中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (8): 227-238.DOI: 10.13304/j.nykjdb.2024.0031
• 生物制造 资源生态 • 上一篇
收稿日期:
2024-01-12
接受日期:
2024-02-26
出版日期:
2025-08-15
发布日期:
2025-08-26
通讯作者:
颜安
作者简介:
肖淑婷 E-mail:1367388036@qq.com;
基金资助:
Received:
2024-01-12
Accepted:
2024-02-26
Online:
2025-08-15
Published:
2025-08-26
Contact:
An YAN
摘要:
为揭示天山地区森林土壤有机碳含量分布规律与影响因素,通过将森林土壤实测数据与地理信息系统中的技术工具相结合的研究方法,估算研究区不同深度土壤有机碳含量以及空间分布特征。结果表明,根据不同模型估算出研究区0—10、10—20、20—30、30—40、40—50、50—70、70—100 cm土层有机碳含量均值分别为144.054、147.087、122.343、122.302、72.941、61.260、49.527 g·kg-1。在0—40 cm土层内,土壤有机碳含量较高的区域主要位于研究区中部,在40—100 cm土壤中仅中部地区保持高值分布。研究区天然林土壤有机碳含量呈现显著空间差异,土壤有机碳含量随土层深度的增加而降低,随着林分发育阶段的增加而增加,具体表现为成熟林>过熟林>近熟林>中龄林>幼龄林。土壤理化性质对土壤有机碳的积累与分布起到决定性作用,不同土壤理化性质与土壤有机碳含量均存在一定的相关性,土壤有机碳与土壤中的pH、全磷、容重存在显著相关性,其中与pH和容重呈极显著负相关,而与全磷呈极显著正相关。研究结果为评估天山典型林区土壤固碳潜力提供科学基础。
中图分类号:
肖淑婷, 颜安. 天山典型天然林土壤有机碳分布特征及其影响因素[J]. 中国农业科技导报, 2025, 27(8): 227-238.
Shuting XIAO, An YAN. Distribution Characteristics and Influencing Factors of Soil Organic Carbon in Typical Natural Forests in Tianshan Mountains[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 227-238.
土层 Soil layer/cm | 土壤有机碳SOC | pH | 电导率 EC/ (μS·cm-1) | 容重 Bulk density/ (g·cm-3) | 含水量Moisture content/% | 全氮 TN/ (g·kg-1) | 全磷 TP/ (g·kg-1) | 全钾 TK/ (g·kg-1) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
含量 Content/ (g·kg-1 ) | 最大值 Max value/ (g·kg-1) | 最小值 Min value/ (g·kg-1) | 变异系数 CV/% | ||||||||
0—10 | 210.0±60.0 | 363.0 | 105.0 | 29 | 6.6 | 120.0 | 0.56 | 10.1 | 15.20 | 4.69 | 6.5 |
10—20 | 182.0±57.8 | 269.0 | 67.4 | 32 | 6.7 | 89.2 | 0.73 | 6.1 | 14.93 | 3.97 | 7.3 |
20—30 | 134.0±64.4 | 215.0 | 27.3 | 48 | 7.1 | 107.0 | 0.82 | 7.2 | 12.20 | 3.47 | 7.7 |
30—40 | 110.0±52.3 | 201.0 | 18.8 | 48 | 7.1 | 95.3 | 0.95 | 4.3 | 10.61 | 3.44 | 8.4 |
40—50 | 86.8±42.5 | 185.0 | 29.6 | 49 | 7.1 | 85.5 | 0.99 | 3.5 | 10.49 | 3.04 | 8.5 |
50—70 | 57.8±28.7 | 118.0 | 9.7 | 50 | 7.3 | 86.0 | 1.04 | 5.4 | 8.56 | 2.90 | 7.5 |
70—100 | 47.4±26.0 | 92.1 | 5.2 | 55 | 7.4 | 88.2 | 1.08 | 4.2 | 8.29 | 3.73 | 7.4 |
表1 不同深度土层土壤的理化性质
Table 1 Physicochemical property in soil layers at different depths
土层 Soil layer/cm | 土壤有机碳SOC | pH | 电导率 EC/ (μS·cm-1) | 容重 Bulk density/ (g·cm-3) | 含水量Moisture content/% | 全氮 TN/ (g·kg-1) | 全磷 TP/ (g·kg-1) | 全钾 TK/ (g·kg-1) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
含量 Content/ (g·kg-1 ) | 最大值 Max value/ (g·kg-1) | 最小值 Min value/ (g·kg-1) | 变异系数 CV/% | ||||||||
0—10 | 210.0±60.0 | 363.0 | 105.0 | 29 | 6.6 | 120.0 | 0.56 | 10.1 | 15.20 | 4.69 | 6.5 |
10—20 | 182.0±57.8 | 269.0 | 67.4 | 32 | 6.7 | 89.2 | 0.73 | 6.1 | 14.93 | 3.97 | 7.3 |
