中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (5): 158-167.DOI: 10.13304/j.nykjdb.2022.0931
• 生物制造 资源生态 • 上一篇
强敬雯1(), 王晚晴1,2, 唐曼玉1, 武双1,2, 华威1,2, 朱欣悦1, 程艳玲1,2(
)
收稿日期:
2022-10-29
接受日期:
2023-01-03
出版日期:
2023-05-20
发布日期:
2023-07-13
通讯作者:
程艳玲
作者简介:
强敬雯 E-mail:1275578042@qq.com;
基金资助:
Jingwen QIANG1(), Wanqing WANG1,2, Manyu TANG1, Shuang WU1,2, Wei HUA1,2, Xinyue ZHU1, Yanling CHENG1,2(
)
Received:
2022-10-29
Accepted:
2023-01-03
Online:
2023-05-20
Published:
2023-07-13
Contact:
Yanling CHENG
摘要:
目前我国有机废弃物年产量约45亿~50亿t,若处理不当会对大气、水体、土壤等产生负面影响,从而对环境造成二次污染。黑水虻幼虫可有效分解有机固体废弃物,将其转化为符合循环经济概念的可销售产品,在此过程中产生的虫沙可作有机肥料,从而推进传统经济发展向生态循环经济模式过渡。然而,目前对于虫沙的营养成分、微生物和生物活性物质的组成,提高其生物稳定性的后处理要求,及其在土壤和植物代谢过程中的作用机制等尚未明确。为提高有机废弃物资源化利用程度、促进农业可持续发展,综述了黑水虻幼虫对有机废弃物的转化潜力,总结了虫沙特性及其对植物生长的影响,重点分析了虫沙作为植物肥料的应用现状,指出了该产品对现代生态农业发展的促进作用,并归纳和总结了尚待解决的问题。
中图分类号:
强敬雯, 王晚晴, 唐曼玉, 武双, 华威, 朱欣悦, 程艳玲. 黑水虻虫沙在肥料应用中的研究进展[J]. 中国农业科技导报, 2023, 25(5): 158-167.
Jingwen QIANG, Wanqing WANG, Manyu TANG, Shuang WU, Wei HUA, Xinyue ZHU, Yanling CHENG. Research Progress on Frass After Organic Waste Transformation by Black Soldier Fly[J]. Journal of Agricultural Science and Technology, 2023, 25(5): 158-167.
饲料基质 Food substrate | 底物消耗量 Material reduction/(% DM) | 虫沙产量 Frass yield/(kg DM) | 幼虫含量 Larval density/(·m-2) | 堆肥时间 Composting time/d |
---|---|---|---|---|
家庭厨余垃圾Household food waste | 79.9 | 201 | 20 000 | 14 |
食堂垃圾Cateen waste | 37.9 | 621 | 2 000 | 9 |
水果和蔬菜Fruits and vegetables | 65.2 | 348 | 6 000 | 20 |
水果Fruits | 70.8 | 292 | 6 000 | 22 |
香蕉Bananas | 63.4 | 366 | 45 000 | 14 |
苹果Apples | 64.4 | 356 | 45 000 | 16 |
蔬菜废料Vegetable waste | 58.4 | 416 | 2 000 | 9 |
蘑菇Spent mushroom | 42.3 | 577 | — | 20 |
畜禽废弃物Poultry slaughterhouse waste | 30.7 | 693 | 18 000 | 13~14 |
鱼粪Fish waste | 57.6~70.1 | 229~424 | 45 000 | 11~18 |
鸡粪Chicken manure | 75.6 | 244 | 7 000 | — |
牛粪Cow manure | 34.4~48.8 | 512~656 | — | 19~20 |
农副产品废弃物 Agricultural byproducts waste | 56.4 | 436 | 2 000 | 9 |
啤酒厂废谷物Brewers spent grain | 53.0 | 470 | 6 000 | 22 |
酿造副产物Winery byproducts | 38.7 | 613 | — | 15 |
表1 不同有机废弃物饲养BSFL的虫沙产量[13-18]
Table 1 Frass yield of BSFL fed with different organic wastes[13-18]
饲料基质 Food substrate | 底物消耗量 Material reduction/(% DM) | 虫沙产量 Frass yield/(kg DM) | 幼虫含量 Larval density/(·m-2) | 堆肥时间 Composting time/d |
---|---|---|---|---|
家庭厨余垃圾Household food waste | 79.9 | 201 | 20 000 | 14 |
食堂垃圾Cateen waste | 37.9 | 621 | 2 000 | 9 |
水果和蔬菜Fruits and vegetables | 65.2 | 348 | 6 000 | 20 |
水果Fruits | 70.8 | 292 | 6 000 | 22 |
香蕉Bananas | 63.4 | 366 | 45 000 | 14 |
苹果Apples | 64.4 | 356 | 45 000 | 16 |
蔬菜废料Vegetable waste | 58.4 | 416 | 2 000 | 9 |
蘑菇Spent mushroom | 42.3 | 577 | — | 20 |
畜禽废弃物Poultry slaughterhouse waste | 30.7 | 693 | 18 000 | 13~14 |
