中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (1): 118-128.DOI: 10.13304/j.nykjdb.2023.0617
• 智慧农业 农机装备 • 上一篇
收稿日期:
2023-08-17
接受日期:
2023-11-16
出版日期:
2025-01-15
发布日期:
2025-01-21
通讯作者:
贺福强
作者简介:
田祥州 E-mail:1120351604@qq.com;
基金资助:
Xiangzhou TIAN1(), Fuqiang HE1(
), Fajiang CHEN2, Luxin ZHAN1
Received:
2023-08-17
Accepted:
2023-11-16
Online:
2025-01-15
Published:
2025-01-21
Contact:
Fuqiang HE
摘要:
在利用EDEM软件对木质板材生产过程中不同含水率的木粉混匀情况进行研究时,木粉颗粒离散元参数设置以及模型的选择直接影响仿真结果的可靠性。为确定不同含水率木粉的离散元物性参数,以松木木粉为研究对象,以休止角为响应值,针对不同含水率的木粉进行试验,构建了含水率与休止角之间的数学模型。基于Hertz-Mindlin JKR接触模型,构建2种形状不同的离散元颗粒模型进行仿真模拟;通过Plackett-Burman 试验,在与木粉颗粒相关的10个初始参数中筛选出了颗粒间碰撞恢复系数、颗粒间滚动摩擦系数和JKR表面能这3个对休止角影响显著的参数,结合爬坡试验、Box-Behnken试验建立了休止角与显著参数的数学模型,其P值为0.000 1,相对误差N≤4.07%。同时,通过含水率-休止角模型与休止角-离散元参数模型的推导,建立了含水率-离散元参数模型,并采用圆筒提升法进行试验验证,相对误差N≤4.34%。试验结果表明,可以通过含水率来推导木粉的离散元参数,为搅拌设备与木粉仿真中离散元接触参数的确定提供了方法,为进一步优化板材制备工艺以及设计高效的搅拌设备提供了参考。
中图分类号:
田祥州, 贺福强, 陈发江, 詹璐歆. 基于休止角标定不同含水率木粉离散元参数[J]. 中国农业科技导报, 2025, 27(1): 118-128.
Xiangzhou TIAN, Fuqiang HE, Fajiang CHEN, Luxin ZHAN. Calibration of Discrete Elemental Parameters of Wood Powder with Different Moisture Content Based on Angle of Repose[J]. Journal of Agricultural Science and Technology, 2025, 27(1): 118-128.
材料 Material | 泊松比 Poisson’s ratio | 剪切模量 Shear modulus/MPa | 密度 Density/(kg·m-3) | 文献 Reference |
---|---|---|---|---|
木粉 Wood powder | 0.25~0.33 | 0.525~1.91×103 | 456.4~600 | [ |
亚克力板 Acrylic board | 0.38 | 1.0×103 | 1 200 | [ |
表1 木粉与亚克力板的本征物理参数
Table 1 Intrinsic physical parameters of wood powder and acrylic sheet
材料 Material | 泊松比 Poisson’s ratio | 剪切模量 Shear modulus/MPa | 密度 Density/(kg·m-3) | 文献 Reference |
---|---|---|---|---|
木粉 Wood powder | 0.25~0.33 | 0.525~1.91×103 | 456.4~600 | [ |
亚克力板 Acrylic board | 0.38 | 1.0×103 | 1 200 | [ |
参数 Parameter | 取值 Value |
---|---|
木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 0.01~0.10 |
木粉-木粉静摩擦系数 Wood powder-wood powder static friction coefficient | 0.4~0.8 |
木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | 0.05~0.10 |
木粉-亚力克板碰撞恢复系数 Wood powder-acrylic board restitution coefficient | 0.1~0.5 |
木粉-亚力克板静摩擦系数 Wood powder-acrylic board static friction coefficient | 0.2~0.8 |
木粉-亚力克板滚动摩擦系数 Wood powder-acrylic board rolling friction coefficient | 0.05~0.10 |
JKR表面能 JKR surface energy/(J·m-2) | 0.05~0.20 |
表2 离散元仿真参数
Table 2 Parameter in DEM simulation
参数 Parameter | 取值 Value |
---|---|
木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 0.01~0.10 |
木粉-木粉静摩擦系数 Wood powder-wood powder static friction coefficient | 0.4~0.8 |
木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | 0.05~0.10 |
木粉-亚力克板碰撞恢复系数 Wood powder-acrylic board restitution coefficient | 0.1~0.5 |
木粉-亚力克板静摩擦系数 Wood powder-acrylic board static friction coefficient | 0.2~0.8 |
木粉-亚力克板滚动摩擦系数 Wood powder-acrylic board rolling friction coefficient | 0.05~0.10 |
JKR表面能 JKR surface energy/(J·m-2) | 0.05~0.20 |
参数 Parameter | 水平编码 Level code | ||
---|---|---|---|