20—30 | 134.0±64.4 | 215.0 | 27.3 | 48 | 7.1 | 107.0 | 0.82 | 7.2 | 12.20 | 3.47 | 7.7 |
30—40 | 110.0±52.3 | 201.0 | 18.8 | 48 | 7.1 | 95.3 | 0.95 | 4.3 | 10.61 | 3.44 | 8.4 |
40—50 | 86.8±42.5 | 185.0 | 29.6 | 49 | 7.1 | 85.5 | 0.99 | 3.5 | 10.49 | 3.04 | 8.5 |
50—70 | 57.8±28.7 | 118.0 | 9.7 | 50 | 7.3 | 86.0 | 1.04 | 5.4 | 8.56 | 2.90 | 7.5 |
70—100 | 47.4±26.0 | 92.1 | 5.2 | 55 | 7.4 | 88.2 | 1.08 | 4.2 | 8.29 | 3.73 | 7.4 |
图2 不同土层中有机碳含量与各变量的Person相关分析注:*表示在P<0.05水平相关性显著。
Fig. 2 Person correlation analysis of organic carbon content with each variable in different soil layersNote:* indicates significantly correlation at P<0.05 level.
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.623 | 7.84 | 34.69 |
10—20 | 0.794 | 6.09 | 38.88 |
20—30 | 0.712 | 7.31 | 70.47 |
30—40 | 0.681 | 6.48 | 46.31 |
40—50 | 0.532 | 7.23 | 39.87 |
50—70 | 0.490 | 5.09 | 8.46 |
70—100 | 0.410 | 4.88 | 16.95 |
表2 岭回归模型结果
Table 2 Result of ridge regression model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.623 | 7.84 | 34.69 |
10—20 | 0.794 | 6.09 | 38.88 |
20—30 | 0.712 | 7.31 | 70.47 |
30—40 | 0.681 | 6.48 | 46.31 |
40—50 | 0.532 | 7.23 | 39.87 |
50—70 | 0.490 | 5.09 | 8.46 |
70—100 | 0.410 | 4.88 | 16.95 |
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.731 | 6.34 | 33.27 |
10—20 | 0.756 | 5.84 | 31.33 |
20—30 | 0.726 | 8.04 | 26.76 |
30—40 | 0.698 | 6.21 | 27.96 |
40—50 | 0.540 | 7.02 | 31.85 |
50—70 | 0.514 | 5.28 | 10.51 |
70—100 | 0.531 | 4.91 | 8.84 |
表3 最小二乘模型结果
Table 3 Result of least squares model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.731 | 6.34 | 33.27 |
10—20 | 0.756 | 5.84 | 31.33 |
20—30 | 0.726 | 8.04 | 26.76 |
30—40 | 0.698 | 6.21 | 27.96 |
40—50 | 0.540 | 7.02 | 31.85 |
50—70 | 0.514 | 5.28 | 10.51 |
70—100 | 0.531 | 4.91 | 8.84 |
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.641 | 30.48 | 25.31 |
10—20 | 0.759 | 32.82 | 30.26 |
20—30 | 0.506 | 32.88 | 29.35 |
30—40 | 0.580 | 37.96 | 28.58 |
40—50 | 0.641 | 26.09 | 18.27 |
50—70 | 0.231 | 40.19 | 38.20 |
70—100 | 0.480 | 18.72 | 17.75 |
表4 随机森林模型结果
Table 4 Result of random forest model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.641 | 30.48 | 25.31 |
10—20 | 0.759 | 32.82 | 30.26 |
20—30 | 0.506 | 32.88 | 29.35 |
30—40 | 0.580 | 37.96 | 28.58 |
40—50 | 0.641 | 26.09 | 18.27 |
50—70 | 0.231 | 40.19 | 38.20 |
70—100 | 0.480 | 18.72 | 17.75 |
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.580 | 32.99 | 26.57 |
10—20 | 0.660 | 41.87 | 36.56 |
20—30 | 0.550 | 35.93 | 29.31 |
30—40 | 0.570 | 45.38 | 38.41 |
40—50 | 0.300 | 28.49 | 19.70 |
50—70 | 0.290 | 28.51 | 19.73 |