鱼粪Fish waste | 57.6~70.1 | 229~424 | 45 000 | 11~18 |
鸡粪Chicken manure | 75.6 | 244 | 7 000 | — |
牛粪Cow manure | 34.4~48.8 | 512~656 | — | 19~20 |
农副产品废弃物 Agricultural byproducts waste | 56.4 | 436 | 2 000 | 9 |
啤酒厂废谷物Brewers spent grain | 53.0 | 470 | 6 000 | 22 |
酿造副产物Winery byproducts | 38.7 | 613 | — | 15 |
化学属性 Chemical properties | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
指标 Index | 碳 C/% | 氮 N/% | 磷 P/% | 钾K/% | 钙Ca/ (g·kg-1) | 镁Mg/ (g·kg-1) | 钠Na/ (g·kg-1) | 铁Fe/ (mg·kg-1) | 铜Cu/ (mg·kg-1) | 锰Mn/ (mg·kg-1) | 锌Zn/ (mg·kg-1) | pH | 碳氮比 C/N |
啤酒厂废谷物 Brewery spent grain | 38.6 | 3.6 | 0.5 | 0.3 | 9.7 | 1.0 | — | 310.0 | 25.0 | 109.0 | 182.0 | 7.3 | 10.7 |
酒糟 Distiller’s grains | — | 3.4 | 0.8 | 1.1 | 13.0 | 3.0 | 5.0 | 125.0 | 15.0 | 45.0 | 90.0 | — | — |
豆渣和麦麸 Okara and wheat bran | 37.1 | 4.8 | 1.0 | 0.9 | 1.3 | 0.1 | — | 26.0 | 2.2 | 4.2 | 0.1 | 7.5 | 7.7 |
湿豆渣Fresh okara | 37.1 | 5.1 | 0.3 | 1.9 | 16.8 | 10.5 | — | 3.7 | 0.9 | 0.2 | 1.7 | 7.3 | 7.3 |
麦麸Wheat bran | 35.7 | 2.8 | 1.4 | 2.3 | — | 0.3 | — | 15.0 | 8.9 | 19.4 | 15.0 | 6.8 | 16.0 |
生活垃圾 Household waste | 35.8 | 2.2 | 0.5 | 0.7 | 10.0 | 0.9 | 0.8 | 240.0 | 10.0 | 10.0 | 10.0 | 7.4 | 16.6 |
鸡饲料 Chicken feed | 47.9 | 2.6 | — | — | — | — | — | — | — | — | — | 6.2 | 18.5 |
鸡粪 Chicken manure | 23.6 | 2.3 | 1.1 | 1.8 | — | — | — | — | — | — | — | 8.0 | 16.4 |
猪粪Pig manure | 26.8 | 2.4 | 2.1 | 1.0 | — | — | — | — | — | — | — | 8.7 | 17.6 |
牛粪Cow manure | 27.7 | 1.9 | 1.0 | 0.2 | — | — | — | — | — | — | — | 8.4 | 15.1 |
水果和蔬菜 Fruits and vegetables | 48.8 | 1.8 | — | — | — | — | — | — | — | — | — | 5.6 | 16.6 |
蔬菜Vegetables | 38.7 | 2.8 | 1.5 | 3.3 | 15.0 | 7.0 | 0.3 | 896.0 | 19.0 | 149.0 | 137.0 | 8.6 | 13.8 |
平均Average | 36.6 | 2.9 | 1.6 | 2.4 | 11.6 | 3.7 | 2.3 | 249.1 | 14.2 | 42.4 | 64.0 | 7.5 | 14.5 |
中位数Median | 36.5 | 2.8 | 1.1 | 1.5 | 9.9 | 1.0 | 2.6 | 125.0 | 10.0 | 14.7 | 15.0 | 7.6 | 15.6 |
表2 不同有机废弃物饲养BSFL所产虫沙的化学属性[67]
Table 2 Chemical attributes of frass derived from BSFL with different organic wastes[67]
化学属性 Chemical properties | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
指标 Index | 碳 C/% | 氮 N/% | 磷 P/% | 钾K/% | 钙Ca/ (g·kg-1) | 镁Mg/ (g·kg-1) | 钠Na/ (g·kg-1) | 铁Fe/ (mg·kg-1) | 铜Cu/ (mg·kg-1) | 锰Mn/ (mg·kg-1) | 锌Zn/ (mg·kg-1) | pH | 碳氮比 C/N |
啤酒厂废谷物 Brewery spent grain | 38.6 | 3.6 | 0.5 | 0.3 | 9.7 | 1.0 | — | 310.0 | 25.0 | 109.0 | 182.0 | 7.3 | 10.7 |
酒糟 Distiller’s grains | — | 3.4 | 0.8 | 1.1 | 13.0 | 3.0 | 5.0 | 125.0 | 15.0 | 45.0 | 90.0 | — | — |
豆渣和麦麸 Okara and wheat bran | 37.1 | 4.8 | 1.0 | 0.9 | 1.3 | 0.1 | — | 26.0 | 2.2 | 4.2 | 0.1 | 7.5 | 7.7 |
湿豆渣Fresh okara | 37.1 | 5.1 | 0.3 | 1.9 | 16.8 | 10.5 | — | 3.7 | 0.9 | 0.2 | 1.7 | 7.3 | 7.3 |