-1 | 0 | 1 | |
木粉密度 Wood powder density/(kg·m-3) | 0.456 | 0.528 | 0.600 |
木粉泊松比 Wood powder Poisson’s ratio | 0.25 | 0.29 | 0.33 |
木粉剪切模量 Wood powder shear modulus /MPa | 0.525 0 | 1.217 5 | 1.910 0 |
木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 0.010 | 0.055 | 0.100 |
木粉-木粉静摩擦系数 Wood powder-wood powder static friction coefficient | 0.4 | 0.6 | 0.8 |
木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | 0.050 | 0.075 | 0.100 |
木粉-亚力克板碰撞恢复系数 Wood powder-acrylic board restitution coefficient | 0.1 | 0.3 | 0.5 |
木粉-亚力克板静摩擦系数 Wood powder-acrylic board static friction coefficient | 0.2 | 0.5 | 0.8 |
木粉-亚力克板滚动摩擦系数 Wood powder-acrylic board rolling friction coefficient | 0.050 | 0.075 | 0.100 |
JKR表面能 JKR surface energy/(J·m-2) | 0.050 | 0.125 | 0.200 |
表3 Plackett-Burman实验参数
Table 3 Factors of Plackett-Burman test
参数 Parameter | 水平编码 Level code | ||
---|---|---|---|
-1 | 0 | 1 | |
木粉密度 Wood powder density/(kg·m-3) | 0.456 | 0.528 | 0.600 |
木粉泊松比 Wood powder Poisson’s ratio | 0.25 | 0.29 | 0.33 |
木粉剪切模量 Wood powder shear modulus /MPa | 0.525 0 | 1.217 5 | 1.910 0 |
木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 0.010 | 0.055 | 0.100 |
木粉-木粉静摩擦系数 Wood powder-wood powder static friction coefficient | 0.4 | 0.6 | 0.8 |
木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | 0.050 | 0.075 | 0.100 |
木粉-亚力克板碰撞恢复系数 Wood powder-acrylic board restitution coefficient | 0.1 | 0.3 | 0.5 |
木粉-亚力克板静摩擦系数 Wood powder-acrylic board static friction coefficient | 0.2 | 0.5 | 0.8 |
木粉-亚力克板滚动摩擦系数 Wood powder-acrylic board rolling friction coefficient | 0.050 | 0.075 | 0.100 |
JKR表面能 JKR surface energy/(J·m-2) | 0.050 | 0.125 | 0.200 |
含水率 Moisture content/% | 休止角 Repose angle/(°) | 标准差 Standard deviation/(°) |
---|---|---|
15.32 | 36.62 | 0.32 |
17.45 | 37.50 | 0.26 |
19.21 | 38.63 | 0.17 |
21.42 | 40.25 | 0.54 |
23.56 | 43.66 | 0.68 |
表4 不同含水率下木粉的休止角
Table 4 Repose angle of wood powder with different moisture content
含水率 Moisture content/% | 休止角 Repose angle/(°) | 标准差 Standard deviation/(°) |
---|---|---|
15.32 | 36.62 | 0.32 |
17.45 | 37.50 | 0.26 |
19.21 | 38.63 | 0.17 |
21.42 | 40.25 | 0.54 |
23.56 | 43.66 | 0.68 |
试验序号 Test No. | 因素水平 Factor level | 休止角 Repose angle/(°) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | ||
1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 28.98 |
2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 31.71 |
3 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 42.29 |
4 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 45.05 |
5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 23.23 |
6 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 44.18 |
7 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 65.99 |
8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 43.69 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41.25 |
10 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 32.97 |
11 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 56.08 |
