(97%) Single gene editing (97%) | [ | |
Cpf1 | 单基因缺失(2 kb片段缺失率100%) Single gene deletion (2 kb fragment deletion rate 100%) | [ | |
双质粒系统 Double-plasmid | Cas9 | 单基因插入(100%) Single gene insertion (100%) | [ |
Cpf1 | 双基因敲除、多点突变或单基因插入(100%) Double gene knockout, multipoint mutation, or single gene insertion (100%) | [ | |
Cas9 | 在多轮枯草芽孢杆菌基因编辑中,可连续删除8个胞外蛋白酶基因(每个基因的编辑效率≥90%) In multiple rounds of gene editing for B. subtilis, 8 extracellular protease genes can be continuously deleted (editing efficiency of each gene≥90%) | [ | |
Cpf1 | 单基因缺失(240 bp片段缺失率100%) Single gene deletion (240 bp fragment deletion rate 100%) | [ | |
基因组整合型 Chromosome maintenance | Cas9 | 预防噬菌体SPP1的感染 Prevention of phage SPP1 infection | [ |
Cas9 | 单基因敲除(100%)、双基因敲除(85%)及单基因插入(69%) Single gene knockout (100%), double gene knockout (85%), and single gene insertion (69%) | [ | |
Cpf1 | 单基因敲除(100%)、双基因敲除(58%)及单基因插入(82%) Single gene knockout (100%), double gene knockout (58%), and single gene insertion (82%) | [ |
Table 1 Gene editing system based on CRISPR in B. subtilis
分类 Classification | Cas | 应用效果 Application | 参考文献 Reference |
---|---|---|---|
单质粒系统 Single-plasmid | Cas9 | 25.1 kb片段敲除(89%)以及4.1 kb片段敲除(97%) 25.1 kb fragment knockout (89%) and 4.1 kb fragment knockout (97%) | [ |
Cas9 | 单基因编辑(97%) Single gene editing(97%) | [ | |
Cas9 | 单基因编辑(89%) Single gene editing(89%) | [ | |
dCas9 | 单基因编辑(Cas9有3个突变位点时效率100%,Cas9有4个突变位点时效率50%) Single gene editing (The efficiency is 100% when Cas9 has 3 mutation sites, and 50% when Cas9 has 4 mutation sites) | [ | |
Cas9 | 单基因编辑(97%) Single gene editing (97%) | [ | |
Cpf1 | 单基因缺失(2 kb片段缺失率100%) Single gene deletion (2 kb fragment deletion rate 100%) | [ | |
双质粒系统 Double-plasmid | Cas9 | 单基因插入(100%) Single gene insertion (100%) | [ |
Cpf1 | 双基因敲除、多点突变或单基因插入(100%) Double gene knockout, multipoint mutation, or single gene insertion (100%) | [ | |
Cas9 | 在多轮枯草芽孢杆菌基因编辑中,可连续删除8个胞外蛋白酶基因(每个基因的编辑效率≥90%) In multiple rounds of gene editing for B. subtilis, 8 extracellular protease genes can be continuously deleted (editing efficiency of each gene≥90%) | [ | |
Cpf1 | 单基因缺失(240 bp片段缺失率100%) Single gene deletion (240 bp fragment deletion rate 100%) | [ | |
基因组整合型 Chromosome maintenance | Cas9 | 预防噬菌体SPP1的感染 Prevention of phage SPP1 infection | [ |
Cas9 | 单基因敲除(100%)、双基因敲除(85%)及单基因插入(69%) Single gene knockout (100%), double gene knockout (85%), and single gene insertion (69%) | [ | |
Cpf1 | 单基因敲除(100%)、双基因敲除(58%)及单基因插入(82%) Single gene knockout (100%), double gene knockout (58%), and single gene insertion (82%) | [ |
1 | EARL A M, LOSICK R, KOLTER R. Ecology and genomics of Bacillus subtilis [J]. Trends Microbiol., 2008, 16(6):269-275. |
2 | DEUTSCHER J. The mechanisms of carbon catabolite repression in bacteria [J]. Curr. Opin. Microbiol., 2008, 11(2):87-93. |
3 | NICOLAS P, MÄDER U, DERVYN E, et al.. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis [J]. Science, 2012, 335(6072):1103-1106. |
4 | CHEN J Q, ZHAO L Q, FU G, et al.. A novel strategy for protein production using non-classical secretion pathway in Bacillus subtilis [J/OL]. Microb. Cell Fact., 2016, 15(1):1-16 [2023-03-03]. . |
5 | LIU Y, LIU L, LI J, et al.. Synthetic biology toolbox and chassis development in Bacillus subtilis [J]. Trends Biotechnol., 2019, 37(5):548-562. |
6 | GU Y, XU X H, WU Y K, et al.. Advances and prospects of Bacillus subtilis factories: from rational design to industrial applications [J]. Metab. Eng., 2018, 50(5):109-121. |