麦麸Wheat bran | 35.7 | 2.8 | 1.4 | 2.3 | — | 0.3 | — | 15.0 | 8.9 | 19.4 | 15.0 | 6.8 | 16.0 |
生活垃圾 Household waste | 35.8 | 2.2 | 0.5 | 0.7 | 10.0 | 0.9 | 0.8 | 240.0 | 10.0 | 10.0 | 10.0 | 7.4 | 16.6 |
鸡饲料 Chicken feed | 47.9 | 2.6 | — | — | — | — | — | — | — | — | — | 6.2 | 18.5 |
鸡粪 Chicken manure | 23.6 | 2.3 | 1.1 | 1.8 | — | — | — | — | — | — | — | 8.0 | 16.4 |
猪粪Pig manure | 26.8 | 2.4 | 2.1 | 1.0 | — | — | — | — | — | — | — | 8.7 | 17.6 |
牛粪Cow manure | 27.7 | 1.9 | 1.0 | 0.2 | — | — | — | — | — | — | — | 8.4 | 15.1 |
水果和蔬菜 Fruits and vegetables | 48.8 | 1.8 | — | — | — | — | — | — | — | — | — | 5.6 | 16.6 |
蔬菜Vegetables | 38.7 | 2.8 | 1.5 | 3.3 | 15.0 | 7.0 | 0.3 | 896.0 | 19.0 | 149.0 | 137.0 | 8.6 | 13.8 |
平均Average | 36.6 | 2.9 | 1.6 | 2.4 | 11.6 | 3.7 | 2.3 | 249.1 | 14.2 | 42.4 | 64.0 | 7.5 | 14.5 |
中位数Median | 36.5 | 2.8 | 1.1 | 1.5 | 9.9 | 1.0 | 2.6 | 125.0 | 10.0 | 14.7 | 15.0 | 7.6 | 15.6 |
1 | 张青青,陈平,李跃忠,等.有机废弃物沼渣资源化利用现状及发展趋势[J].园林,2020(6):2-7. |
ZHANG Q Q, CHEN P, LI Y Z, et al.. Present situation and development trend of biogas residue resource utilization [J]. Landscape Architecture Academic J., 2020(6):2-7. | |
2 | KODA E, MISZKOWSKA A, SIECZKA A. Levels of organic pollution indicators in groundwater at the old landfill and waste management site [J/OL]. Appl. Sci., 2017, 7(6): 638 [2022-09-28]. . |
3 | AHMAD S, IQBAL N, JAMIL F, et al.. Optimal policy-making for municipal waste management based on predictive model optimization [J]. IEEE Access, 2020, 8: 218458-218469. |
4 | 王成成,贾昭炎,刘洋,等.黑水虻转化有机生活废弃物相关研究进展[J].生物加工过程,2021,19(4):432-439. |
WANG C C, JIA Z Y, LIU Y, et al.. Progress in transformation of organic domestic waste by black soldier fly [J]. Chin. J. Bioprocess Eng., 2021,19(4):432-439. | |
5 | BEESIGAMUKAMA D, MOCHOGE B, KORIR N, et al.. Nitrogen fertilizer equivalence of black soldier fly frass fertilizer and synchrony of nitrogen mineralization for maize production [J/OL]. Agronomy, 2020, 10(9): 1395 [2022-09-28]. . |
6 | SALOMONE R, SAIJA G, MONDELLO G, et al.. Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens [J]. J. Clean. Prod., 2017, 140: 890-905. |
7 | 刘涛.黑水虻联合好氧堆肥对畜禽粪便无害化及资源化的研究[D]. 咸阳:西北农林科技大学,2022. |
LIU T. The sanitation and resource of livestock manure during black soldier fly larvae conversion combined with composting [D]. Xianyang: Northwest A&F University, 2022. | |
8 | MERTENAT A, DIENER S, ZURBRUGG C. Black soldier fly biowaste treatment-assessment of global warming potential [J]. Waste Manage., 2019, 84: 173-181. |
9 | SURENDRA K C, TOMBERLIN J K, HUIS A, et al.. Rethinking organic wastes bioconversion: evaluating the potential of the black soldier fly (Hermetia illucens (L.))(Diptera: Stratiomyidae)(BSF) [J]. Waste Manage., 2020, 117: 58-80. |