12 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 34.01 |
13 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 37.05 |
表5 Plackett-Burman试验方案与结果
Table 5 Design and results of Plackett-Burman test
试验序号 Test No. | 因素水平 Factor level | 休止角 Repose angle/(°) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | ||
1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 28.98 |
2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 31.71 |
3 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 42.29 |
4 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 45.05 |
5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 23.23 |
6 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 44.18 |
7 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 65.99 |
8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 43.69 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41.25 |
10 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 32.97 |
11 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 56.08 |
12 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 34.01 |
13 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 37.05 |
参数 Parameter | 效应 Effect | 均方和 Sum of squares | F值 F value | P值 P value | 显著性排序 Significance ranking |
---|---|---|---|---|---|
模型Model | — | 154.79 | 26.39 | 0.037 0 | — |
X1 | 0.23 | 0.16 | 0.03 | 0.883 6 | 9 |
X2 | -3.84 | 44.43 | 7.58 | 0.110 5 | 6 |
X3 | -1.89 | 10.74 | 1.83 | 0.308 7 | 8 |
X4 | -11.40 | 389.77 | 66.46 | 0.014 7* | 2 |
X5 | 4.59 | 63.16 | 10.77 | 0.08 16 | 5 |
X6 | 8.31 | 206.92 | 35.28 | 0.027 2* | 3 |
X7 | 0.11 | 0.04 | 0.01 | 0.943 6 | 10 |
X8 | 5.90 | 104.49 | 17.82 | 0.051 8 | 4 |
X9 | 1.92 | 11.00 | 1.88 | 0.304 3 | 7 |
X10 | 15.46 | 717.19 | 122.30 | 0.008 1** | 1 |
表6 Plackett-Burman 试验结果显著性分析
Table 6 Significance analysis of Plackett-Burman test results
参数 Parameter | 效应 Effect | 均方和 Sum of squares | F值 F value | P值 P value | 显著性排序 Significance ranking |
---|---|---|---|---|---|
模型Model | — | 154.79 | 26.39 | 0.037 0 | — |
X1 | 0.23 | 0.16 | 0.03 | 0.883 6 | 9 |
X2 | -3.84 | 44.43 | 7.58 | 0.110 5 | 6 |
X3 | -1.89 | 10.74 | 1.83 | 0.308 7 | 8 |
X4 | -11.40 | 389.77 | 66.46 | 0.014 7* | 2 |
X5 | 4.59 | 63.16 | 10.77 | 0.08 16 | 5 |
X6 | 8.31 | 206.92 | 35.28 | 0.027 2* | 3 |
X7 | 0.11 | 0.04 | 0.01 | 0.943 6 | 10 |
X8 | 5.90 | 104.49 | 17.82 | 0.051 8 | 4 |
X9 | 1.92 | 11.00 | 1.88 | 0.304 3 | 7 |
X10 | 15.46 | 717.19 | 122.30 | 0.008 1** | 1 |
试验序号 Test No. | A:木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | B:木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | C:JKR表面能 JKR surface energy/ (J·m-2) | 仿真休止角 Simulated repose angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 0.10 | 0.05 | 0.05 | 28.04 | 27.41 |
2 | 0.08 | 0.06 | 0.09 | 32.03 | 17.09 |
3 | 0.06 | 0.07 | 0.13 | 36.38 | 5.82 |
4 | 0.04 | 0.08 | 0.17 | 56.13 | 45.30 |
5 | 0.02 | 0.09 | 0.21 | 67.91 | 75.80 |
表7 爬坡试验方案与结果
