中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (9): 183-192.DOI: 10.13304/j.nykjdb.2023.0113
• 生物制造 资源生态 • 上一篇
收稿日期:
2023-02-20
接受日期:
2023-07-27
出版日期:
2024-09-15
发布日期:
2024-09-13
通讯作者:
王娟
作者简介:
史丹一 E-mail:1315390047@qq.com;
基金资助:
Danyi SHI(), Yu QIU, Chengzhen HUANG, Juan WANG(
)
Received:
2023-02-20
Accepted:
2023-07-27
Online:
2024-09-15
Published:
2024-09-13
Contact:
Juan WANG
摘要:
为探究常规生物炭及酸改性生物炭对盐渍土壤水分入渗特性的影响,以不添加生物炭为对照(CK),2种生物炭均设置2%、4%和8%(质量分数)3个添加量,采用一维定水头垂直积水入渗法观察累积入渗量、湿润锋运移的动态变化。结果表明,添加生物炭可以增加累积入渗量,缩短湿润锋运移时间,提高入渗速率,且添加量越大,效果越明显。添加生物炭可以提高滨海盐渍土的持水能力,酸改性生物炭对提高浅层土壤含水率效果更明显。一维代数模型对添加生物炭后滨海盐渍土的耕作层含水率适用性较好,可以模拟入渗后的土壤耕作层水分分布。总体来说,添加4%酸改性生物炭有利于改善滨海盐渍土壤入渗能力和持水特性。
中图分类号:
史丹一, 邱禹, 黄成真, 王娟. 酸改性生物炭对滨海盐渍土壤水分入渗特性的影响[J]. 中国农业科技导报, 2024, 26(9): 183-192.
Danyi SHI, Yu QIU, Chengzhen HUANG, Juan WANG. Effect of Acid Modified Biochar on Infiltration Characteristics of Coastal Saline Soil[J]. Journal of Agricultural Science and Technology, 2024, 26(9): 183-192.
图1 不同处理土壤累积入渗量随时间变化曲线注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 1 Variation curve of cumulative infiltration with time under different treatmentsNote:Different lowercase letters indicate significant differences among treatments at P<0.05 level.
图2 不同处理湿润峰运移距离随时间变化曲线注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 2 Variation curve of wetting front migration distance with time under different treatmentsNote: Different lowercase letters indicate significant differences among treatments at P<0.05 level.
项目Item | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
CK | A1 | A2 | A3 | B1 | B2 | B3 | |
拟合参数n | 0.350 | 0.357 | 0.358 | 0.359 | 0.349 | 0.345 | 0.349 |
决定系数R² | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 |
表 1 累积入渗量与湿润锋深度关系的拟合系数
Table 1 Fitting coefficient of the relationship between cumulative infiltration volume and wetting front depth
项目Item | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
CK | A1 | A2 | A3 | B1 | B2 | B3 | |
拟合参数n | 0.350 | 0.357 | 0.358 | 0.359 | 0.349 | 0.345 | 0.349 |
决定系数R² | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 |
图3 不同处理入渗速率随时间变化曲线注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig.3 Variation curve of soil infiltration rate with time under different treatmentsNote: Different lowercase letters indicate significant differences among treatments at P<0.05 level.