10 | LOPES I G, LALANDER C, VIDOTTI R M, et al.. Using Hermetia illucens larvae to process biowaste from aquaculture production [J/OL]. J. Clean. Prod., 2020, 251: 119753 [2022-09-28]. . |
11 | FIDJELAND J, NORDIN A, VINNERAS B. Inactivation of Ascaris eggs and Salmonella spp. in fecal sludge by treatment with urea and ammonia solution [J]. J. Water Sanit. Hyg. Dev., 2016, 6(3): 465-473. |
12 | PANG W, HOU D, CHEN J, et al.. Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly [J/OL]. J. Environ. Manage., 2020, 260: 110066 [2022-09-28]. . |
13 | CHEN J, HOU D, PANG W, et al.. Effect of moisture content on greenhouse gas and NH3 emissions from pig manure converted by black soldier fly [J/OL]. Sci. Total Environ., 2019, 697: 133840 [2022-09-28]. . |
14 | PARODI A, BOER M, GERRITS J, et al.. Bioconversion efficiencies, greenhouse gas and ammonia emissions during black soldier fly rearing-a mass balance approach [J/OL]. J. Clean. Prod., 2020, 271: 122488 [2022-09-28]. . |
15 | 沈礼晨,叶小梅,孔祥平,等.不同投料方式对黑水虻幼虫生长性能的影响[J].环境昆虫学报,2022,44(5): 1271-1277. |
SHEN L C, YE X M, KONG X P, et al.. Effects of different feeding methods on the growth performance of black soldier fly, Hermetia illucens (Diptera: Strationyidae) [J]. J. Environ. Entomol., 2022,44(5): 1271-1277. | |
16 | GUO H, JIANG C, ZHANG Z, et al.. Material flow analysis and life cycle assessment of food waste bioconversion by black soldier fly larvae (Hermetia illucens L.) [J/OL]. Sci. Total Environ., 2021, 750: 141656 [2022-09-28]. . |
17 | 李庆,秦文杰,曹秀芳,等.基于黑水虻转化的畜禽粪便资源化利用研究进展[J].华中农业大学学报,2022,41(6): 169-175. |
LI Q, QIN W J, CAO X F, et al.. Research progress on resource utilization of livestock and poultry manure based on transformation by black soldier fly [J]. J. Huazhong Agric. Univ., 2022,41(6): 169-175. | |
18 | GOLD M, EGGER J, SCHEIDEGGER A, et al.. Estimating black soldier fly larvae biowaste conversion performance by simulation of midgut digestion [J]. Waste Manage., 2020, 112: 40-51. |
19 | LALANDER C, DIENER S, ZURBRUGG C, et al.. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens) [J]. J. Clean. Prod., 2019, 208: 211-219. |
20 | SETTI L, FRANCIA E, PULVIRENTI A, et al.. Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media [J]. Waste Manage., 2019, 95: 278-288. |
21 | KLAMMSTEINER T, TURAN V, FERNANDEZ M, et al.. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization [J/OL]. Agronomy, 2020, 10(10): 1578[2022-09-28]. . |
22 | 陈江珊.水虻转化农业有机废弃物过程中氮素形态及转化效率研究[D]. 武汉:华中农业大学, 2021. |
CHEN J S. The reaearch on nitrogen forms and coversion efficiency of agricultural organic wastes by black soldier fly [D]. Wuhan: Huazhong Agricultural University, 2021. | |
23 | 路延.黑水虻转化厨余垃圾中环境及微生物条件研究[D]. 大连:大连理工大学,2021. |