70—100 | 0.310 | 16.98 | 14.52 |
表5 CatBoost模型结果
Table 5 Result of CatBoost model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.580 | 32.99 | 26.57 |
10—20 | 0.660 | 41.87 | 36.56 |
20—30 | 0.550 | 35.93 | 29.31 |
30—40 | 0.570 | 45.38 | 38.41 |
40—50 | 0.300 | 28.49 | 19.70 |
50—70 | 0.290 | 28.51 | 19.73 |
70—100 | 0.310 | 16.98 | 14.52 |
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.590 | 32.59 | 28.86 |
10—20 | 0.610 | 35.56 | 31.16 |
20—30 | 0.580 | 30.26 | 27.09 |
30—40 | 0.590 | 18.93 | 13.72 |
40—50 | 0.420 | 31.05 | 25.55 |
50—70 | 0.440 | 17.91 | 16.97 |
70—100 | 0.553 | 13.48 | 11.08 |
表6 BP-神经网路模型结果
Table 6 Result of BP-neural network model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.590 | 32.59 | 28.86 |
10—20 | 0.610 | 35.56 | 31.16 |
20—30 | 0.580 | 30.26 | 27.09 |
30—40 | 0.590 | 18.93 | 13.72 |
40—50 | 0.420 | 31.05 | 25.55 |
50—70 | 0.440 | 17.91 | 16.97 |
70—100 | 0.553 | 13.48 | 11.08 |
理化性质 Physicochemical property | 土层Soil layer/cm | ||||||
---|---|---|---|---|---|---|---|
0—10 | 10—20 | 20—30 | 30—40 | 40—50 | 50—70 | 70—100 | |
pH | -0.506*** | -0.452** | -0.541*** | -0.433** | -0.603*** | -0.318 | -0.226 |
电导率 EC/(μS·cm-1) | 0.044 | 0.127 | 0.232 | 0.050 | -0.026 | -0.210 | -0.238 |
全氮 TN/ (g·kg-1) | -0.016 | 0.357* | 0.286 | 0.011 | 0.334 | 0.336 | 0.145 |
全磷 TP/(g·kg-1) | 0.376* | 0.318 | 0.342* | 0.089 | 0.572*** | 0.379* | 0.343* |
全钾 TK/(g·kg--1) | -0.641*** | -0.294 | -0.055 | 0.108 | -0.132 | 0.011 | -0.071 |
容重 Bulk density/(g·cm-3) | -0.243 | -0.027 | -0.434** | -0.494** | -0.691*** | -0.653*** | -0.397** |
含水量 Moisture content/% | -0.072 | -0.094 | 0.002 | 0.174 | 0.013 | 0.505** | 0.300 |
表7 不同土层有机碳与土壤理化性质相关分析
Table 7 Correlation analysis between SOC and soil physicochemical properties at different soil layers
理化性质 Physicochemical property | 土层Soil layer/cm | ||||||
---|---|---|---|---|---|---|---|
0—10 | 10—20 | 20—30 | 30—40 | 40—50 | 50—70 | 70—100 | |
pH | -0.506*** | -0.452** | -0.541*** | -0.433** | -0.603*** | -0.318 | -0.226 |
电导率 EC/(μS·cm-1) | 0.044 | 0.127 | 0.232 | 0.050 | -0.026 | -0.210 | -0.238 |
全氮 TN/ (g·kg-1) | -0.016 | 0.357* | 0.286 | 0.011 | 0.334 | 0.336 | 0.145 |
全磷 TP/(g·kg-1) | 0.376* | 0.318 | 0.342* | 0.089 | 0.572*** | 0.379* | 0.343* |
全钾 TK/(g·kg--1) | -0.641*** | -0.294 | -0.055 | 0.108 | -0.132 | 0.011 | -0.071 |
容重 Bulk density/(g·cm-3) | -0.243 | -0.027 | -0.434** | -0.494** | -0.691*** | -0.653*** | -0.397** |
含水量 Moisture content/% | -0.072 | -0.094 | 0.002 | 0.174 | 0.013 | 0.505** | 0.300 |
土层 Soil layer/cm | 指标 Index | pH | 电导率 EC/(μs·cm-1) | 全氮TN/ (g·kg-1) | 全磷TP/ (g·kg-1) | 全钾TK/ (g·kg-1) | 容重Bulk density/(g·cm-3) | 含水量 Moisture content/% |
