中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (2): 33-41.DOI: 10.13304/j.nykjdb.2023.0366
收稿日期:
2023-05-06
接受日期:
2023-11-25
出版日期:
2025-02-15
发布日期:
2025-02-14
通讯作者:
杨海昌
作者简介:
彭梓程 E-mail:1175906388@qq.com;
基金资助:
Zicheng PENG(), Hongli DU, Ming WANG, Fenghua ZHANG, Haichang YANG(
)
Received:
2023-05-06
Accepted:
2023-11-25
Online:
2025-02-15
Published:
2025-02-14
Contact:
Haichang YANG
摘要:
为探究丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)对棉花苗期逆境离子吸收和运转的影响,采用盆栽试验,以棉花‘新陆早45号’为材料,接种摩西斗管囊霉,以不接种AMF为对照,待棉花生长至3叶期进行不同水平(0、50、100、150、200 mmol·L-1)盐碱胁迫,分析不同处理下棉花幼苗生长及叶、茎、根离子含量的变化。结果表明,棉花根系侵染率随盐碱胁迫程度的增加而逐渐降低,菌根依赖性随盐碱胁迫程度的增加而增加。随着盐碱胁迫程度的增加,棉花幼苗生物量逐渐降低,而接种AMF可显著促进棉花生长发育。在各盐碱胁迫处理下,接种AMF 显著提高了棉花幼苗生物量;显著降低棉花幼苗各器官的Na+含量及Na+/K+、Na+/Ca2+、Na+/Mg2+,显著提高棉花幼苗各器官的K+、Ca2+、Mg2+含量;降低了Na+由地下向地上的运输, 同时增加K+、Ca2+、Mg2+由地下向地上的运输。综上,盐碱胁迫可抑制K+、Ca2+、Mg2+由地下向地上部的运输,接种AMF能够抑制棉花根系对Na+的吸收及向上运输,促进根系对K+、Ca2+、Mg2+的吸收及向上运输,从而降低Na+/K+、Na+/Ca2+、Na+/Mg2+,缓解Na+对棉花植株的伤害,促进棉花幼苗的生长发育。
中图分类号:
彭梓程, 杜洪力, 王铭, 张凤华, 杨海昌. 丛枝菌根真菌调控盐碱胁迫下棉花生长及离子平衡的研究[J]. 中国农业科技导报, 2025, 27(2): 33-41.
Zicheng PENG, Hongli DU, Ming WANG, Fenghua ZHANG, Haichang YANG. Research on AMF Regulation of Cotton Growth and Ion Balance Under Salt Alkali Stress[J]. Journal of Agricultural Science and Technology, 2025, 27(2): 33-41.
图2 不同处理下AMF对棉花根系的侵染注:同一指标的不同小写字母表示不同处理间在Ρ<0.05水平差异显著。
Fig. 2 Infection of AMF on root under different treatmentsNote:Different lowercase letters of same index indicate significant differences between different treatments at Ρ<0.05 level.
处理 Treatment | 地下鲜重 Root fresh weight/g | 地上鲜重 Shoot weight/g | 根系干重 Root dry weight/g | 地上干重 Shoot dry weight/g | 根长 Root length/cm | 株高 Shoot height/cm | |
---|---|---|---|---|---|---|---|
-AMF | S0 | 3.25+0.02 βa | 7.80+0.06 βa | 0.83+0.03 βa | 3.19+0.05 βa | 24.07+0.06 βa | 22.59+0.08 βa |
S50 | 2.78+0.06 βb | 6.44+0.07 βb | 0.75+0.04 βb | 2.86+0.02 βb | 22.47+0.08 βb | 21.48+0.06 βb | |
S100 | 2.23+0.07 βc | 6.53+0.06 βbc | 0.63+0.04 βc | 2.62+0.02 βc | 20.11+0.05 βc | 19.66+0.05 βc | |
S150 | 2.31+0.06 βc | 6.34+0.11 βc | 0.55+0.04 βd | 2.56+0.10 βc | 20.05+0.06 βc | 19.17+0.05 βd | |
S200 | 2.03+0.08 βd | 5.44+0.04 βd | 0.53+0.03 βd | 2.47+0.06 βd | 19.21+0.04 βd | 18.62+0.04 βe | |
+AMF | S0 | 3.83+0.05 αa | 9.52+0.07 αa | 0.98+0.02 αa | 4.13+0.04 αa | 26.30+0.06 αa | 24.63+0.05 αa |
S50 | 3.22+0.03 αb | 8.67+0.04 αb | 0.92+0.02 αb | 3.76+0.05 αb | 24.34+0.05 αb | 23.27+0.11 αb | |