LU Y. Study on environmental and microbial conditions of food waste transformed by black soldier fly [D]. Dalian: Dalian University of Technology, 2021. | |
24 | PALMA L, FERNANDE J, PUTRI F, et al.. Almond by‐product composition impacts the rearing of black soldier fly larvae and quality of the spent substrate as a soil amendment [J]. J. Sci. Food Agric., 2020, 100(12): 4618-4626. |
25 | SARPONG D, ODURO-KWARTENG S, GYASI F, et al.. Biodegradation by composting of municipal organic solid waste into organic fertilizer using the black soldier fly (Hermetia illucens)(Diptera: Stratiomyidae) larvae [J]. Int. J. Recycling Organic Waste Agric., 2019, 8(1): 45-54. |
26 | SONG S, EE L, TAN N, et al.. Upcycling food waste using black soldier fly larvae: effects of further composting on frass quality, fertilising effect and its global warming potential [J/OL]. J. Clean. Prod., 2021, 288: 125664 [2022-09-28]. . |
27 | BEESIGAMUKAMA D, MOCHOGE B, KORIR K, et al.. Exploring black soldier fly frass as novel fertilizer for improved growth, yield, and nitrogen use efficiency of maize under field conditions [J/OL]. Front Plant Sci., 2020, 11: 574592 [2022-09-28]. . |
28 | 张兰霞,杜巍,王岩,等.不同碳源农林废弃物与厨余垃圾协同堆肥腐熟度和臭气排放研究[J/OL].环境工程,2022[2022-09-28].. |
ZHANG L X, DU W, WANG Y, et al.. The maturity and odor gas emissions during co-composting of kitchen waste and agricultural and forestry wastes with high carbon source [J/OL]. Environ. Eng., 2022 [2022-09-28].. | |
29 | ALATTAR A, ALATTAR N, POPA R. Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn plants (Zea mays) [J]. Plant Sci. Today, 2016, 3(1): 57-62. |
30 | LIU T, AWASTHI K, CHEN H, et al.. Performance of black soldier fly larvae (Diptera: Stratiomyidae) for manure composting and production of cleaner compost [J/OL]. J. Environ. Manage., 2019, 251: 109593[2022-09-28]. . |
31 | XIAO X P, MAZZA L, YU Y Q, et al.. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L.(Diptera: Stratiomyidae) larvae and functional bacteria [J]. J. Environ. Manage., 2018, 217: 668-676. |
32 | 马延旭,伊宏峰,夏烨,等.不同饲料配方对黑水虻幼虫生长发育的影响[J].特种经济动植物,2021,24(3):8-9. |
33 | BEESIGAMUKAMA D, MOCHOGE B, KORIR K, et al.. Low-cost technology for recycling agro-industrial waste into nutrient-rich organic fertilizer using black soldier fly [J]. Waste Manage., 2021, 119: 183-194. |
34 | 许梦,李旭,丁鸿弼,等.蚯蚓堆置对农业和城市有机废弃物堆肥产品腐熟度的影响[J].江苏农业科学,2015,43(6):356-359. |
35 | WANG Q, REN X, SUN Y, et al.. Improvement of the composition and humification of different animal manures by black soldier fly bioconversion [J/OL]. J. Clean. Prod., 2021, 278: 123397 [2022-09-28]. . |
36 | SHARMA S. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms [J]. Bioresour. Technol., 2003, 90(2): 169-173. |