---|---|---|---|---|---|---|---|---|
0—10 | 关联度Correlation degree | 0.850 2 | 0.777 5 | 0.724 6 | 0.866 1 | 0.803 4 | 0.815 3 | 0.645 7 |
排序 Rank | ||||||||
10—20 | 关联度Correlation degree | 0.881 1 | 0.851 5 | 0.804 6 | 0.855 4 | 0.870 2 | 0.867 3 | 0.739 7 |
排序Rank | ||||||||
20—30 | 关联度Correlation degree | 0.878 3 | 0.831 6 | 0.849 4 | 0.891 2 | 0.894 1 | 0848 5 | 0.755 7 |
排序Rank | ||||||||
30—40 | 关联度Correlation degree | 0.813 3 | 0.757 6 | 0.777 5 | 0.842 1 | 0.831 2 | 0.7914 | 0.753 7 |
排序Rank | ||||||||
40—50 | 关联度Correlation degree | 0.821 2 | 0.735 6 | 0.734 7 | 0.831 1 | 0.774 3 | 0.747 5 | 0.763 4 |
排序Rank | ||||||||
50—70 | 关联度Correlation degree | 0.849 3 | 0.828 5 | 0.839 4 | 0.883 1 | 0.855 2 | 0.819 6 | 0.809 7 |
排序Rank | ||||||||
70—100 | 关联度Correlation degree | 0.820 3 | 0.775 6 | 0.790 5 | 0.824 2 | 0.828 1 | 0.811 4 | 0.771 7 |
排序Rank |
表8 不同土层土壤理化性质与土壤有机碳的关联度
Table 8 Correlation coefficients between soil physicochemical properties and SOC at different soil layers
土层 Soil layer/cm | 指标 Index | pH | 电导率 EC/(μs·cm-1) | 全氮TN/ (g·kg-1) | 全磷TP/ (g·kg-1) | 全钾TK/ (g·kg-1) | 容重Bulk density/(g·cm-3) | 含水量 Moisture content/% |
---|---|---|---|---|---|---|---|---|
0—10 | 关联度Correlation degree | 0.850 2 | 0.777 5 | 0.724 6 | 0.866 1 | 0.803 4 | 0.815 3 | 0.645 7 |
排序 Rank | ||||||||
10—20 | 关联度Correlation degree | 0.881 1 | 0.851 5 | 0.804 6 | 0.855 4 | 0.870 2 | 0.867 3 | 0.739 7 |
排序Rank | ||||||||
20—30 | 关联度Correlation degree | 0.878 3 | 0.831 6 | 0.849 4 | 0.891 2 | 0.894 1 | 0848 5 | 0.755 7 |
排序Rank | ||||||||
30—40 | 关联度Correlation degree | 0.813 3 | 0.757 6 | 0.777 5 | 0.842 1 | 0.831 2 | 0.7914 | 0.753 7 |
排序Rank | ||||||||
40—50 | 关联度Correlation degree | 0.821 2 | 0.735 6 | 0.734 7 | 0.831 1 | 0.774 3 | 0.747 5 | 0.763 4 |
排序Rank | ||||||||
50—70 | 关联度Correlation degree | 0.849 3 | 0.828 5 | 0.839 4 | 0.883 1 | 0.855 2 | 0.819 6 | 0.809 7 |
排序Rank | ||||||||
70—100 | 关联度Correlation degree | 0.820 3 | 0.775 6 | 0.790 5 | 0.824 2 | 0.828 1 | 0.811 4 | 0.771 7 |
排序Rank |
[1] | 国务院关于印发2030年前碳达峰行动方案的通知:国发〔2021〕23号[EB/OL].(2021-10-24)[2023-12-12]. . |
[2] | 张凯迪, 苏建兰. 中国防护林碳储量动态及潜力分析[J]. 山东林业科技, 2023, 53(4): 19-24, 6. |
ZHANG K D, SU J L. Carbon storage dynamics and potential analysis of shelterbelt in China [J]. J.Shandong For.Sci.Technol., 2023, 53(4): 19-24, 6. | |
[3] | LIY Y, ZHANGZ G, ZHAOZ Y, et al.. Zoning prediction and mapping of three-dimensional forest soil organic carbon: a case study of subtropical forests in southern China [J/OL]. Forests, 2023, 14(6):1197 [2023-12-12]. . |