S100 | 2.90+0.04 αc | 8.68+0.04 αb | 0.84+0.04 αc | 3.54+0.04 αc | 23.23+0.06 αc | 23.40+0.05 αb | |
S150 | 2.75+0.04 αd | 8.23+0.05 αc | 0.77+0.03 αd | 3.46+0.04 αc | 22.22+0.09 αc | 22.30+0.09 αc | |
S200 | 2.62+0.03 αd | 7.46+0.06 αd | 0.75+0.08 αd | 3.16+0.06 αd | 22.31+0.13 αc | 21.59+0.13 αd |
表1 不同处理下棉花植株的生长
Table 1 Cotton plant growth under different treatments
处理 Treatment | 地下鲜重 Root fresh weight/g | 地上鲜重 Shoot weight/g | 根系干重 Root dry weight/g | 地上干重 Shoot dry weight/g | 根长 Root length/cm | 株高 Shoot height/cm | |
---|---|---|---|---|---|---|---|
-AMF | S0 | 3.25+0.02 βa | 7.80+0.06 βa | 0.83+0.03 βa | 3.19+0.05 βa | 24.07+0.06 βa | 22.59+0.08 βa |
S50 | 2.78+0.06 βb | 6.44+0.07 βb | 0.75+0.04 βb | 2.86+0.02 βb | 22.47+0.08 βb | 21.48+0.06 βb | |
S100 | 2.23+0.07 βc | 6.53+0.06 βbc | 0.63+0.04 βc | 2.62+0.02 βc | 20.11+0.05 βc | 19.66+0.05 βc | |
S150 | 2.31+0.06 βc | 6.34+0.11 βc | 0.55+0.04 βd | 2.56+0.10 βc | 20.05+0.06 βc | 19.17+0.05 βd | |
S200 | 2.03+0.08 βd | 5.44+0.04 βd | 0.53+0.03 βd | 2.47+0.06 βd | 19.21+0.04 βd | 18.62+0.04 βe | |
+AMF | S0 | 3.83+0.05 αa | 9.52+0.07 αa | 0.98+0.02 αa | 4.13+0.04 αa | 26.30+0.06 αa | 24.63+0.05 αa |
S50 | 3.22+0.03 αb | 8.67+0.04 αb | 0.92+0.02 αb | 3.76+0.05 αb | 24.34+0.05 αb | 23.27+0.11 αb | |
S100 | 2.90+0.04 αc | 8.68+0.04 αb | 0.84+0.04 αc | 3.54+0.04 αc | 23.23+0.06 αc | 23.40+0.05 αb | |
S150 | 2.75+0.04 αd | 8.23+0.05 αc | 0.77+0.03 αd | 3.46+0.04 αc | 22.22+0.09 αc | 22.30+0.09 αc | |
S200 | 2.62+0.03 αd | 7.46+0.06 αd | 0.75+0.08 αd | 3.16+0.06 αd | 22.31+0.13 αc | 21.59+0.13 αd |
图3 不同处理下棉花植株的K+、Na+含量注:不同英文字母表示同一接种条件下不同盐碱处理间在Ρ<0.05水平差异显著;不同希腊字母表示同一盐碱水平下不同接种条件间在Ρ<0.05水平差异显著。
Fig. 3 K+and Na+contents of cotton plants under different treatmentsNote:Different English letters indicate significant differences between different saline-alkali treatments of same inoculation condition at Ρ<0.05 level; different Greece letters indicate significant differences between different inoculation conditions of same saline-alkali treatment at Ρ<0.05 level.
图4 不同处理下棉花植株的Ca2+、Mg2+含量注:不同英文字母表示同一接种条件下不同盐碱处理间在Ρ<0.05水平差异显著;不同希腊字母表示同一盐碱水平下不同接种条件间在Ρ<0.05水平差异显著。
Fig. 4 Ca2+and Mg2+contents in cotton plants under different treatmentsNote:Different English letters indicate significantW differences between different saline-alkali treatments of same inoculation condition at Ρ<0.05 level; different Greece letters indicate significant differences between different inoculation conditions of same saline-alkali treatment at Ρ<0.05 level.