37 | PEREZ-MONTANO F, ALIAS-VILLEGAS C, BELLOGIN A, et al.. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production [J]. Microbiol. Res., 2014, 169(5-6): 325-336. |
38 | 邢力,张玉铭,胡春胜,等.长期不同养分循环再利用途径对农田土壤养分演替规律与培肥效果的影响研究[J].中国生态农业学报,2022,30(6):937-951. |
XING L, ZHANG Y M, HU C S, et al.. Effects of long-term nutrient recycling pathways on soil nutrient dynamics and fertility in farmland [J]. Chin. J. Eco-Agric., 2022, 30(6): 937-951. | |
39 | POVEDA J, JIMENEZ-GOMEZ A, SAATI-SANTAMARIA Z, et al.. Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants [J]. Appl. Soil Ecol., 2019, 142: 110-122. |
40 | PATHANIA P, RAJTA A, SINGH P C, et al.. Role of plant growth-promoting bacteria in sustainable agriculture [J/OL]. Biocatal. Agric. Biotechnol., 2020, 30: 101842 [2022-09-28]. . |
41 | LOPES I G, LALANDER C, VIDOTTII R M, et al.. Reduction of bacteria in relation to feeding regimes when treating aquaculture waste in fly larvae composting [J/OL]. Front. Microbiol., 2020, 11: 1616 [2022-09-28]. . |
42 | ERICKSON M C, ISLAM M, SHEPPARD C, et al.. Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly [J]. J. Food Protect., 2004, 67(4): 685-690. |
43 | LYNCH H, ARGUELLO H, WALIA K, et al.. Evaluation of an alternative experimental infection method, which closely mimics the natural route of transmission of monophasic Salmonella Typhimurium in pigs [J]. Foodborne Pathog. Dis., 2017, 14(1): 23-28. |
44 | WYNANTS E, FROONINCKX L, CRAUWELS S, et al.. Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale [J]. Microb. Ecol., 2019, 77(4): 913-930. |
45 | GOLD M, VON F, ZURBRUGG C, et al.. Identification of bacteria in two food waste black soldier fly larvae rearing residues [J/OL]. Front. Microbiol., 2020, 11: 582867[2022-09-28]. . |
46 | BOSCH G, VAN J, DE C, et al.. Aflatoxin B1 tolerance and accumulation in black soldier fly larvae (Hermetia illucens) and yellow mealworms (Tenebrio molitor) [J/OL]. Toxins, 2017, 9(6): 185[2022-09-28]. . |
47 | XU L, GEELEN D. Developing biostimulants from agro-food and industrial by-products [J/OL]. Front. Plant Sci., 2018, 9: 1567 [2022-09-28]. . |
48 | POVEDA J. Insect frass in the development of sustainable agriculture. a review [J/OL]. Agron. Sustain. Dev., 2021, 41(1): 656[2022-09-28]. . |
49 | LOPES I G, YONG H, LALANDER C. Frass derived from black soldier fly larvae treatment of biodegradable wastes. a critical review and future perspectives [J]. Waste Manage., 2022, 142: 65-76. |
50 | SCHMITT E, DEVRIES W. Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction [J/OL]. Current Opinion Green Sustain. Chem., 2020, 25: 100335 [2022-09-28]. . |
51 | NARDI S, PIZZEGHELLO D, ERTANI A. Hormone-like activity of the soil organic matter [J]. Appl. Soil Ecol., 2018, 123: 517-520. |