Table 7 Scheme and results of Steepest climbing test
试验序号 Test No. | A:木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | B:木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | C:JKR表面能 JKR surface energy/ (J·m-2) | 仿真休止角 Simulated repose angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 0.10 | 0.05 | 0.05 | 28.04 | 27.41 |
2 | 0.08 | 0.06 | 0.09 | 32.03 | 17.09 |
3 | 0.06 | 0.07 | 0.13 | 36.38 | 5.82 |
4 | 0.04 | 0.08 | 0.17 | 56.13 | 45.30 |
5 | 0.02 | 0.09 | 0.21 | 67.91 | 75.80 |
试验序号 Test No. | 因素水平Factor level | 休止角 Repose angle/(°) | ||
---|---|---|---|---|
A | B | C | ||
1 | 1 | 0 | 1 | 22.03 |
2 | 0 | -1 | 1 | 39.32 |
3 | 1 | 0 | -1 | 35.56 |
4 | -1 | 1 | 0 | 59.32 |
5 | 0 | -1 | -1 | 48.71 |
6 | 1 | -1 | 0 | 35.11 |
7 | -1 | 0 | 1 | 45.22 |
8 | -1 | 0 | -1 | 43.71 |
9 | 0 | 0 | 0 | 41.83 |
10 | 1 | 1 | 0 | 33.95 |
11 | 0 | 1 | -1 | 59.61 |
12 | 0 | 1 | 1 | 47.99 |
13 | 0 | 0 | 0 | 38.96 |
14 | -1 | -1 | 0 | 44.24 |
15 | 0 | 0 | 0 | 38.73 |
表8 Box-Behnken 试验方案与结果
Table 8 Scheme and results of Box-Behnken test
试验序号 Test No. | 因素水平Factor level | 休止角 Repose angle/(°) | ||
---|---|---|---|---|
A | B | C | ||
1 | 1 | 0 | 1 | 22.03 |
2 | 0 | -1 | 1 | 39.32 |
3 | 1 | 0 | -1 | 35.56 |
4 | -1 | 1 | 0 | 59.32 |
5 | 0 | -1 | -1 | 48.71 |
6 | 1 | -1 | 0 | 35.11 |
7 | -1 | 0 | 1 | 45.22 |
8 | -1 | 0 | -1 | 43.71 |
9 | 0 | 0 | 0 | 41.83 |
10 | 1 | 1 | 0 | 33.95 |
11 | 0 | 1 | -1 | 59.61 |
12 | 0 | 1 | 1 | 47.99 |
13 | 0 | 0 | 0 | 38.96 |
14 | -1 | -1 | 0 | 44.24 |
15 | 0 | 0 | 0 | 38.73 |
方差来源 Soruce of variation | 均方和 Sum of squares | 自由度 Freedom | 平方和 Sum of squares | P值 P value |
---|---|---|---|---|
模型Model | 1 266.47 | 9 | 140.72 | 0.000 6* |
A | 541.86 | 1 | 541.86 | <0.000 1** |
B | 140.20 | 1 | 140.20 | 0.002 3* |
C | 136.37 | 1 | 136.37 | 0.002 4* |
AB | 65.93 | 1 | 65.93 | 0.011 0* |
AC | 56.55 | 1 | 56.55 | 0.014 9* |
BC | 1.24 | 1 | 1.24 | 0.612 3 |
A2 | 74.15 | 1 | 74.15 | 0.008 7* |
B2 | 224.42 | 1 | 224.42 | 0.000 8* |
C2 | 5.97 | 1 | 5.97 | 0.289 9 |
残差Residual | 21.31 | 5 | 4.26 | |
失拟项Lack of fit | 15.34 | 3 | 5.11 | 0.389 1 |
纯误差Pure error | 5.97 | 2 | 2.98 | |
总和Sum | 1287.78 | 14 |
表9 Box-Behnken 试验模型方差分析
Table 9 ANOVA of Box-Behnken model
方差来源 Soruce of variation | 均方和 Sum of squares | 自由度 Freedom | 平方和 Sum of squares | P值 P value |
---|---|---|---|---|
模型Model | 1 266.47 | 9 | 140.72 | 0.000 6* |
A | 541.86 | 1 | 541.86 | <0.000 1** |
B | 140.20 | 1 | 140.20 | 0.002 3* |
C | 136.37 | 1 | 136.37 | 0.002 4* |
AB | 65.93 | 1 | 65.93 | 0.011 0* |
AC | 56.55 | 1 | 56.55 | 0.014 9* |
BC | 1.24 | 1 | 1.24 | 0.612 3 |
A2 | 74.15 | 1 | 74.15 | 0.008 7* |
B2 | 224.42 | 1 | 224.42 | 0.000 8* |
C2 | 5.97 | 1 | 5.97 | 0.289 9 |
残差Residual | 21.31 | 5 | 4.26 | |
失拟项Lack of fit | 15.34 | 3 | 5.11 | 0.389 1 |
纯误差Pure error | 5.97 | 2 | 2.98 | |
总和Sum | 1287.78 | 14 |
方差来源 Soruce of variation | 均方和 Sum of squares | 自由度 Freedom | 平方和 Quadratic sum | P值 P value |