器官 Organ | 处理 Treatment | Na+/K+ | Na+/Ca2+ | Na+/Mg2+ | |||
---|---|---|---|---|---|---|---|
-AMF | +AMF | -AMF | +AMF | -AMF | +AMF | ||
叶 Leaf | S0 | 1.87±0.28 αe | 1.29±0.05 βd | 0.72±0.05 αe | 0.59±0.03 βd | 1.31±0.13 αe | 1.25±0.04 αe |
S50 | 3.09±0.15 αd | 1.72±0.21 βd | 1.26±0.11 αd | 0.79±0.05 βc | 2.04±0.13 αd | 1.83±0.14 αd | |
S100 | 5.74±0.58 αc | 2.24±0.07 βc | 1.92±0.03 αc | 1.05±0.10 βb | 3.76±0.34 αc | 2.16±0.12 βc | |
S150 | 8.31±0.53 αb | 3.02±0.25 βb | 2.37±0.11 αb | 1.43±0.07 βa | 5.13±0.40 αb | 2.71±0.14 βb | |
S200 | 9.63±0.30 αa | 3.65±0.47 βa | 3.11±0.06 αa | 1.58±0.17 βa | 5.97±0.14 αa | 3.06±0.17 βa | |
茎 Stem | S0 | 0.77±0.08 αe | 0.36±0.03 βe | 0.88±0.07 αe | 0.46±0.03 βc | 1.13±0.04 αd | 0.72±0.08 βd |
S50 | 1.52±0.10 αd | 0.78±0.02 βd | 1.53±0.18 αd | 0.87±0.05 βb | 1.55±0.12 αd | 1.45±0.19 αc | |
S100 | 2.81±0.27 αc | 1.08±0.08 βc | 2.17±0.24 αc | 1.28±0.10 βa | 2.66±0.15 αc | 2.15±0.13 βb | |
S150 | 4.83±0.48 αb | 1.38±0.07 βb | 2.51±0.17 αb | 1.30±0.04 βa | 3.89±0.45 αb | 2.18±0.22 βb | |
S200 | 5.77±0.13 αa | 2.04±0.08 βa | 2.91±0.21 αa | 1.42±0.12 βa | 5.02±0.40 αa | 2.89±0.32 βa | |
根 Root | S0 | 1.05±0.13 αe | 0.35±0.07 βd | 0.84±0.12 αe | 0.33±0.05 βe | 1.40±0.19 αe | 0.68±0.14 βe |
S50 | 2.51±0.06 αd | 0.85±0.06 βc | 1.74±0.24 αd | 0.73±0.06 βd | 2.37±0.19 αd | 1.57±0.12 βd | |
S100 | 4.85±0.40 αc | 1.13±0.04 βc | 2.82±0.13 αc | 1.02±0.04 βc | 4.53±0.37 αc | 2.17±0.10 βc | |
S150 | 8.59±0.74 αb | 1.72±0.13 βb | 3.54±0.12 αb | 1.51±0.12 βb | 7.51±0.72 αb | 2.70±0.17 βb | |
S200 | 10.09±0.67 αa | 2.52±0.31 βa | 4.43±0.30 αa | 1.83±0.22 βa | 10.32±0.44 αa | 3.65±0.25 βa |
表2 不同处理下棉花根、茎、叶的离子含量比
Table 2 Ion content ratio of cotton roots, stems and leaves under different treatments
器官 Organ | 处理 Treatment | Na+/K+ | Na+/Ca2+ | Na+/Mg2+ | |||
---|---|---|---|---|---|---|---|
-AMF | +AMF | -AMF | +AMF | -AMF | +AMF | ||
叶 Leaf | S0 | 1.87±0.28 αe | 1.29±0.05 βd | 0.72±0.05 αe | 0.59±0.03 βd | 1.31±0.13 αe | 1.25±0.04 αe |
S50 | 3.09±0.15 αd | 1.72±0.21 βd | 1.26±0.11 αd | 0.79±0.05 βc | 2.04±0.13 αd | 1.83±0.14 αd | |
S100 | 5.74±0.58 αc | 2.24±0.07 βc | 1.92±0.03 αc | 1.05±0.10 βb | 3.76±0.34 αc | 2.16±0.12 βc | |
S150 | 8.31±0.53 αb | 3.02±0.25 βb | 2.37±0.11 αb | 1.43±0.07 βa | 5.13±0.40 αb | 2.71±0.14 βb | |
S200 | 9.63±0.30 αa | 3.65±0.47 βa | 3.11±0.06 αa | 1.58±0.17 βa | 5.97±0.14 αa | 3.06±0.17 βa | |
茎 Stem | S0 | 0.77±0.08 αe | 0.36±0.03 βe | 0.88±0.07 αe | 0.46±0.03 βc | 1.13±0.04 αd | 0.72±0.08 βd |
S50 | 1.52±0.10 αd | 0.78±0.02 βd | 1.53±0.18 αd | 0.87±0.05 βb | 1.55±0.12 αd | 1.45±0.19 αc | |