[4] | 木衣那恰·吐斯甫汉, 武红旗, 侯艳娜, 等. 新疆北疆不同土壤类型有机碳含量变化特征及其影响因素分析[J]. 新疆农业科学, 2022, 59(6): 1513-1521. |
Tusifuhan Muyinaqia, WU H Q, HOU Y N, et al.. Changes in organic carbon content of different soil types in northern Xinjiang and analysis of their characteristics and influencing factors [J]. Xinjiang Agric. Sci., 2022, 59(6): 1513-1521. | |
[5] | 张中瑞, 赵志明, 邓智文, 等. 梅州市林地土壤有机碳储量及空间分布特征[J]. 林业与环境科学, 2022, 38(2): 153-158. |
ZHANG Z R, ZHAO Z M, DENG Z W,et al.. Soil organic carbon stocks and spatial distribution characteristics of forest land in Meizhou city [J]. For. Environ. Sci., 2022, 38(2):153-158. | |
[6] | 官惠玲, 樊江文, 李愈哲, 等. 海南岛天然草地有机碳分布格局及碳储量估算[J].生态环境学报, 2019, 28(6): 1092-1099. |
GUAN H L, FAN J W, LI Y Z, et al.. Estimation of carbon distribution and storage of natural grassland in Hainan island [J]. Ecol. Environ. Sci., 2019, 28(6): 1092-1099. | |
[7] | 任继周, 林慧龙. 草地土壤有机碳储量模拟技术研究[J]. 草业学报, 2013, 22(6): 280-294. |
REN J Z, LIN H L. Study on the simulation methods of grassland soil organic carbon:a review [J]. Acta Pratac. Sin.,2013, 22(6): 280-294. | |
[8] | ANGELOPOULOU T, TZIOLAS N, BALAFOUTIS A, et al.. Remote sensing techniques for soil organic carbon estimation: a review [J/OL]. Remote Sens., 2019, 11(6):676 [2023-12-12]. . |
[9] | 夏晓莹, 李思瑶, 王杰, 等. 地形因子对天山北坡天山云杉林土壤有机碳的影响[J]. 新疆农业科学, 2023, 60(4): 965-973. |
XIA X Y, LI S Y, WANG J, et al..Effects of topographic factors on soil organic carbon in Picea schrenkiana forest on the northern slope of Tianshan mountain [J]. Xinjiang Agric. Sci.,2023, 60(4): 965-973. | |
[10] | 黄从德, 张健, 杨万勤, 等. 四川森林土壤有机碳储量的空间分布特征[J]. 生态学报, 2009, 29(3): 1217-1225. |
HUANG C D, ZHANG J, YANG W Q, et al.. Spatial distribution characteristics of forest soil organic carbon stock in Sichuan province [J]. Acta Ecol. Sin., 2009, 29(3): 1217-1225. | |
[11] | 李振, 夏彬涵, 韩敏, 等. 重铬酸钾容量法测定地质样品中的有机碳[J]. 中国无机分析化学, 2024, 14(3): 330-336. |
LI Z, XIA B H, HAN M, et al.. Determination of organic carbon in geological samples by potassium dichromate volumetric method [J]. Chin. J. Inorganic Analyt. Chem., 2024, 14(3):330-336. | |
[12] | AHMAD M, MASOUND N, SAEED Y. Comparison of sampling and spectrophotometric determination of ammonia using nesslerization with standard ion chromatography in air monitoring of workplaces [J]. Int. J. Environ. Anal. Chem.,2023, 103(8): 1724-1732. |
[13] | 郭晨辉, 李和祥, 方芳, 等. 钼锑抗分光光度法对黄河表层沉积物中磷的形态分布及其吸附-解吸特征研究[J]. 光谱学与光谱分析, 2018, 38(1): 218-223. |
GUO C H, LI H X, FANG F, et al.. Study on distribution of phosphorus fractions and adsorption-desorption characteristics in surface sediments of the Yellow River by molybdenum antimony spectrophotometry [J]. Spectroscopy Spectral Analy.,2018, 38(1): 218-223. | |
