中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (8): 187-201.DOI: 10.13304/j.nykjdb.2024.0148
• 生物制造 资源生态 • 上一篇
许海涛1(), 马红珍1(
), 王文文2, 范文祥3, 许波1, 张军刚1, 郭海斌1, 王友华1
收稿日期:
2024-03-01
接受日期:
2024-07-12
出版日期:
2025-08-15
发布日期:
2025-08-26
通讯作者:
马红珍
作者简介:
许海涛 E-mail: xuht0101@126.com;
基金资助:
Haitao XU1(), Hongzhen MA1(
), Wenwen WANG2, Wenxiang FAN3, Bo XU1, Jungang ZHANG1, Haibin GUO1, Youhua WANG1
Received:
2024-03-01
Accepted:
2024-07-12
Online:
2025-08-15
Published:
2025-08-26
Contact:
Hongzhen MA
摘要:
为探究基于有效积温的玉米株高与茎粗的动态发育及其积温模型和特征参数,以驻玉216、裕丰303、中科玉505、郑单958为试验材料,在2023年通过春、夏播进行大田试验,采用Logistic模型拟合玉米株高与茎粗基于有效积温的动态发育方程,利用其特征参数分析玉米动态发育特征。结果表明,春、夏播玉米株高、茎粗与有效积温呈极显著相关,相关系数春播达0.96以上,夏播达0.94以上,随有效积温呈“S”型单向递增动态变化趋势。以有效积温为自变量建立的玉米株高与茎粗Logistic模型具有较好生物学意义,株高方程的决定系数春播在0.982 7~0.996 8、夏播在0.982 8~0.993 5;茎粗方程的决定系数春播在0.989 4~0.999 0、夏播在0.987 7~0.998 7;相关系数分别在0.991 3~0.998 4和0.993 8~0.999 5;标准化均方根误差株高春播在3.55%~10.71%、夏播在6.96%~10.30%,茎粗春播在14.93%~26.84%、夏播在5.93%~13.75%,模拟曲线与实测值拟合度较高,达到良好预测效果。株高最大生长速率所需有效积温、进入快增期所需有效积温、进入缓增期所需有效积温春播表现为中科玉505、裕丰303>郑单958、驻玉216,夏播表现为裕丰303>驻玉216>中科玉505>郑单958;茎粗最大生长速率所需有效积温春播4个品种间差异不显著,夏播表现为驻玉216>郑单958、裕丰303>中科玉505。综上可知,Logistic模型可较好地模拟和预测基于有效积温的玉米株高与茎粗动态发育,能够预估玉米长势,具有较强的利用价值。研究结果为利用有效积温预测玉米株高与茎粗动态发育提供理论依据。
中图分类号:
许海涛, 马红珍, 王文文, 范文祥, 许波, 张军刚, 郭海斌, 王友华. 基于有效积温的玉米株高与茎粗动态发育及其积温模型研究[J]. 中国农业科技导报, 2025, 27(8): 187-201.
Haitao XU, Hongzhen MA, Wenwen WANG, Wenxiang FAN, Bo XU, Jungang ZHANG, Haibin GUO, Youhua WANG. Research on Dynamic Development and Accumulated Temperature Model of Maize Plant Height and Stem Diameter Based on Effective Accumulated Temperature[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 187-201.
图2 玉米有效积温与株高、茎粗的相关性注:**表示在P<0.01水平显著相关。
Fig. 2 Correlations between effective accumulated temperature and plant height and stem diameterNote:** indicates significant correlation at P<0.01 level.
图3 玉米株高随有效积温的动态变化注:同一折线上不同小写字母表示差异在P<0.05水平显著。
Fig. 3 Dynamic changes of maize plant height with effective accumulated temperatureNote:Different lowercase letters on the same line indicate significant differences at P<0.05 level.