S100 | 2.81±0.27 αc | 1.08±0.08 βc | 2.17±0.24 αc | 1.28±0.10 βa | 2.66±0.15 αc | 2.15±0.13 βb | |
S150 | 4.83±0.48 αb | 1.38±0.07 βb | 2.51±0.17 αb | 1.30±0.04 βa | 3.89±0.45 αb | 2.18±0.22 βb | |
S200 | 5.77±0.13 αa | 2.04±0.08 βa | 2.91±0.21 αa | 1.42±0.12 βa | 5.02±0.40 αa | 2.89±0.32 βa | |
根 Root | S0 | 1.05±0.13 αe | 0.35±0.07 βd | 0.84±0.12 αe | 0.33±0.05 βe | 1.40±0.19 αe | 0.68±0.14 βe |
S50 | 2.51±0.06 αd | 0.85±0.06 βc | 1.74±0.24 αd | 0.73±0.06 βd | 2.37±0.19 αd | 1.57±0.12 βd | |
S100 | 4.85±0.40 αc | 1.13±0.04 βc | 2.82±0.13 αc | 1.02±0.04 βc | 4.53±0.37 αc | 2.17±0.10 βc | |
S150 | 8.59±0.74 αb | 1.72±0.13 βb | 3.54±0.12 αb | 1.51±0.12 βb | 7.51±0.72 αb | 2.70±0.17 βb | |
S200 | 10.09±0.67 αa | 2.52±0.31 βa | 4.43±0.30 αa | 1.83±0.22 βa | 10.32±0.44 αa | 3.65±0.25 βa |
器官 Organ | 处理 Treatment | Na+ | K+ | Ca2+ | Mg2+ | ||||
---|---|---|---|---|---|---|---|---|---|
-AMF | +AMF | -AMF | +AMF | -AMF | +AMF | -AMF | +AMF | ||
根-茎 Root-stem | S0 | 0.80±0.05 αb | 0.68±0.07 βb | 0.58±0.03 βa | 0.69±0.02 αa | 0.84±0.00 βa | 0.95±0.08 αa | 0.64±0.04 βa | 0.73±0.02 αa |
S50 | 0.91±0.04 αa | 0.76±0.07 βab | 0.55±0.02 βab | 0.69±0.01 αab | 0.80±0.04 βa | 0.91±0.02 αa | 0.59±0.02 βa | 0.70±0.02 αab | |
S100 | 0.92±0.05 αa | 0.65±0.05 βab | 0.54±0.01 βb | 0.63±0.01 Αb | 0.71±0.02 βb | 0.82±0.03 αb | 0.54±0.02 βab | 0.65±0.03 αbc | |
S150 | 0.93±0.02 αa | 0.78±0.05 βa | 0.52±0.01 βb | 0.63±0.06 αb | 0.66±0.03 αc | 0.68±0.03 αc | 0.49±0.10 βb | 0.63±0.01 αc | |
S200 | 0.92±0.00 αa | 0.77±0.08 βab | 0.53±0.02 βb | 0.63±0.05 αb | 0.60±0.02 αd | 0.60±0.06 αc | 0.45±0.06 βb | 0.61±0.05 αc | |
茎-叶 Stem-leaf | S0 | 0.74±0.02 αa | 0.46±0.02 βc | 1.81±0.17 αa | 1.67±0.01 αa | 0.60±0.02 αa | 0.59±0.06 αa | 0.86±0.05 αb | 0.80±0.03 αa |
S50 | 0.70±0.02 αa | 0.66±0.04 βb | 1.43±0.09 αb | 1.45±0.18 αab | 0.58±0.04 αab | 0.60±0.04 αb | 0.92±0.02 αab | 0.83±0.02 βa | |
S100 | 0.72±0.04 αa | 0.80±0.08 αab | 1.48±0.15 αb | 1.65±0.15 αabc | 0.65±0.09 αb | 0.66±0.06 αbc | 1.02±0.11 αa | 0.80±0.01 βa | |
S150 | 0.72±0.03 αa | 0.67±0.06 αab | 1.25±0.13 βbc | 1.47±0.08 αbc | 0.68±0.05 αb | 0.74±0.03 αc | 0.96±0.06 αab | 0.84±0.03 βa | |
S200 | 0.70±0.01 βa | 0.75±0.10 αa | 1.17±0.04 βc | 1.34±0.09 αc | 0.75±0.05 αb | 0.83±0.03 αc | 0.84±0.06 αb | 0.79±0.04 αa | |
根-叶 Root-leaf | S0 | 0.59±0.02 αb | 0.32±0.05 βc | 1.05±0.09 αa | 1.16±0.02 αa | 0.51±0.02 βa | 0.56±0.03 αa | 0.55±0.01 αa | 0.58±0.02 αa |
S50 | 0.64±0.04 αab | 0.50±0.05 βb | 0.78±0.02 βb | 1.00±0.12 αab | 0.46±0.01 βab | 0.54±0.03 αab | 0.55±0.02 βa | 0.58±0.01 αa | |