---|---|---|---|---|
模型Model | 1 265.23 | 8 | 158.15 | 0.000 1* |
541.86 | 1 | 541.86 | <0.000 1** | |
140.20 | 1 | 140.20 | 0.000 9* | |
136.37 | 1 | 136.37 | 0.000 9* | |
65.93 | 1 | 65.93 | 0.005 8* | |
AC | 56.55 | 1 | 56.55 | 0.008 2* |
A2 | 74.15 | 1 | 74.15 | 0.004 4* |
B2 | 224.42 | 1 | 224.42 | 0.000 2* |
C2 | 5.97 | 1 | 5.97 | 0.254 5 |
残差Residual | 22.55 | 6 | 3.76 | |
失拟项Lack of fit | 16.58 | 4 | 4.15 | 0.459 2 |
纯误差Pure error | 5.97 | 2 | 2.98 | |
总和Sum | 1287.78 | 14 |
表10 Box-Behnken 试验优化模型方差分析
Table 10 ANOVA of Box-Behnken modified model
方差来源 Soruce of variation | 均方和 Sum of squares | 自由度 Freedom | 平方和 Quadratic sum | P值 P value |
---|---|---|---|---|
模型Model | 1 265.23 | 8 | 158.15 | 0.000 1* |
541.86 | 1 | 541.86 | <0.000 1** | |
140.20 | 1 | 140.20 | 0.000 9* | |
136.37 | 1 | 136.37 | 0.000 9* | |
65.93 | 1 | 65.93 | 0.005 8* | |
AC | 56.55 | 1 | 56.55 | 0.008 2* |
A2 | 74.15 | 1 | 74.15 | 0.004 4* |
B2 | 224.42 | 1 | 224.42 | 0.000 2* |
C2 | 5.97 | 1 | 5.97 | 0.254 5 |
残差Residual | 22.55 | 6 | 3.76 | |
失拟项Lack of fit | 16.58 | 4 | 4.15 | 0.459 2 |
纯误差Pure error | 5.97 | 2 | 2.98 | |
总和Sum | 1287.78 | 14 |
含水率 Moisture content/% | 木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | JKR表面能 JKR surface energy/(J·m-2) | 仿真休止角 Simulated repose angle/(°) | 物理试验休止角Physical test repose angle/(°) | 相对误差Relative error/% |
---|---|---|---|---|---|---|
15.32 | 0.06 | 0.07 | 0.15 | 35.13 | 36.62 | 4.07 |
17.45 | 0.07 | 0.06 | 0.16 | 36.93 | 37.50 | 1.52 |
19.21 | 0.06 | 0.07 | 0.16 | 37.18 | 38.63 | 3.75 |
21.42 | 0.05 | 0.06 | 0.14 | 41.61 | 40.25 | 3.38 |
23.56 | 0.06 | 0.07 | 0.12 | 42.34 | 43.66 | 3.02 |
表11 不同含水率下木粉离散元参数最优值及验证试验结果
Table 11 Optimal value of wood powder discrete element parameters and verification test results under different moisture content
含水率 Moisture content/% | 木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | JKR表面能 JKR surface energy/(J·m-2) | 仿真休止角 Simulated repose angle/(°) | 物理试验休止角Physical test repose angle/(°) | 相对误差Relative error/% |
---|---|---|---|---|---|---|
15.32 | 0.06 | 0.07 | 0.15 | 35.13 | 36.62 | 4.07 |
17.45 | 0.07 | 0.06 | 0.16 | 36.93 | 37.50 | 1.52 |
19.21 | 0.06 | 0.07 | 0.16 | 37.18 | 38.63 | 3.75 |
21.42 | 0.05 | 0.06 | 0.14 | 41.61 | 40.25 | 3.38 |
23.56 | 0.06 | 0.07 | 0.12 | 42.34 | 43.66 | 3.02 |
含水率 Moisture content /% | 木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | JKR表面能 JKR surface energy/(J·m-2) | 仿真休止角 Simulated repose angle/(°) | 试验休止角Test repose angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|---|
18.25 | 0.08 | 0.07 | 0.09 | 36.68 | 38.18 | 3.93 |
19.76 | 0.07 | 0.08 | 0.16 | 38.53 | 39.62 | 2.75 |
23.12 | 0.06 | 0.06 | 0.14 | 40.29 | 42.12 | 4.34 |
表12 验证结果
Table 12 Verification resultscylinder lifting
含水率 Moisture content /% | 木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | JKR表面能 JKR surface energy/(J·m-2) | 仿真休止角 Simulated repose angle/(°) | 试验休止角Test repose angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|---|