[14] | 卢丽娟, 李金玉, 陈岚, 等. 连续流动分析仪-火焰光度计联用快速测定土壤、植物中的钠含量[J]. 中国土壤与肥料,2022(10): 247-252. |
LU L J, LI J Y, CHEN L, et al.. Rapid determination of sodium content in soil and plant by continuous flow analyzer-flame photometer [J]. Soil Fert. Sci. China, 2022(10): 247-252. | |
[15] | 郭敏亮, 高煜珠, 王忠. 用酸度计测定植物碳酸酐酶活性[J].植物生理学通讯, 1988(6): 59-61. |
GUO M L, GAO Y Z, WANG Z. Determination of plant carbonic anhydrase activity with pH-meter [J]. Plant Physiol. J.,1988(6): 59-61. | |
[16] | 余瑞宝, 顾强龙, 王巧梅. 电导率仪测量用校准溶液制备方法: [S]. 北京: 中国标准出版社, 1999. |
[17] | 成林, 杨光仙, 陈海波, 等. 烘干称重法测定土壤水分取样误差分析[J]. 气象与环境科学, 2009, 32(2): 33-36. |
CHENG L, YANG G X, CHEN H B, et al.. Analysis of sampling error for soil water measured by drying and weighing method [J]. Meteorol. Environ. Sci., 2009, 32(2): 33-36. | |
[18] | 张强, 谢君毅, 牛芸, 等. 不同施肥处理对杉木林土壤水源涵养功能的影响[J]. 中南林业科技大学学报, 2021, 41(2):112-122. |
ZHANG Q, XIE J Y, NIU Y, et al.. Effects of different fertilization treatments on soil's water conservation function of Chinese fir plantation [J]. J. Cent. South Univ. For. Technol.,2021, 41(2): 112-122. | |
[19] | WANG M J, ZHANG W F, JI Y J, et al.. Aboveground biomass retrieval in tropical and boreal forests using L-band airborne polarimetric observations [J/OL]. Forests, 2023, 14(5): 887 [2023-12-12]. . |
[20] | 周蓉, 赵天忠, 吴发云. 基于Landsat 8遥感影像的地上生物量模型反演研究[J]. 西北林学院学报, 2022, 37(2): 186-192. |
ZHOU R, ZHAO T Z, WU F Y. Aboveground biomass model based on landsat 8 remote sensing images [J]. J. Northwest For. Univ., 2022, 37(2): 186-192. | |
[21] | 许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报,2020, 40(11): 147-155. |
XU Z Y, LI Y C, LI M Y, et al.. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image [J]. J. Cent. South Univ. For. Technol., 2020, 40(11): 147-155. | |
[22] | 王启元, 赵艳玲, 房铄东, 等. 基于多光谱遥感的裸土土壤含水量反演研究[J].矿业科学学报, 2020, 5(6): 608-615. |
WANG Q Y, ZHAO Y L, FANG S D, et al.. Inversion of soil moisture in bare soil based on multi-spectral remote sensing [J].J. Min. Sci. Technol., 2020, 5(6): 608-615. | |
[23] | SALANI M G, LISSONI M, BIANCHINI G, et al.. Soil organic carbon estimation in Ferrara (Northern Italy) combining in situ geochemical analyses and hyperspectral remote sensing [J/OL]. Environments, 2023, 10(10): 173 [2023-12-12]. . |
[24] | CHENG X K, ZHOU T, LIU S H, et al.. Effects of climate on variation of soil organic carbon and alkali-hydrolyzed nitrogen in subtropical forests: a case study of Zhejiang province, China [J/OL]. Forests, 2023, 14 (5):914 [2023-12-12]. . |