52 | ANTONOV A, GORKIN A, PASTUKHOVA N, et al.. Application of a vermicomposter containing biostimulant for pine tapping [C/OL]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020, 421(2): 022068 [2022-09-28]. . |
53 | SOFO A, NUZZACI M, VITTI A, et al.. Control of biotic and abiotic stresses in cultivated plants by the use of biostimulant microorganisms[M]//Improvement of crops in the era of climatic changes. Springer, 2014: 107-117. |
54 | POVEDA J, GONZALEZ-ANDRES F. Bacillus as a source of phytohormones for use in agriculture [J]. Appl. Microbiol. Biot., 2021, 105(23): 8629-8645. |
55 | CHOI Y C, CHOI J Y, KIM J G, et al.. Potential usage of food waste as a natural fertilizer after digestion by Hermetia illucens (Diptera: Stratiomyidae) [J]. Int. J. Ind. Ergon., 2009, 19(1): 171-174. |
56 | CHIRERE T E S, KHALIL S, LALANDER C. Fertiliser effect on swiss chard of black soldier fly larvae-frass compost made from food waste and faeces [J]. J. Insects Food Feed., 2021, 7(4): 457-469. |
57 | QUILLIAM R S, NUKU-ADEKU C, MAQUART P, et al.. Integrating insect frass biofertilisers into sustainable peri-urban agro-food systems [J]. J. Insects Food Feed., 2020, 6(3): 315-322. |
58 | ALATTAR M A, ALATTAR F N, POPA R. Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn plants (Zea mays) [J]. Plant Sci. Today, 2016, 3(1): 57-62. |
59 | GÄRTTLING D, KIRCHNER S M, SCHULZ H. Assessment of the N-and P-fertilization effect of black soldier fly (Diptera: Stratiomyidae) by-products on maize [J/OL]. J. Insect Sci., 2020, 20(5): 89 [2022-09-28]. . |
60 | HOUBEN D, DAOULAS G, DULAURENT A M. Assessment of the short-term fertilizer potential of mealworm frass using a pot experiment [J/OL]. Front. Sustain. Food Syst., 2021, 5: 714596 [2022-09-28]. . |
61 | CHIAM Z, LEE J T E, TAN J K N, et al.. Evaluating the potential of okara-derived black soldier fly larval frass as a soil amendment [J/OL]. J. Environ. Manage., 2021, 286: 112163[2022-09-28]. . |
62 | RUMMEL P S, BEULE L, HEMKEMEYER M, et al.. Black soldier fly diet impacts soil greenhouse gas emissions from frass applied as fertilizer [J/OL]. Front. Sustain. Food Syst., 2021, 5: 709993 [2022-09-28]. . |
63 | 余苗,李贞明,容庭,等.黑水虻在低碳畜牧业中的应用研究进展[J].广东农业科学,2020,47(12):122-133. |
YU M, LI Z M, RONG T, et al.. Research progress in the application of Hermetia illucens in low-carbon animal husbandry [J]. Guangdong Agric. Sci., 2020,47(12):122-133. | |
64 | KAWASAKI K, KAWASAKI T, HIRAYASU H, et al.. Evaluation of fertilizer value of residues obtained after processing household organic waste with black soldier fly larvae (Hermetia illucens) [J/OL]. Sustainability, 2020, 12(12): 4920 [2022-09-28]. . |
65 | 李卫娟,周文君,杨树义,等.黑水虻虫沙对白菜生长性能的影响[J].安徽农业科学,2016,44(10):111-112. |