S100 | 0.67±0.04 αab | 0.52±0.04 βab | 0.79±0.08 βb | 1.03±0.09 αab | 0.46±0.05 βb | 0.54±0.03 αab | 0.55±0.04 αa | 0.52±0.02 αb | |
S150 | 0.67±0.02 αa | 0.53±0.02 βab | 0.65±0.06 βc | 0.93±0.12 αb | 0.45±0.01 βb | 0.50±0.03 αb | 0.46±0.06 αb | 0.53±0.01 αb | |
S200 | 0.64±0.01 αa | 0.58±0.03 βa | 0.62±0.05 βc | 0.84±0.12 αb | 0.45±0.02 αb | 0.50±0.03 αb | 0.37±0.02 βc | 0.48±0.02 αc |
表3 不同处理下棉花根茎叶的离子运输比
Table 3 Ion transport ratio of cotton roots, stems and leaves under different treatments
器官 Organ | 处理 Treatment | Na+ | K+ | Ca2+ | Mg2+ | ||||
---|---|---|---|---|---|---|---|---|---|
-AMF | +AMF | -AMF | +AMF | -AMF | +AMF | -AMF | +AMF | ||
根-茎 Root-stem | S0 | 0.80±0.05 αb | 0.68±0.07 βb | 0.58±0.03 βa | 0.69±0.02 αa | 0.84±0.00 βa | 0.95±0.08 αa | 0.64±0.04 βa | 0.73±0.02 αa |
S50 | 0.91±0.04 αa | 0.76±0.07 βab | 0.55±0.02 βab | 0.69±0.01 αab | 0.80±0.04 βa | 0.91±0.02 αa | 0.59±0.02 βa | 0.70±0.02 αab | |
S100 | 0.92±0.05 αa | 0.65±0.05 βab | 0.54±0.01 βb | 0.63±0.01 Αb | 0.71±0.02 βb | 0.82±0.03 αb | 0.54±0.02 βab | 0.65±0.03 αbc | |
S150 | 0.93±0.02 αa | 0.78±0.05 βa | 0.52±0.01 βb | 0.63±0.06 αb | 0.66±0.03 αc | 0.68±0.03 αc | 0.49±0.10 βb | 0.63±0.01 αc | |
S200 | 0.92±0.00 αa | 0.77±0.08 βab | 0.53±0.02 βb | 0.63±0.05 αb | 0.60±0.02 αd | 0.60±0.06 αc | 0.45±0.06 βb | 0.61±0.05 αc | |
茎-叶 Stem-leaf | S0 | 0.74±0.02 αa | 0.46±0.02 βc | 1.81±0.17 αa | 1.67±0.01 αa | 0.60±0.02 αa | 0.59±0.06 αa | 0.86±0.05 αb | 0.80±0.03 αa |
S50 | 0.70±0.02 αa | 0.66±0.04 βb | 1.43±0.09 αb | 1.45±0.18 αab | 0.58±0.04 αab | 0.60±0.04 αb | 0.92±0.02 αab | 0.83±0.02 βa | |
S100 | 0.72±0.04 αa | 0.80±0.08 αab | 1.48±0.15 αb | 1.65±0.15 αabc | 0.65±0.09 αb | 0.66±0.06 αbc | 1.02±0.11 αa | 0.80±0.01 βa | |
S150 | 0.72±0.03 αa | 0.67±0.06 αab | 1.25±0.13 βbc | 1.47±0.08 αbc | 0.68±0.05 αb | 0.74±0.03 αc | 0.96±0.06 αab | 0.84±0.03 βa | |
S200 | 0.70±0.01 βa | 0.75±0.10 αa | 1.17±0.04 βc | 1.34±0.09 αc | 0.75±0.05 αb | 0.83±0.03 αc | 0.84±0.06 αb | 0.79±0.04 αa | |
根-叶 Root-leaf | S0 | 0.59±0.02 αb | 0.32±0.05 βc | 1.05±0.09 αa | 1.16±0.02 αa | 0.51±0.02 βa | 0.56±0.03 αa | 0.55±0.01 αa | 0.58±0.02 αa |
S50 | 0.64±0.04 αab | 0.50±0.05 βb | 0.78±0.02 βb | 1.00±0.12 αab | 0.46±0.01 βab | 0.54±0.03 αab | 0.55±0.02 βa | 0.58±0.01 αa | |
S100 | 0.67±0.04 αab | 0.52±0.04 βab | 0.79±0.08 βb | 1.03±0.09 αab | 0.46±0.05 βb | 0.54±0.03 αab | 0.55±0.04 αa | 0.52±0.02 αb | |
S150 | 0.67±0.02 αa | 0.53±0.02 βab | 0.65±0.06 βc | 0.93±0.12 αb | 0.45±0.01 βb | 0.50±0.03 αb | 0.46±0.06 αb | 0.53±0.01 αb | |