项目Item | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
CK | A1 | A2 | A3 | B1 | B2 | B3 | |
经验系数K | 0.600 | 0.690 | 0.631 | 0.743 | 0.609 | 0.970 | 0.934 |
经验系数N | 0.525 | 0.520 | 0.536 | 0.528 | 0.552 | 0.434 | 0.463 |
决定系数R² | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.999 |
表2 Kostiakov入渗模型模拟参数
Table 2 Simulation parameters of the Kostiakov infiltration model
项目Item | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
CK | A1 | A2 | A3 | B1 | B2 | B3 | |
经验系数K | 0.600 | 0.690 | 0.631 | 0.743 | 0.609 | 0.970 | 0.934 |
经验系数N | 0.525 | 0.520 | 0.536 | 0.528 | 0.552 | 0.434 | 0.463 |
决定系数R² | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.999 |
土层 Soil layer/cm | 处理 Treatment | |||||
---|---|---|---|---|---|---|
A1 | A2 | A3 | B1 | B2 | B3 | |
0—5 | 11.65±3.21 b | 13.92±3.11 ab | 13.76±4.64 ab | 13.26±5.82 ab | 13.98±4.41 a | 12.11±5.89 ab |
5—10 | 6.00±5.51 b | 5.77±1.41 b | 7.01±5.26 ab | 7.73±4.50 ab | 8.94±3.55 ab | 9.20±8.50 a |
10—15 | 3.11±2.54 b | 3.43±2.54 b | 5.14±2.69 ab | 4.90±2.40 ab | 8.81±5.82 a | 8.27±4.43 a |
表 3 不同生物炭添加量下0—15 cm浅层土壤的持水效率 (%)
Table 3 Soil water holding efficiency of 0—15 cm shallow soil under different biochar addition
土层 Soil layer/cm | 处理 Treatment | |||||
---|---|---|---|---|---|---|
A1 | A2 | A3 | B1 | B2 | B3 | |
0—5 | 11.65±3.21 b | 13.92±3.11 ab | 13.76±4.64 ab | 13.26±5.82 ab | 13.98±4.41 a | 12.11±5.89 ab |
5—10 | 6.00±5.51 b | 5.77±1.41 b | 7.01±5.26 ab | 7.73±4.50 ab | 8.94±3.55 ab | 9.20±8.50 a |
10—15 | 3.11±2.54 b | 3.43±2.54 b | 5.14±2.69 ab | 4.90±2.40 ab | 8.81±5.82 a | 8.27±4.43 a |
项目Item | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
CK | A1 | A2 | A3 | B1 | B2 | B3 | |
拟合参数n | 0.351 | 0.358 | 0.358 | 0.359 | 0.349 | 0.345 | 0.349 |
综合性状系数α | 0.262 | 0.405 | 0.323 | 0.272 | 0.279 | 0.422 | 0.469 |
决定系数R² | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 |
均方根误差RMSE/% | 0.013 | 0.166 | 0.035 | 0.016 | 0.529 | 0.602 | 0.242 |
符合度指数D | 0.983 | 0.885 | 0.964 | 0.978 | 0.765 | 0.765 | 0.854 |
表 4 不同生物炭添加量下一维代数模型参数及模拟精度分析
Table 4 Parameters of one dimensional algebraic model and simulation accuracy analysis under different biochar addition
项目Item | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
CK | A1 | A2 | A3 | B1 | B2 | B3 | |
拟合参数n | 0.351 | 0.358 | 0.358 | 0.359 | 0.349 | 0.345 | 0.349 |
综合性状系数α | 0.262 | 0.405 | 0.323 | 0.272 | 0.279 | 0.422 | 0.469 |
决定系数R² | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 |
均方根误差RMSE/% | 0.013 | 0.166 | 0.035 | 0.016 | 0.529 | 0.602 | 0.242 |
符合度指数D | 0.983 | 0.885 | 0.964 | 0.978 | 0.765 | 0.765 | 0.854 |
1 | 国务院第三次全国国土调查领导小组办公室,自然资源部,国家统计局. 第三次全国国土调查主要数据成果公报[EB/OL]. (2021-08-25)[2023-01-20]. . |
2 | 自然资源部,国家统计局,国务院第二次全国国土调查领导小组办公室. 第二次全国国土调查主要数据成果公报[EB/OL]. (2013-12-30) [2023-01-20]. . |