18.25 | 0.08 | 0.07 | 0.09 | 36.68 | 38.18 | 3.93 |
19.76 | 0.07 | 0.08 | 0.16 | 38.53 | 39.62 | 2.75 |
23.12 | 0.06 | 0.06 | 0.14 | 40.29 | 42.12 | 4.34 |
1 | 张清博,刘玉高,张瑞,等.基于离散元的联合整地机驱动耙耕作载荷仿真分析[J].农机化研究,2021,43(4):167-173. |
ZHANG Q B, LIU Y G, ZHANG R,et al.. Discrete element-based simulation analysis of tillage load of combined grader driving harrow [J]. J. Agric. Mech. Res., 2021,43(4):167-173. | |
2 | 赵淑红,刘汉朋,杨超,等.玉米秸秆还田交互式分层深松铲设计与离散元仿真[J].农业机械学报,2021,52(3):75-87. |
ZHAO S H, LIU H P, YANG C,et al.. Design and discrete element simulation of an interactive layered deep loosening shovel for corn straw return [J]. Trans. Chin. Soc. Agric. Mach.,2021,52(3):75-87. | |
3 | 李少华,朱明亮,张立栋,等.回转装置内三组元颗粒径向混合评价方法分析[J].化工进展,2013,32(6):1224-1229. |
LI S H, ZHU M L, ZHANG L D, et al.. Analysis of radial mixing evaluation method for three-component particles in rotary units [J]. Chem. Ind. Eng. Prog., 2013,32(6):1224-1229. | |
4 | 吴鹏,张喜瑞,李粤,等.基于离散元的砖红土壤模型堆积特性研究[J].农机化研究,2020,42(9):145-150. |
WU P, ZHANG X R, LI Y,et al.. Research on the stacking characteristics of brick red soil model based on discrete elements [J]. J. Agric. Mechan. Res., 2020,42(9):145-150. | |
5 | 刘羽平,张拓,刘妤.稻谷颗粒模型离散元接触参数标定与试验[J].中国农业科技导报,2019,21(11):70-76. |
LIU Y P, ZHANG T, LIU Y. Calibration and experiment of discrete element contact parameters for rice grain model [J]. J. Agric. Sci. Technol. China, 2019,21(11):70-76. | |
6 | 王韦韦,蔡丹艳,谢进杰,等.玉米秸秆粉料致密成型离散元模型参数标定[J].农业机械学报,2021,52(3):127-134. |
WANG W W, CAI D Y, XIE J J, et al.. Parameters calibration of discrete element model for corn stalk powder compression simulation [J]. Trans. Chin. Soc. Agric. Mach., 2021,52(3):127-134 | |
7 | MAK J, CHEN Y, SADEK M A. Determining parameters of a discrete element model for soil-tool interaction [J]. Soil Till. Res., 2012, 118: 117-122. |
8 | SMITH W, PENG H. Modeling of wheel-soil interaction over rough terrain using the discrete element method [J]. J. Terra Mech., 2013, 50(5-6): 277-287. |
9 | MARTIN C L, BOUVARD D, Shima S. Study of particle rearrangement during powder compaction by the discrete element method [J]. J. Mech. Phys. Solids, 2003, 51(4): 667-693. |
10 | WEI H, NIE H, LI Y, et al.. Measurement and simulation validation of DEM parameters of pellet, sinter and coke particles [J]. Powder Tech., 2020, 364: 593-603. |
11 | 鹿芳媛,马旭,谭穗妍,等.水稻芽种离散元主要接触参数仿真标定与试验[J].农业机械学报,2018,49(2):93-99. |
LU F Y, MA X, TAN S Y, et al.. Simulation calibration and experiments on the main contact parameters of discrete elements of rice sprouting seeds [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(2):93-99. | |
12 | 曾智伟,马旭,曹秀龙,等.离散元法在农业工程研究中的应用现状和展望[J].农业机械学报,2021,52(4):1-20. |
ZENG Z W, MA X, CAO X L, et al.. Critical review of applications of discrete element method in agricultural Engineering [J]. Trans. Chin. Soc. Agric. Mach., 2021,52(4):1-20. | |