S200 | 0.64±0.01 αa | 0.58±0.03 βa | 0.62±0.05 βc | 0.84±0.12 αb | 0.45±0.02 αb | 0.50±0.03 αb | 0.37±0.02 βc | 0.48±0.02 αc |
1 | 杨劲松,姚荣江,王相平,等.中国盐渍土研究:历程、现状与展望[J].土壤学报,2022,59(1):10-27. |
YANG J S, YAO R J, WANG X P, et al.. Research on salt-affected soils in China: history, status quo and prospect [J]. Acta Pedol. Sin., 2022, 59(1):10-27. | |
2 | 杨小虎,罗艳琴,杨海昌,等.玛纳斯河流域绿洲农田土壤盐分反演及空间分布特征[J].干旱区资源与环境,2021,35(2):156-161. |
YANG X H, LUO Y Q, YANG H C, et al.. Soil salinity retrieval and spatial distribution of oasis farmland in Manasi River basin [J]. J. Arid Land Res. Environ., 2021, 35(2):156-161. | |
3 | 石婧,刘东洋,张凤华.不同品种(品系)棉花对盐胁迫的生理响应及耐盐性评价[J].江苏农业学报,2020,36(4):828-835. |
SHI J, LIU D Y, ZHANG F H. Physiological responses of different cotton cultivars (strains) to salt stress and salt tolerance evaluation [J]. Jiangsu J. Agric. Sci., 2020, 36(4):828-835. | |
4 | 孙鲁鹏,杨洋,王卫超,等.油菜苗期对盐碱胁迫的离子响应机制[J].中国农业科技导报,2023,25(5):46-54. |
SUN L P, YANG Y, WANG W C, et al.. Ion response mechanism of canola seedlings to saline-alkali stress [J]. J. Agric. Sci. Technol., 2023, 25(5):46-54. | |
5 | 韩志平,郭世荣,郑瑞娜,等.盐胁迫对小型西瓜幼苗体内离子分布的影响[J].植物营养与肥料学报,2013,19(4):908-917. |
HAN Z P, GUO S R, ZHENG R N, et al.. Effect of salinity on distribution of ions in mini-watermelon seedlings [J]. J. Plant Nutr. Fert., 2013, 19(4):908-917. | |
6 | PENG Z, ZULFIQAR T, YANG H, et al. Effect of arbuscular mycorrhizal fungi (AMF) on photosynthetic characteristics of cotton seedlings under saline-alkali stress [J]. Sci. Rep., 2024, 14(1): 8633-8642. |
7 | 邓增卓玛, 马文明, 周青平, 等.基于文献计量分析的国内外根际土壤微生物研究进展[J]. 中国土壤与肥料,2022(6): 236-246. |
DENG Z Z M, MA W M, ZHOU Q P, et al.. Research progress of rhizosphere soil microorganism at home and abroad based on bibliometric analysis [J]. Soil Fert. Sci. China, 2022(6): 236-246. | |
8 | 姜磊, 李焕勇, 张芹, 等. AM真菌对盐碱胁迫下杜梨幼苗生长与生理代谢的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 152-160. |
JIANG L, LI H Y, ZHANG Q, et al.. Effects of arbuscular mycorrhiza fungi on the growth and physiological metabolism of Pyrus betulaefolia Bunge seedlings under saline-alkaline stress [J]. J. Nanjing For. Univ. (Nat. Sci.), 2020, 44(6):152-160. | |
9 | 刘宇乐, 姜宛彤, 苏文欣, 等. 丛枝菌根真菌调控植物耐盐碱机制研究进展[J]. 江苏农业科学, 2022, 50(19): 9-17. |
10 | 张梦婕,吴湘琳,魏亚媛,等.混合盐碱对棉花幼苗渗透调节物质的影响[J].新疆农业科学,2021,58(11):2011-2023. |
ZHANG M J, WU X L, WEI Y Y, et al.. Effects of mixed salt and alkali on osmoregulation of cotton seedlings [J]. J. Xinjiang Agric. Sci., 2021, 58(11):2011-2023. | |
11 | 侯赛赛,蒲子天,张弛,等.丛枝菌根真菌缓解土壤过量微量元素和重金属对植物毒害的研究进展[J].土壤通报,2023,54(3):739-749. |