7 | XIANG M J, KANG Q, ZHANG D W. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell [J]. Syn. Syst. Biotechnol., 2020, 5(4):245-251. |
8 | WIDNER B, BEHR R, VON DOLLEN S, et al.. Hyaluronic acid production in Bacillus subtilis [J]. Appl. Environ. Microbiol., 2005, 71(7):3747-3752. |
9 | CUI S X, LV X Q, WU Y K, et al.. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis [J]. ACS Synth. Biol., 2019, 8(8):1826-1837. |
10 | LIU Y F, LIU L, SHIN H D, et al.. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine [J]. Metab. Eng., 2013, 19:107-115. |
11 | 张续,班睿,刘露,等.枯草芽孢杆菌基因修饰生产核黄素[J].微生物学通报,2017,44(1):59-67. |
ZHANG X, BAN R, LIU L, et al.. Riboflavin production by a genetically modified Bacillus subtilis [J]. Microbiol. China, 2017, 44(1):59-67. | |
12 | DENG J Y, CHEN C M, GU Y, et al.. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis [J]. Metab. Eng., 2019, 55:179-190. |
13 | DEB S, CHOUDHURY A, KHARBYNGAR B, et al.. Applications of CRISPR/Cas9 technology for modification of the plant genome [J]. Genetica, 2022, 150(1):1-12. |
14 | 林璐,吕雪琴,林延峰,等.枯草芽孢杆菌底盘细胞的设计、构建及应用[J].合成生物学,2020,1(2):247-265. |
LIN L, LYU X Q, LIN Y F, et al.. Advances in design, construction and applications of Bacillus subtilis chassis cells [J]. Synth. Biol. J., 2020, 1(2):247-265. | |
15 | ZHANG K, DUAN X, WU J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system [J/OL]. Sci. Rep., 2016, 6(1):27943 [2023-03-03]. . |
16 | 张春晓,王丽丽,陈赟,等.β-甘露聚糖酶突变体食品级枯草芽孢杆菌表达载体、表达系统、构建方法和应用:CN114703163A [P].2022-07-05. |
17 | MAKAROVA K S, WOLF Y I, IRANZO J, et al.. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants [J]. Nat. Rev. Microbiol., 2020, 18(2):67-83. |
18 | JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096):816-821. |
19 | LI T X, YANG Y Y, QI H Z, et al.. CRISPR/Cas9 therapeutics: progress and prospects [J/OL]. Signal. Transduct. Tar., 2023, 8(1):36 [2023-04-23]. . |
20 | 吕秀琴,武耀康,林璐,等.枯草芽孢杆菌代谢工程改造的策略与工具[J].生物工程学报,2021,37(5):1619-1636. |
LYU X Q, WU Y K, LIN L, et al.. Strategies and tools for metabolic engineering in Bacillus subtilis [J]. Chin. J. Biotechnol., 2021, 37(5):1619-1636. | |
21 | ALTENBUCHNER J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system [J]. Appl. Environ. Microbiol., 2016, 82(17):5421-5427. |
22 | TOYMENTSEVA A A, ALTENBUCHNER J. New CRISPR-Cas9 vectors for genetic modifications of Bacillus species [J/OL]. FEMS Microbiol. Lett., 2019, 366(1):985 [2023-04-23]. . |
23 | SACHLA A J, ALFONSO A J, HELMANN J D. A simplified method for CRISPR-Cas9 engineering of Bacillus subtilis [J/OL]. Microbiol. Spectr., 2021, 9(2):e00754-21 [2023-04-23]. . |
24 | YU S, PRICE M A, WANG Y, et al.. CRISPR-dCas9 mediated cytosine deaminase base editing in Bacillus subtilis [J]. ACS Synth. Biol., 2020, 9(7):1781-1789. |
25 | GARCÍA-MOYANO A, LARSEN Ø, GAYKAWAD S, et al.. Fragment exchange plasmid tools for CRISPR/Cas9-mediated gene integration and protease production in Bacillus subtilis [J/OL]. Appl. Environl. Microb., 2020, 87(1):e02090-20 [2023-04-23]. . |
26 | HAO W L, SUO F, LIN Q, et al.. Design and construction of portable CRISPR-Cpf1-mediated genome editing in Bacillus subtilis 168 oriented toward multiple utilities [J/OL]. Front Bioeng. and Biotech., 2020, 8:524676 [2023-04-23]. . |
27 | WU Y K, LIU Y F, LV X Q, et al.. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis [J]. Biotechnol. Bioeng., 2020, 117(6):1817-1825. |
28 | LIM H, CHOI S K. Programmed gRNA removal system for CRISPR-Cas9-mediated multi-round genome editing in Bacillus subtilis [J/OL]. Front Microbiol., 2019, 10:1140 [2023-04-23]. . |