13 | DESHPANDE R, ANTONYUK S, ILIEV O. DEM-CFD study of the filter cake formation process due to non-spherical particles [J]. Particuology, 2020, 53:48-57. |
14 | 万里鹏程,李永磊,苏辰,等.基于EEPA接触模型的土壤耕作特性模拟及颗粒球型影响分析[J].中国农业大学学报,2021,26(12):193-206. |
WAN L P C, LI Y L, SU C, et al.. Simulation of soil tillage characteristics based on EEPA contact model and analysis of the effect of particle sphericity [J]. J. China Agric. Univ., 2021,26(12):193-206. | |
15 | 刘凡一,张舰,李博,等.基于堆积试验的小麦离散元参数分析及标定[J].农业工程学报,2016,32(12):247-253. |
LIU F Y, ZHANG J, LI B, et al.. Discrete element parameter analysis and calibration of wheat based on stacking test [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(12):247-253. | |
16 | 罗帅,袁巧霞, GOUDA Shaban,等.基于JKR粘结模型的蚯蚓粪基质离散元法参数标定[J].农业机械学报,2018,49(4):343-350. |
LUO S, YUAN Q X, GOUDA S,et al.. Parameters calibration of vermicomposting nursery substrate with discrete element method based on JKR contact model [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(4):343-350. | |
17 | 王黎明,范盛远,程红胜,等.基于EDEM的猪粪接触参数标定[J].农业工程学报,2020,36(15):95-102. |
WANG L M, FAN S Y, CHENG H S, et al.. Calibration of contact parameters for pig manure based on EDEM [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(15): 95-102. | |
18 | 谢方平,吴正阳,王修善,等.基于无侧限抗压强度试验的土壤离散元参数标定[J].农业工程学报,2020,36(13):39-47. |
XIE F P, WU Z Y, WANG X S, et al.. Soil discrete element parameter calibration based on lateral limitless compressive strength test [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(13):39-47. | |
19 | 张荣芳,周纪磊,刘虎,等.玉米颗粒粘结模型离散元仿真参数标定方法研究[J].农业机械学报,2022,53(S1):69-77. |
ZHANG R F, ZHOU J L, LIU H, et al.. Research on the calibration method of discrete element simulation parameters for corn particle bonding model [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(S1):69-77. | |
20 | 袁全春,徐丽明,邢洁洁,等.机施有机肥散体颗粒离散元模型参数标定[J].农业工程学报,2018,34(18):21-27. |
YUAN Q C, XU L M, XING J J, et al.. Parameter calibration of discrete element model of organic fertilizer particles for mechanical fertilization [J]. Trans. Chin. Soc. Agric. Eng., 2018,34(18):21-27. | |
21 | 贵州晶木建材有限公司.一种抗老化防铁锈的木质纤维板及其制备方法[P],中国,CN202010635398.1. |
22 | 朱新华,伏胜康,李旭东,等.不同含水率羊粪离散元参数通用标定方法研究[J].农业机械学报,2022,53(8):34-41. |
ZHU X H, FU S K, LI X D, et al.. Study on the general calibration method for discrete element parameters of sheep manure with different moisture contents [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(8):34-41. | |
23 | 彭飞,王红英,方芳,等.基于注入截面法的颗粒饲料离散元模型参数标定[J].农业机械学报,2018,49(4):140-147. |
PENG F, WANG H Y, FANG F, et al.. Parameter calibration of discrete element model parameters for pellet feed based on injected section method [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(4):140-147. | |
24 | 贺一鸣,向伟,吴明亮,等.基于堆积试验的壤土离散元参数的标定[J].湖南农业大学学报(自然科学版),2018,44(2):216-220. |
HE Y M, XIANG W, WU M L, et al.. Parameters calibration of loam soil for discrete element simulation based on the repose angle of particle heap [J]. J. Hunan Agric. Univ. (Nat. Sci.), 2018,44(2):216-220. | |