[25] | CAO L J, HE X B, CHEN S, et al.. Assessing forest quality through forest growth potential, an index based on improved CatBoost machine learning [J/OL]. Sustainability, 2023, 15 (11): 8888 [2023-12-12]. . |
[26] | ZHU WD, QIAN CY, HE N Y, et al.. Research on chlorophyll-a concentration retrieval based on BP neural network model—case study of Dianshan lake, China [J]. Sustainability, 2022, 14 (14): 8894-8894. |
[27] | 刘靖朝, 熊黑钢, 何旦旦, 等. 基于不同人为干扰的土壤全量氮磷钾空间变异性研究[J]. 干旱地区农业研究, 2019, 37(1): 116-122, 159. |
LIU J C, XIONG H G, HE D D, et al.. Spatial variability of total nitrogen,phosphorus,and potassium in soil under different human disturbances [J].Agric. Res. Arid Areas, 2019, 37(1):116-122, 159. | |
[28] | 乔娟峰. 新疆阜康荒地土壤有机质空间变异性及其光谱估算研究[D]. 乌鲁木齐: 新疆大学, 2018.2018. |
QIAO J F. Spatial variability and spectral inversion of soil organic matter in Fukang wasteland, Xinjiang [D]. Urumqi: Xinjiang University, 2018. | |
[29] | WEI S G, DAI Y J, LIU B Y, et al.. A China data set of soil properties for land surface modeling [J]. J. Adv. Model. Earth Syst., 2013, 5(2): 212-224. |
[30] | HENGL T, MENDES DE JESUS J, HEUVELINK G B, et al.. SoilGrids 250m:global gridded soil information based on machine learning [J/OL].PLoS One,2017,12(2):e0169748 [2023-12-12]. . |
[31] | LIU F, WU H Y, ZHAO Y G, et al.. Mapping high resolution national soil information grids of China [J].Sci. Bull., 2022, 67(3): 328-340. |
[32] | WANG T L, WANG G Y, INNES L J, et al.. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific [J]. Front. Agric. Sci. Eng., 2017, 4(4): 448-458. |
[33] | 沈琛琛, 肖文发, 朱建华, 等. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J].林业科学, 2024,60(3): 65-77. |
SHENG C C, XIAO W F, ZHU J H, et al.. Characterization of soil organic carbon and key influencing factors of natural forests in central China based on machine learning algorithms [J]. Sci. Silvae Sin., 2024, 60(3): 65-77. | |
[34] | LIU Z P, SHAO M G, WANG Y Q. Estimating soil organic carbon across a large-scale region: a state-space modeling approach [J]. Soil Sci., 2012, 177(10): 607-618. |
[35] | EVRENDILEK F, CELIK I, KILIC S. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest,grassland,and cropland ecosystems in Turkey [J]. J. Arid Environ., 2004, 59(4): 743-752. |
[36] | ZHANG Q Y, YAO Y F, JIA X X, et al.. Estimation of soil organic carbon under different vegetation types on a hillslope of China's northern Loess Plateau using state-space approach [J]. Canadian J. Soil Sci., 2017, 97(4): 667-677. |
[37] | 张玲, 张东来, 毛子军. 中国温带阔叶红松林不同演替系列土壤有机碳矿化特征[J]. 生态学报, 2017, 37(19): 6370-6378. |