29 | JAKUTYTE-GIRAITIENE L, GASIUNAS G. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1 [J]. J. Ind. Microbiol. Biot., 2016, 43(8):1183-1188. |
30 | WESTBROOK A W, MOO-YOUNG M, CHOU C P. Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis [J]. Appl. Environl. Microbiol., 2016, 82(16):4876-4895. |
31 | ZOU Y, QIU L, XIE A W, et al.. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis [J/OL]. Microbiol. Cell Fact., 2022, 21(1):173 [2023-04-23]. . |
32 | ZHANG X Z, YAN X, CUI Z L, et al.. mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis [J/OL]. Nucl. Acids Res., 2016, 34(9):e71 [2023-04-23]. . |
33 | INÁCIO J M, COSTA C, DE SÁ-NOGUEIRA I. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis [J]. Microbiology, 2003, 149(9):2345-2355. |
34 | JIANG W Y, BIKARD D, COX D, et al.. CRISPR assisted editing of bacterial genomes [J]. Nat. Biotechnol., 2013, 31(3):233-239. |
35 | GASIUNAS G, BARRANGOU R, HORVATH P, et al.. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(39):2579-2586. |
36 | HIRANO H, GOOTENBERG J S, HORII T, et al.. Structure and engineering of Francisella novicida Cas9 [J]. Cell, 2016, 164(5):950-961. |
37 | KLEINSTIVER B P, PATTANAYAK V, PREW M S, et al.. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects [J]. Nature, 2016, 529(7587):490-495. |
38 | KLEINSTIVER B P, PREW M S, TSAI S Q, et al.. Engineered CRISPR-Cas9 nucleases with altered PAM specificities [J]. Nature, 2015, 23(7561):481-485. |
39 | SIKSNYS V, GASIUNAS G. Rewiring Cas9 to target new PAM sequences [J]. Mol. Cell, 2016, 61(6):793-794. |
40 | DONG D, REN K, QIU X L, et al.. The crystal structure of Cpf1 in complex with CRISPR RNA [J]. Nature, 2016, 532(7600):522-526. |
41 | YAMANO T, NISHIMASU H, ZETSCHE B, et al.. Crystal structure of Cpf1 in complex with guide RNA and target DNA [J]. Cell, 2016, 165(4):949-962. |
42 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al.. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system [J]. Cell, 2015, 163(3):759-771. |
43 | RAN F A, HSU P D, LIN C Y, et al.. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity [J]. Cell, 2013, 154(6):1380-1389. |
44 | STERN A, KEREN L, WURTZEL O, et al.. Self-targeting by CRISPR: gene regulation or autoimmunity? [J]. Trends Genet., 2010, 26(8):335-340. |
45 | GOMAA A A, KLUMPE H E, LUO M L, et al.. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems [J/OL]. MBio, 2014, 5(1):e00928-13 [2023-04-23]. . |
46 | VERCOE R B, CHANG J T, DY R L, et al.. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands [J/OL]. PLoS Genet., 2013, 9(4):e1003454 [2023-04-23]. . |
47 | HALE C R, MAJUMDAR S, ELMORE J, et al.. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs [J]. Mol. Cell, 2012, 45(3):292-302. |
48 | ZHANG J, ZONG W M, HONG W, et al.. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for highlevel butanol production [J]. Metab. Eng., 2018, 47:49-59. |
49 | CASAS-MOLLANO J A, ZINSELMEIER M H, ERICKSON S E, et al.. CRISPR-Cas activators for engineering gene expression in higher eukaryotes [J]. CRISPR J., 2020, 3(5):350-364. |
50 | WALTON R T, CHRISTIE K A, WHITTAKER M N, et al.. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants [J]. Science, 2020, 368(6488):290-296. |
51 | KLANSCHNIG M, CSERJAN-PUSCHMANN M, STRIEDNER G, et al.. CRISPRactivation-SMS, a message for PAM sequence independent gene up-regulation in Escherichia coli [J]. Nucleic Acids Res., 2022, 50(18):10772-10784. |