3 | 杨劲松,姚荣江,王相平,等.中国盐渍土研究: 历程、现状与展望[J].土壤学报,2022,59(1):10-27. |
YANG J S, YAO R J, WANG X P, et al.. Research on salt-affected soils in China: history, status quo and prospect [J]. Acta Pedol. Sin., 2022, 59(1): 10-27. | |
4 | 赵秀芳,杨劲松,姚荣江. 苏北典型滩涂区土壤盐分动态与水平衡要素之间的关系[J].农业工程学报, 2010,26(3):52-57. |
ZHAO X F, YANG J S, YAO R J. Relationship between soil salt dynamics and factors of water balance in the typical coastal area of Northern Jiangsu province [J]. Trans. Chin. Soc. Agric. Eng., 2010, 26(3): 52-57. | |
5 | 张翼夫,李问盈,胡红,等.盐碱地改良研究现状及展望[J].江苏农业科学,2017,45(18):7-10. |
6 | GLASER B, HAUMAIER L, GUGGENBERGER G, et al.. Black carbon in soils: the use of benzenecarboxylic acids as specific markers [J]. Organic Geochem., 1998, 29(4): 811-819. |
7 | ZHENG H, WANG X, CHEN L, et al.. Enhanced growth of halophyte plants in biochar amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation [J]. Plant Cell Environ., 2018, 41(3):517-532. |
8 | 张进红,吴波,王国良,等.生物炭对盐渍土理化性质和紫花苜蓿生长的影响[J].农业机械学报,2020,51(8):285-294. |
ZHANG J H, WU B, WANG G L, et al.. Effects and evaluation of biochar on physical-chemical properties of coastal saline soil and alfalfa growth [J]. Trans. Chin. Soc. Agric. Mach., 2020, 51(8): 285-294. | |
9 | 简敏菲,高凯芳,余厚平,等.不同温度生物炭酸化前后的表面特性及镉溶液吸附能力比较[J].生态环境学报,2015,24(8):1375-1380. |
JIAN M F, GAO K F, YU H P, et al.. Comparison of surface characteristics and cadmium solution adsorption capacity of un-acidified or acidified biochars prepared from rice straw under different temperatures [J]. Ecol. Environ. Sci., 2015, 24(8): 1375-1380. | |
10 | 段曼莉,李志健,刘国欢,等.改性生物炭对土壤中Cu2+吸附和分布的影响[J].环境污染与防治,2021,43(2):150-155, 160. |
DUAN M L, LI Z J, LIU G H, et al.. Effects of modified biochar on adsorption and distribution of Cu2+ in soil [J]. Environ. Pollut. Control, 2021, 43(2): 150-155, 160. | |
11 | GAO Y, SHAO G C, YANG Z, et al.. Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: a meta-analysis [J/OL]. Eur. J. Agron., 2021, 130:126345 [2023-01-20]. . |
12 | HERATH H M S K, CAMPS-ARBESTAIN M, HEDLEY M. Effect of biochar on soil physical properties in two contrasting soils: an alfisol and an andisol [J]. Geoderma, 2013, 209-210(3):188-197. |
13 | 王艳阳,魏永霞,孙继鹏,等.不同生物炭施加量的土壤水分入渗及其分布特性[J].农业工程学报,2016, 32(8):113-119. |
WANG Y Y, WEI Y X, SUN J P, et al.. Soil water infiltration and distribution characteristics under different biochar addition amount [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(8): 113-119. | |
14 | 黄明逸,张展羽,徐辉,等. 咸淡轮灌和生物炭对滨海盐渍土水盐运移特征的影响[J].农业机械学报,2021,52(1):238-247. |
HUANG M Y, ZHANG Z Y, XU H, et al.. Effects of cycle irrigation with brackish and fresh water and biochar on water and salt transports of coastal saline soil [J]. Trans. Chin. Soc. Agric. Mach., 2021, 52(1): 238-247. | |