HOU S S, PU Z T, ZHANG C, et al.. Research progress in arbuscular mycorrhizal fungi alleviating the toxicity of soil excessive trace elements and heavy metals to plants [J]. Chin. J. Soil Sci., 2023, 54(3):739-749 | |
12 | MUTHUKUMAR T, UDAIYAN K. Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India [J]. Mycorrhiza, 2000, 9(6):297-313. |
13 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:1-495. |
14 | 龚远博,胡吉怀,胡丁猛,等.丛枝菌根真菌对盐碱胁迫下杜梨幼苗生长和生理特性的影响[J].西北植物学报,2022,42(8):1320-1329. |
GONG Y B, HU J H, HU D M, et al.. Effects of arbuscular mycorrhizal fungion the growth and physiological traits of pyrus betulifolia under salt-alkali stress [J]. Acta Bot. Bor-Occid. Sin., 2022, 42(8):1320-1329. | |
15 | 陈昆,王红军,周银芝.碱蓬内生菌对西瓜幼苗盐胁迫的缓解效应[J].江苏农业科学,2022,50(19):135-142. |
CHEN K, WANG H J, ZHOU Y Z. Alleviative effect of endophytic bacteria from Suaeda salsa on salt stress in watermelon seedlings [J]. Jiangsu Agric. Sci., 2022, 50(19):135-142. | |
16 | 王英逵,杨玉荣,王德利.盐碱胁迫下AMF对羊草的离子吸收和分配作用[J].草业学报,2020,29(12):95-104. |
WANG Y K, YANG Y R, WANG D L. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress [J]. Acta Pratac. Sin., 2020, 29(12):95-104. | |
17 | 郭家鑫,鲁晓宇,陶一凡,等.盐碱胁迫对棉花生长和养分吸收的影响[J].干旱地区农业研究,2022,40(4):23-32, 59. |
GUO J X, LU X Y, TAO Y F, et al.. Effects of saline and alkaline stresses on growth and nutrient uptake of cotton [J]. Agric. Res. Arid Areas, 2022, 40(4):23-32, 59. | |
18 | 王小山,朱平华,鲍国成,等.盐碱胁迫对紫花苜蓿根、茎和叶重要养分离子平衡的影响[J].江苏农业科学,2013,41(7):190-195. |
WANG X S, ZHU P H, BAO G C, et al.. Effects of saline alkali stress on the balance of important nutrient ions in the roots, stems, and leaves of alfalfa [J]. Jiangsu Agric. Sci., 2013, 41(7):190-195. | |
19 | 李俊伟,刘景辉,王俊英,等.盐与碱胁迫对燕麦离子平衡和有机酸含量的影响[J].西北植物学报,2022,42(10):1700-1710. |
LI J W, LIU J H, WANG J Y, et al.. Effect of salt and alkali stress on oat ion balance and organic acid content [J]. Acta Bot. Bor-Occid. Sin., 2022, 42(10):1700-1710. | |
20 | 刘福,尉敬涛,王宇宏,等.丛枝菌根真菌(AMF)对棉花抗病防御酶系活性影响的研究[J].山西科技,2018,33(1):29-33. |
LIU F, YU J T, WANG Y H, et al.. Study on the effect of arbuscular mycorrhizal fungi (AMF) on the activity of resistance to disease defense enzymes of cotton [J]. Shanxi Technol., 2018, 33(1):29-33. | |
21 | 陈凯丽,田秋恒,刘志洋,等.新疆石河子及周边地区棉花根际土壤丛枝菌根真菌多样性[J].棉花学报,2022,34(1):69-78. |
CHEN K L, TIAN Q H, LIU Z Y, et al.. Diversity of arbuscular mycorrhizal fungi in cotton rhizosphere soil in Shihezi and surrounding areas, Xinjiang [J]. Cott. Sci., 2022, 34(1):69-78. | |
22 | 李少朋,陈昢圳,刘惠芬,等.丛枝菌根提高滨海盐碱地植物耐盐性的作用机制及其生态效应[J].生态环境学报,2019,28(2):411-418. |