ZHANG L, ZHANG D L, MAO Z J.Characteristic mineralization of soil organic carbon in different successional series of broadleaved Korean pine forests in the temperate zone in China [J]. Acta Ecol. Sin., 2017, 37(19): 6370-6378. | |
[38] | ZHANG X, LI X, JI X D, et al.. Elevation and total nitrogen are the critical factors that control the spatial distribution of soil organic carbon content in the shrubland on the Bashang Plateau,China [J/OL]. Catena, 2021, 204: 105415 [2023-12-12]. . |
[39] | LU X K, MAO Q G, WANG Z H, et al.. Long-term nitrogen addition decreases soil carbon mineralization in an N-rich primary tropical forest [J]. Forests, 2021, 12(6): 734-734. |
[40] | 方华军, 耿静, 程淑兰, 等. 氮磷富集对森林土壤碳截存的影响研究进展[J]. 土壤学报, 2019, 56(1): 1-11. |
FANG H J, GENG J, CHENG S L,et al.. Effects of nitrogen and phosphorus enrichment on carbon sequestration in forest soils:a review [J]. Acta Pedol. Sin., 2019, 56(1): 1-11. | |
[41] | 郭亮娜, 李江荣, 张波, 等. 森林土壤有机碳的影响因子及其研究进展[J]. 湖南生态科学学报, 2023, 10(3): 85-91. |
GUO L N, LI J R, ZHANG B, et al.. Influencing factors of forest soil organic carbon and its research progess [J]. J. Hunan Ecol. Sci., 2023, 10(3): 85-91. |
[1] | 宋佳佳, 麻云霞, 郭靖捷, 宝孟克那顺, 谷忠厚, 刘坤, 李治龙, 韩胜利, 康霞, 热瓦迪. 内蒙古黄土丘陵区天然侧柏种群空间格局及种内关联性研究[J]. 中国农业科技导报, 2024, 26(9): 203-212. |
[2] | 张继东, 张亚雄, 程伟, 蒲莉, 柳路行, 王亚明. 生物质炭和有机肥配施对苹果重茬育苗地土壤理化性质和微生物群落特征的影响[J]. 中国农业科技导报, 2024, 26(8): 213-222. |
[3] | 杨娅琳, 吴峰婧琳, 陈健鑫, 武自强, 刘丽, 张东华, 马焕成, 伍建榕. 油茶根腐病根际土壤、根系内真菌群落结构和多样性分析[J]. 中国农业科技导报, 2024, 26(7): 121-135. |
[4] | 王子凡, 李燕, 张庆银, 王丹丹, 师建华, 耿晓彬, 田东良, 钟增明, 赵晓明, 齐连芬. 微生物菌剂对设施番茄主要病害及土壤微生物群落的影响[J]. 中国农业科技导报, 2024, 26(6): 102-112. |
[5] | 高丽敏, 顾泽辰, 贡雪菲, 崔联明, 郭东森, 周影, 王琳, 魏启舜. 果园生草对中国果树-土壤系统生产性能影响的Meta分析[J]. 中国农业科技导报, 2024, 26(4): 184-194. |
[6] | 张桐毓, 勾颖, 李琪, 杨莉. 人参锈腐病对人参品质和土壤相关因子的影响研究[J]. 中国农业科技导报, 2024, 26(3): 124-133. |
[7] | 周旭东, 韩天华, 申云鑫, 施竹凤, 贺彪, 杨明英, 裴卫华, 何永宏, 杨佩文. 4种轮作模式下长期连作烟田土壤微生态的响应特征[J]. 中国农业科技导报, 2024, 26(3): 174-187. |
[8] | 张二豪, 刘盼盼, 何萍, 简阅, 徐雨婷, 陈诚欣, 禄亚洲, 兰小中, 索朗桑姆. 甘青青兰根际土壤理化性质及微生物群落结构特征分析[J]. 中国农业科技导报, 2024, 26(3): 201-213. |
[9] | 马铭泽, 张帆, 王田, 李文芳, 毛娟, 陈佰鸿, 马宗桓. 不同肥料配施对樱桃园土壤及幼树生长的影响[J]. 中国农业科技导报, 2024, 26(11): 191-203. |
[10] | 郭靖捷, 任晓萌, 蒙仲举, 王涛, 祁帅, 宋佳佳, 宝孟克那顺, 韩胜利. 半干旱风沙草原区盐湖植物防护体系土壤理化性状特征[J]. 中国农业科技导报, 2024, 26(1): 182-192. |
[11] | 肖锐, 谭璐, 吴亮, 张皓, 郭佳源, 杨海君. 镉胁迫下地肤根际与非根际土壤微生物群落结构及多样性[J]. 中国农业科技导报, 2023, 25(8): 203-215. |
[12] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[13] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
[14] | 庞喆, 王启龙, 李娟. 不同土壤改良剂对陕北低洼盐碱地土壤理化性质及水稻产量和经济效益的影响[J]. 中国农业科技导报, 2023, 25(6): 174-180. |
[15] | 孟璐, 范敬文, 赛欣娱, 曾路生, 宋祥云, 崔德杰. 石灰对苹果园土壤改良和植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 197-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||