15 | 王娟,陈安全,宋文瑾,等.生物炭种类与施量对新复垦区土壤水分入渗过程的影响[J].农业机械学报,2022,53(11):388-394. |
WANG J, CHEN A Q, SONG W J, et al.. Effect of biochar species and application amounts on soil water infiltration of newly reclaimed area [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(11): 388-394. | |
16 | 王春霞,王全九,吕廷波,等.添加化学改良剂的砂质盐碱土入渗特征试验研究[J].水土保持学报,2014,28(1):31-35. |
WANG C X, WANG Q J, LYU T B, et al.. The studies of infiltration characteristics on sandy saline alkali soil by chemical amelioration [J]. J. Soil Water Conserv., 2014, 28(1): 31-35. | |
17 | 王全九,邵明安,郑继勇.土壤中水分运动与溶质迁移[M]. 北京:中国水利水电出版社,2007:20-21. |
18 | 赵连东,高佩玲,王乃江,等.一维代数模型在重度盐碱土微咸水灌溉中的适用性[J].排灌机械工程学报,2017,35(3):248-255. |
ZHAO L D, GAO P L, WANG N J, et al.. Applicability of one dimensional algebraic model in brackish water irrigation of severe saline-alkali soil [J]. J. Drain. Irrig. Mach. Eng., 2017, 35(3): 248-255. | |
19 | 王幼奇,阮晓晗,白一茹,等.不同种植年限压砂地土壤水分入渗过程及模型分析[J].排灌机械工程学报,2022,40(10):1048-1055. |
WANG Y Q, RUAN X H, BAI Y R, et al.. Process of soil moisture infiltration and model analysis of gravel-mulched land with different planting years [J]. J. Drain. Irrig. Mach. Eng., 2022, 40(10): 1048-1055. | |
20 | 吴克宁,赵瑞.土壤质地分类及其在我国应用探讨[J].土壤学报,2019,56(1):227-241. |
WU K N, ZHAO R. Soil texture classification and its application in China [J]. Acta Pedol. Sin., 2019,56(1):227-241. | |
21 | 邵明安,王全九,黄明斌. 土壤物理学[M]. 北京:高等教育出版社,2006:126-156. |
22 | WANG Q J, ROBERT H, SHAO M A. Algebraic model for one-dimensional infiltration and soil water distribution [J]. Soil Sci.,2003,168(10):671-676. |
23 | WILLMOTT C J. Some comments on the evaluation of model performance [J]. Bull. Am. Meteorol. Soc., 1982, 63:1309-1313. |
24 | 孙燕,王春宏,王全九,等.生化黄腐酸对盐碱土水盐运移特征及盐基离子组成的影响[J].水土保持学报,2022,36(4):228-235. |
SUN Y, WANG C H, WANG Q J, et al.. Effects of biochemical fulvic acid application on water and salt transport characteristics and basic ion composition of saline-alkaline soil [J]. J. Soil Water Conserv., 2022, 36(4): 228-235. | |
25 | 吕振豫,刘珊珊,秦天玲,等.土壤入渗研究进展及方向评述[J].中国农村水利水电,2019(7):1-5. |
LYU Z Y, LIU S S, QIN T L, et al.. Comment on the progress and major direction of soil infiltration research [J]. China Rural Water Hydropower, 2019(7):1-5. | |
26 | 黄成真,王娟,仲昭易,等.普通生物炭和酸改性生物炭对盐渍土入渗、蒸发过程的影响[J].中国农村水利水电,2020(11):138-142, 150. |
HUANG C Z, WANG J, ZHONG Z Y, et al.. Effect of common biochar and acid modified biochar on infiltration andevaporation of saline soil [J]. China Rural Water Hydropower, 2020(11): 138-142, 150. | |
27 | 刘淙琮,董心亮,郭凯,等.柽柳生物炭对滨海盐渍土咸水入渗特征的影响研究[J].中国生态农业学报,2022,30(7):1194-1202. |
LIU C Z, DONG X L, GUO K, et al.. Effect of tamarix ramosissima biochar on infiltration characteristics of saline water in coastal saline soil [J]. Chin. J. Eco-Agric., 2022, 30(7): 1194-1202. | |