LI S P, CHEN P Z, LIU H F, et al.. Mechanism and ecological effects of arbuscular mycorrhizal fungi on improving salt tolerance of plants in coastal saline-alkaline land [J]. Ecol. Environ. Sci., 2019, 28(2):411-418. | |
23 | 郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,2001, 27(4):325-330. |
ZHENG Q S, WANG R L, LIU Y L. Effects of Ca2+ on absorption and distribution of ions in salt-treated cotton seedlings [J]. Acta Photophysiol. Sin., 2001, 27(4):325-330. | |
24 | 韩冰,贺超兴,郭世荣,等.丛枝菌根真菌对盐胁迫下黄瓜幼苗渗透调节物质含量和抗氧化酶活性的影响[J].西北植物学报,2011,31(12):2492-2497. |
HAN B, HE C X, GUO S R, et al.. Effects of arbuscular mycorrhizal fungi on osmoregulation substance contents and antioxidant enzyme activities of cucumber seedlings under salt stress [J]. Acta Bot. Bor-Occid. Sin., 2011, 31(12):2492-2497. | |
25 | HASHEM A, ALQARAWI A A, RADHAKRISHNAN R, et al.. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. [J]. Saudi J. Biol. Sci., 2018, 25(6):1102-1114. |
[1] | 翁慧婷, 刘海洋, 郭惠明, 程红梅, 李君, 张超, 苏晓峰. 棉花抗黄萎病相关基因GhERF020功能的初步分析[J]. 中国农业科技导报, 2024, 26(9): 112-121. |
[2] | 李紫琴, 王家强, 李贞, 邹德秋, 张小功, 罗霄玉, 柳维扬. 基于光谱指数的棉花叶片叶绿素密度估算研究[J]. 中国农业科技导报, 2024, 26(8): 103-111. |
[3] | 庞博, 李生梅, 李彦霖, 杨涛, 梁维维, 张茹, 黄雅婕, 任丹, 崔进鑫, 李静, 马晶晶, 高文伟. 192份陆地棉杂交种的遗传多样性分析[J]. 中国农业科技导报, 2024, 26(8): 34-50. |
[4] | 秦宇坤, 陈俊英, 张丽娟. 赣北棉区棉花干物质积累特征和产量对减氮措施的响应[J]. 中国农业科技导报, 2024, 26(6): 191-199. |
[5] | 李江博, 高文举, 运晓东, 赵杰银, 耿世伟, 韩春斌, 陈全家, 陈琴. 不同水分胁迫处理对陆地棉核心种质资源的影响[J]. 中国农业科技导报, 2024, 26(3): 26-39. |
[6] | 李丽花, 孙正文, 柯会锋, 谷淇深, 吴立强, 张艳, 张桂寅, 王省芬. 陆地棉纤维强度KASP-SNP标记的开发及效应评价[J]. 中国农业科技导报, 2024, 26(2): 46-55. |
[7] | 翟梦华, 孙明辉, 李雪瑞, 徐新龙, 高海洲, 张巨松. 不同株行距配置下缩节胺对棉花株型塑造的影响[J]. 中国农业科技导报, 2024, 26(12): 145-156. |
[8] | 程珍, 牛建龙, 马玉婷, 柳维扬, 蒋学玮, 梁雪齐, 董红强. 1990—2020年南疆阿拉尔垦区棉花物候期的动态变化[J]. 中国农业科技导报, 2024, 26(10): 206-214. |
[9] | 郑德有, 左东云, 王巧莲, 吕丽敏, 程海亮, 顾爱星, 宋国立. 氟节胺与杀菌剂复配防治棉花枯萎病的增效药剂筛选[J]. 中国农业科技导报, 2024, 26(1): 119-124. |
[10] | 王为, 赵强, 穆妮热·阿卜杜艾尼, 阿里木·阿木力null, 李欣欣, 田阳青. 烯效唑复配不同外源物质对棉花化学封顶及产量品质的影响[J]. 中国农业科技导报, 2023, 25(9): 57-68. |
[11] | 孙正冉, 张翠萍, 张晋丽, 吴昊, 刘秀艳, 王振凯, 杨玉珍, 贺道华. 喷施化学打顶剂对关中棉区棉花植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 167-177. |
[12] | 牛营超, 王星, 郭青云, 戴小华, 袁小勇, 陈琳. 棉花立枯病拮抗细菌的分离鉴定及抑菌活性[J]. 中国农业科技导报, 2023, 25(12): 138-144. |
[13] | 杨文俊, 朱雨婷, 张杰, 徐凯祥, 韦聪敏, 陈全家. 棉花苗期耐盐相关性状QTL元分析[J]. 中国农业科技导报, 2023, 25(12): 26-34. |
[14] | 陈炟, 巨吉生, 马麒, 徐守振, 刘娟娟, 袁文敏, 李吉莲, 王彩香, 宿俊吉. FeNPs对苗期棉花根系生长及其对干旱响应的影响[J]. 中国农业科技导报, 2023, 25(11): 49-57. |
[15] | 张曼, 张进, 张新雨, 王国宁, 王省芬, 张艳. 陆地棉GhNAC1基因的克隆及抗黄萎病功能分析[J]. 中国农业科技导报, 2023, 25(10): 35-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||