LI W J, ZHOU W J, YANG S Y, et al.. Effects of Hermetia illucens sandworm on the growth performance of cabbage [J]. J. Anhui Agric. Sci., 2016,44(10):111-112. | |
66 | MENINO R, FELIZES F, CASTELO-BRANCO M A, et al.. Agricultural value of black soldier fly larvae frass as organic fertilizer on ryegrass [J/OL]. Heliyon, 2021, 7(1): e05855[2022-09-28]. . |
67 | HAMID B, ZAMAN M, FAROOQ S, et al.. Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops [J/OL]. Sustainability, 2021, 13(5): 2856[2022-09-28]. . |
68 | VILELA J D S, ANDRONICOS N M, KOLAKSHYAPATI M, et al.. Black soldier fly larvae in broiler diets improve broiler performance and modulate the immune system [J]. Arch. Anim. Nutr., 2021, 7(3): 695-706. |
69 | KROECKEL S, HARJES A G E, ROTH I, et al.. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute-growth performance and chitin degradation in juvenile turbot (Psetta maxima) [J]. Aquaculture, 2012, 364: 345-352. |
70 | BEESIGAMUKAMA D, MOCHOGE B, KORIR N, et al.. In situ nitrogen mineralization and nutrient release by soil amended with black soldier fly frass fertilizer [J/OL]. Sci. Rep., 2021, 11(1): 14799[2022-09-28].. |
71 | CHAVEZ M, UCHANSKI M. Insect left-over substrate as plant fertiliser [J]. J. Insects Food Feed., 2021, 7(5): 683-694. |
[1] | 靳建刚, 田再芳, 郑敏娜, 康佳惠. 不同施肥措施对饲用燕麦土壤细菌群落多样性的影响[J]. 中国农业科技导报, 2023, 25(3): 152-160. |
[2] | 齐淑新, 温晓蕾, 吉庭锋, 司增志, 赵春明, 乔亚科, 王艳敏, 蔡爱军, 张海华, 吉志新. 狐貉粪对黑水虻生长发育的影响[J]. 中国农业科技导报, 2022, 24(8): 201-206. |
[3] | 柯烩彬, 周勇, 张国忠, 吕文, 刘沿, 黄琳. 再生稻气力式肥料集排装置的设计与试验[J]. 中国农业科技导报, 2022, 24(6): 106-114. |
[4] | 宋世圣, 孙松林, 方芹, 彭才望, 周婷, 朱海英. 黑水虻生物转化餐厨垃圾有机肥离散元模型参数标定[J]. 中国农业科技导报, 2022, 24(6): 123-132. |
[5] | 方芹, 宋世圣, 周婷, 彭才望, 孙松林, 朱海英. 两级分段式黑水虻虫沙滚筒筛分装置设计与试验[J]. 中国农业科技导报, 2022, 24(3): 130-139. |
[6] | 燕子红, 范东升, 赵彦梁, 彭枝忠, 郑丽敏, 解田, 苗志伟. 全水溶聚磷酸铵-稀土缓释肥的研制及其对蔬菜的施用效果[J]. 中国农业科技导报, 2022, 24(1): 157-163. |
[7] | 尹靖凯, 龚小燕, 孙丽娜, 韩梦琦, 杨渊, 徐晓燕, 王小波. 黑水虻对餐厨垃圾养分转化研究[J]. 中国农业科技导报, 2021, 23(6): 154-159. |
[8] | 方彦杰,张绪成*,于显枫,侯慧芝,王红丽,马一凡. 施肥对半干旱区旱地全膜覆土穴播苦荞产量及水肥利用率的影响[J]. 中国农业科技导报, 2020, 22(9): 143-152. |
[9] | 段路路1,2,黄婧1,2*,王凯越1,2. HPLC法测定水溶性肥料植物生长调节剂的不确定度评定[J]. 中国农业科技导报, 2020, 22(9): 169-178. |
[10] | 张蕾,李洋,张阳*. 常用肥料对作物重金属积累的影响及其机理研究进展[J]. 中国农业科技导报, 2020, 22(2): 123-131. |
[11] | 褚旭1,李帅1,赵亚南1,叶优良1,孙笑梅2,黄玉芳1*. 施氮量和种植密度对玉米产量及磷钾吸收利用的影响[J]. 中国农业科技导报, 2020, 22(12): 115-126. |
[12] | 夏彬芸,陈红*,李善军,张衍林,邵显,孙国辽,熊俊强. 滴灌条件下水溶性肥料对灌水器堵塞影响[J]. 中国农业科技导报, 2019, 21(7): 120-127. |
[13] | 田稼1,路鹏鹏1,孙超1,吴小杰1,李飞1,齐凡2,3*. 基于Web of Science数据库的微生物肥料研究发展趋势分析[J]. 中国农业科技导报, 2019, 21(3): 1-12. |
[14] | 张萌1,赵欢1,肖厚军1,王正银2,芶久兰1,秦松1*. 新型肥料对小白菜养分积累特征及黄壤酶活性的影响[J]. 中国农业科技导报, 2018, 20(6): 142-152. |
[15] | 杨正涛1§,辛淑荣1§,王兴杰2,张昌爱1*. 甲壳素类肥料的应用研究进展[J]. 中国农业科技导报, 2018, 20(1): 130-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||