28 | 杨玲,张富仓,孙鑫, 等. 生物炭施用量和滴灌量对陕北榆林沙土性质和马铃薯生长的影响[J].中国农业科技导报, 2023,25(3):221-233.. |
YANG L, ZHANG F C, SUN X, et al.. Effects of biochar and drip irrigation amounts on soil properties and growth of potato in blown-sand region of Northern Yulin, Shaanxi province [J]. J. Agric. Sci. Technol., 2023, 25(3): 221-233. | |
29 | 蒋慧,郝雅琼,王荔霄,等.改性小麦秸秆生物炭对水中Cr(Ⅵ)的吸附性能[J].江苏农业科学,2020,48(7):250-255. |
JIANG H, HAO Y Q, WANG L X, et al.. Adsorption properties of modified wheat straw biochar for Cr (VI) in water [J]. Jiangsu Agric. Sci., 2020, 48(7): 250-255. | |
30 | 刘国欢.改性生物炭对盐碱地改良及冬小麦生长特征影响的研究[D].西安:西安理工大学,2021. |
LIU G H. Effects of modified biochar on saline alkali soil improvement and growth characteristics of winter wheat [D]. Xi’an: Xi’an University of Technology, 2021. | |
31 | 吴雨晴,郑春莲,李科江,等.咸水灌溉对麦-玉两熟制农田土壤水稳性团聚体的影响[J]. 水土保持学报,2021,35(2):288-294, 308. |
WU Y Q, ZHENG C L, LI K J, et al.. Effect of saline water irrigation on soil water-stable aggregates in wheat-maize crop double cropping system [J]. J. Soil Water Conserv., 2021, 35(2): 288-294, 308. | |
32 | 刘月,李孟钊,徐志杰,等.不同改良方法对盐碱土壤水盐运移效果的影响[J].干旱地区农业研究,2020,38(6):183-191. |
LIU Y, LI M Z, XU Z J, et al.. Effects of different improvers on water and salt migration in saline-alkali soil [J]. Agric. Res. Arid Areas, 2020, 38(6): 183-191. |
[1] | 蒲子天, 王红, 赵斌, 王鑫鑫. 不同土壤改良物料对连作黄芩生长及土壤酶活性的影响[J]. 中国农业科技导报, 2024, 26(7): 189-198. |
[2] | 付彦博, 冷冰冰, 扁青永, 董志多, 刘国宏, 李海峰, 温云梦, 郭文博, 张万旭. 生物炭和油菜幼苗对土壤重金属镉污染的钝化效应[J]. 中国农业科技导报, 2024, 26(6): 183-190. |
[3] | 赵娅红, 胡骞予, 夏融, 王志江, 谢永辉, 叶贤文, 余磊, 齐颖, 羊绍武, 薛至勤, 吴治兴, 黄飞燕, 韩天华. 生物炭肥对易感根结线虫病烤烟根际菌群和理化性质的影响[J]. 中国农业科技导报, 2024, 26(4): 206-214. |
[4] | 高静, 徐明岗, 李然, 蔡泽江, 孙楠, 张强, 郑磊. 整合分析生物炭施用对土壤pH的影响[J]. 中国农业科技导报, 2023, 25(9): 186-196. |
[5] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
[6] | 王旭东, 任雪冰, 汤舒, 郭琴, 薛梦瑶, 金鹏, 张云华. 污泥生物炭在土壤改良中的应用研究[J]. 中国农业科技导报, 2023, 25(6): 165-173. |
[7] | 刘云飞, 韦凤杰, 夏茂林, 于兆锦, 夏昊, 衣春宇, 常剑波, 姬小明. 新型复合水凝胶对镉胁迫烟草幼苗的缓解效应[J]. 中国农业科技导报, 2023, 25(3): 188-197. |
[8] | 杨玲, 张富仓, 孙鑫, 张少辉, 王海东, ABDELGHANY Ahmed Elsayed, 陈占飞, 方玉川. 生物炭和滴灌量对陕北榆林沙土性质和马铃薯生长的影响[J]. 中国农业科技导报, 2023, 25(3): 221-233. |
[9] | 郑云珠, 孙树臣. 秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J]. 中国农业科技导报, 2023, 25(2): 152-162. |
[10] | 刘著文, 杨龙飞, 刘茂林, 贾国涛, 姚倩, 马一琼, 崔廷, 杨欣玲, 陈洋, 程良琨. 不同土壤改良剂对土壤养分及烤烟内在品质的影响[J]. 中国农业科技导报, 2022, 24(11): 190-198. |
[11] | 周蕾, 陈兆兰, 严玉波, 李桥. 鸡粪生物炭吸附固定铅的研究[J]. 中国农业科技导报, 2022, 24(11): 199-207. |
[12] | 魏俞涌, 张庆法, 盛奎川. 生物炭对玉米醇溶蛋白/聚丙烯复合材料力学性能的影响[J]. 中国农业科技导报, 2022, 24(10): 161-168. |
[13] | 朱利霞, 陈居田, 徐思薇, 陈如冰, 李俐俐. 生物炭施用下土壤微生物量碳氮的动态变化[J]. 中国农业科技导报, 2021, 23(8): 193-200. |
[14] | 胡朝华, 刘曰明, 庞孜钦, 袁照年. 农田土壤活性氮损失现状和生物炭调控途径研究进展[J]. 中国农业科技导报, 2021, 23(6): 120-129. |
[15] | 黄清扬, 江超, 俞元春, 谢祖彬. 不同秸秆生物炭复配基质对波斯菊生理性质的影响[J]. 中国农业科技导报, 2021, 23(6): 147-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||