25 | 贾富国,韩燕龙,刘扬,等.稻谷颗粒物料堆积角模拟预测方法[J].农业工程学报,2014,30(11):254-260. |
JIA F G, HAN Y L, LIU Y, et al.. Simulation prediction method of repose angle for rice particle materials [J]. Trans. Chin. Soc. Agric. Eng., 2014, 30(11):254-260. | |
26 | 薛亚军,贺福强,陈发江,等.基于离散元法的木质板材压制成形过程仿真与分析[J].林业机械与木工设备, 2021, 49(5):52-57. |
XUE Y J, HE F Q, CHEN F J, et al.. Simulation and analysis of press forming process of wood-based panels based on discrete element method [J]. Forestry Mach. Woodworking Equip., 2021, 49(5): 52-57. | |
27 | 黄易周.木质隔音防火板压制成形技术研究与应用[D].贵阳:贵州大学, 2023 |
HUANG Y Z. Research and application of press molding technology for wood acoustic fire prevention board [D]. Guiyang: Guizhou University, 2023. | |
28 | 林江萍.观光潜水器亚克力耐压圆柱壳极限强度研究[D].武汉:武汉理工大学, 2021. |
LIN J P. Study on the ultimate strength of acrylic pressure-resistant cylindrical shell for tourist submersible [D]. Wuhan: Wuhan University of Technology, 2021. | |
29 | MUDARISOV S, FARKHUTDINOV I, KHAMALETDINOV R, et al.. Evaluation of the significance of the contact model particle parameters in the modelling of wet soils by the discrete element method [J/OL]. Soil Till. Res., 2022, 215: 105228 [2024-05-13]. . |
30 | 李永祥,李飞翔,徐雪萌,等.基于颗粒缩放的小麦粉离散元参数标定[J].农业工程学报,2019,35(16):320-327. |
LI Y X, LI F X, XU X M, et al.. Discrete element parameter calibration of wheat powder based on particle scaling [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(16):320-327. |
[1] | 顿国强, 王雷, 纪欣鑫, 姜新波, 赵宇, 郭娜. 金乡紫皮蒜种离散元参数标定与试验验证[J]. 中国农业科技导报, 2024, 26(8): 131-139. |
[2] | 黄元昊, 全腊珍, 胡广发, 全伟, 石方刚. 多种材料与不同含水率土壤的离散元接触参数标定[J]. 中国农业科技导报, 2024, 26(3): 98-109. |
[3] | 陈林, 余南辉, 王立宗, 范吉军, 雷港, 刘晓鹏, 周龙, 周劲. 米糠和碎米的接触参数测量与离散元仿真标定[J]. 中国农业科技导报, 2024, 26(2): 127-136. |
[4] | 刘威, 赵园园, 陈小龙, 史宏志. 土壤含水率对豫中植烟土壤微生物群落多样性及氮循环功能基因丰度的影响[J]. 中国农业科技导报, 2024, 26(1): 214-225. |
[5] | 胡亚强, 苑亚, 杨鲁伟, 章学来, 邱少鹏, 于馨尧. 植入式苜蓿草捆热风干燥系统的研究[J]. 中国农业科技导报, 2023, 25(7): 105-112. |
[6] | 郝需婷, 黄雅茹, 马迎宾, 张帅, 韩春霞, 庞嘉诚, 徐光甫, 郝惠忠, 刘雅婧. 乌兰布和沙漠固沙梭梭林生长季土壤水分动态研究[J]. 中国农业科技导报, 2023, 25(7): 187-196. |
[7] | 朱士江, 李虎, 徐文, 冯雅婷. 三峡库区土壤含水量对柑橘园果实品质的影响[J]. 中国农业科技导报, 2023, 25(6): 201-207. |
[8] | 王洪波, 樊志鹏, 乌兰图雅, 王春光, 马哲. 揉碎玉米秸秆螺旋输送仿真离散元模型参数标定[J]. 中国农业科技导报, 2023, 25(3): 96-106. |
[9] | 于淼, 周海宾, 丁京涛, 程红胜, 沈玉君, 范盛远, 张曦, 王健, 徐鹏翔, 程琼仪. 基于EDEM的餐厨垃圾组成颗粒间接触参数标定[J]. 中国农业科技导报, 2023, 25(12): 111-120. |
[10] | 单发科, 康朔, 朱建锡, 王永维, 王俊. 基于EDEM的粉垄和旋耕作业混肥效果研究[J]. 中国农业科技导报, 2023, 25(11): 90-102. |
[11] | 周婷, 孙松林, 朱海英, 彭才望. 含水率对黑水虻生物转化猪粪有机肥黏结流动的影响[J]. 中国农业科技导报, 2023, 25(10): 126-136. |
[12] | 李飞翔, 王鹏, 王云飞, 葛越锋, 唐凯怿, 李得志. 基于堆积试验的玉米包衣种子离散元参数标定[J]. 中国农业科技导报, 2022, 24(7): 97-107. |
[13] | 宋世圣, 孙松林, 方芹, 彭才望, 周婷, 朱海英. 黑水虻生物转化餐厨垃圾有机肥离散元模型参数标定[J]. 中国农业科技导报, 2022, 24(6): 123-132. |
[14] | 闫建伟, 魏松, 胡冬军, 刘启合, 张富贵. 白萝卜种子颗粒模型离散元接触参数标定与试验[J]. 中国农业科技导报, 2022, 24(5): 119-128. |
[15] | 杨贵川, 张富贵, 郑乐, 王震, 孔曼曼, 章鑫鹏. 半夏块茎物理特性研究及离散元仿真参数标定[J]. 中国农业科技导报, 2022, 24(10): 99-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||