52 | RONDA C, PEDERSEN L E, SOMMER M O, et al.. CRMAGE: CRISPR optimized MAGE recombineering [J/OL]. Sci. Rep., 2016, 6:19452 [2023-04-23]. . |
53 | GARST A D, BASSALO M C, PINES G, et al.. Genome-wide mapping of mutations at singlenucleotide resolution for protein, metabolic and genome engineering [J]. Nat. Biotechnol., 2017, 35(1):48-55. |
54 | LIANG L Y, LIU R M, GARST A D, et al.. CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli [J]. Metab. Eng., 2017, 41(3):1-10. |
55 | BAO Z H, HAMEDIRAD M, XUE P, et al.. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision [J]. Nat. Biotechnol., 2018, 36(6):505-508. |
56 | CALLIAS D, VIALETTO E, YU J, et al.. Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria [J/OL]. Nat. Commun., 2023, 14(1):680 [2023-04-23]. . |
57 | YAN X, YU H J, HONG Q, et al.. Cre/lox system and PCR-based genome engineering in Bacillus subtilis [J]. Appl. Environ. Microbiol., 2008, 74(17):5556-5562. |
58 | CAI M Z, CHEN P T. Novel combined Cre-Cas system for improved chromosome editing in Bacillus subtilis [J]. J. Biosci. Bioeng., 2021, 132(2):113-119. |
[1] | Chunping HE, Lanyan FAN, He WU, Yanqiong LIANG, Weihuai WU, Rui LI, Fucong ZHENG. Study on Inhibitory Effect of Lipopeptides Produced by Bacillus subtilis Czk1 on Anthracnose and Powdery Mildewof Rubber Tree [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 126-134. |
[2] | Yingchao NIU, Xing WANG, Qingyun GUO, Xiaohua DAI, Xiaoyong YUAN, Lin CHEN. Identification and Antifungal Activity of a Bacteria Strain Against Rhizoctonia solani [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 138-144. |
[3] | Qiangzhou WANG, Shiyu PAN, Mengya FANG, Wei LI, Jiaxing WANG, Yinyin LIU, Shihao CHEN. Construction of Chicken Embryo Fibroblast Cell Line with TET2 Gene Knockout Based on CRISPR-Cas9 Technology [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 227-233. |
[4] | Bianqing HAO, Liping MA, Yongsheng ZHAO, Wenxin SHI, Jianxiong WANG, Yuchuan JING. Effect of BC98-Ⅰ and B96-Ⅱ Fermentation Broth on Potato Disease Prevention and Growth and Its Effect on Soil Enzyme Activity [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 116-123. |
[5] | Hai WANG, Jinsheng LAI, Haiyang WANG, Xinhai LI. Bipartite Intelligent Design of Crops—Intelligent Combination of Natural Variation and Intelligent Creation of Artificial Variation [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 1-8. |
[6] | Tianwei PENG, Huiya XIE, Sijun LI, Yixuan LIU, Kaifeng SHUAI, Yuanyuan PENG, Qing WANG, Diqin LI. Effects of Sodium Dinitrate with Bacillus Sbutilis Complex on Growth and Physiological Indexes of Tobacco Seedlings [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 154-161. |
[7] | Yanqiong LIANG, Rui LI, Weihuai WU, Jingen XI, Shibei TAN, Xing HUANG, Ying LU, Chunping HE, Kexian YI. Inhibitory Mechanism of Volatilized Active Components from Bacillus subtilis Czk1 on Ganoderma pseudoferreum [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 152-159. |
[8] | Lei YAN, Jinshan ZHANG, Jiankang ZHU, Lanqin XIA. Genome Editing and Its Applications in Crop Improvement [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 78-89. |
[9] | JIAO Yue1, WU Gang2, HUANG Yaohui1, XIONG Li1, ZHAI Yong1*. Genome Editing Technology and Its Safety Assessment Management [J]. Journal of Agricultural Science and Technology, 2018, 20(4): 12-19. |
[10] | WEI Jing\|liang, WU Tian\|wen, RUAN Jin\|xue, MU Yu\|lian*. Advance in Genome Editing Technologies for Livestock Improvement [J]. , 2014, 16(1): 32-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||