播季 Sowing season | 品种 Variety | 参数Parameter | 决定系数 R2 | 剩余平方和 SSE | F值 F value | 检验概率Probability Pr>F | ||
---|---|---|---|---|---|---|---|---|
a | b | k | ||||||
春播 Spring sowing | 驻玉216 ZY216 | 233.24 | 42.09 | 0.006 9 | 0.982 7 | 99 139.19 | 450.11 | <0.000 1 |
裕丰303 YF303 | 239.66 | 59.87 | 0.006 8 | 0.994 2 | 40 063.98 | 1 135.74 | <0.000 1 | |
中科玉505 ZKY505 | 248.26 | 67.96 | 0.006 7 | 0.994 7 | 66 035.39 | 1 074.18 | <0.000 1 | |
郑单958 ZD958 | 237.79 | 39.07 | 0.006 6 | 0.996 8 | 66 084.56 | 2 576.78 | <0.000 1 | |
夏播 Summer sowing | 驻玉216 ZY216 | 201.64 | 45.98 | 0.006 1 | 0.993 5 | 102 607.46 | 948.12 | <0.000 1 |
裕丰303 YF303 | 231.29 | 55.89 | 0.006 2 | 0.992 8 | 143 843.34 | 801.41 | <0.000 1 | |
中科玉505 ZKY505 | 262.36 | 56.53 | 0.006 7 | 0.984 1 | 108 593.54 | 371.64 | <0.000 1 | |
郑单958 ZD958 | 256.71 | 52.12 | 0.006 8 | 0.982 8 | 107 427.38 | 390.54 | <0.000 1 |
表1 基于有效积温的玉米株高动态方程参数
Table 1 Dynamic equation parameters of maize plant height based on effective accumulated temperature
播季 Sowing season | 品种 Variety | 参数Parameter | 决定系数 R2 | 剩余平方和 SSE | F值 F value | 检验概率Probability Pr>F | ||
---|---|---|---|---|---|---|---|---|
a | b | k | ||||||
春播 Spring sowing | 驻玉216 ZY216 | 233.24 | 42.09 | 0.006 9 | 0.982 7 | 99 139.19 | 450.11 | <0.000 1 |
裕丰303 YF303 | 239.66 | 59.87 | 0.006 8 | 0.994 2 | 40 063.98 | 1 135.74 | <0.000 1 | |
中科玉505 ZKY505 | 248.26 | 67.96 | 0.006 7 | 0.994 7 | 66 035.39 | 1 074.18 | <0.000 1 | |
郑单958 ZD958 | 237.79 | 39.07 | 0.006 6 | 0.996 8 | 66 084.56 | 2 576.78 | <0.000 1 | |
夏播 Summer sowing | 驻玉216 ZY216 | 201.64 | 45.98 | 0.006 1 | 0.993 5 | 102 607.46 | 948.12 | <0.000 1 |
裕丰303 YF303 | 231.29 | 55.89 | 0.006 2 | 0.992 8 | 143 843.34 | 801.41 | <0.000 1 | |
中科玉505 ZKY505 | 262.36 | 56.53 | 0.006 7 | 0.984 1 | 108 593.54 | 371.64 | <0.000 1 | |
郑单958 ZD958 | 256.71 | 52.12 | 0.006 8 | 0.982 8 | 107 427.38 | 390.54 | <0.000 1 |
图4 基于有效积温的玉米株高实测值与模拟值检验评估A:春播;B:夏播
Fig. 4 Verification and evaluation of measured and simulated values of maize plant height based on effective accumulated temperatureA:Spring sowing;B:Summer sowing
图6 基于有效积温的玉米株高发育动态的Logistic模型特征参数A:春播;B:夏播。V1—最大生长速率;V2-快增期平均生长速率。T1—最大生长速率所需有效积温;T2-进入快增期所需有效积温;T3-进入缓增期所需有效积温;同一指标中不同小写字母表示差异在P<0.05水平显著
Fig. 6 Logistic model characteristic parameters of maize plant height development dynamics based on effective accumulated temperatureA:Spring sowing;B:Summer sowing. V1 —The maximum growth rate;V2 — Average growth rate during the rapid growth period. T1— Accumulated temperature required for the maximum growth rate; T2 — Accumulated temperature required to enter the rapid increase period; T3 — Accumulated temperature required to enter the slow increase period; Different lowercase letters of same index indicate significant differences at P<0.05 level
图7 玉米茎粗随有效积温的动态变化注:同一折线上不同小写字母表示差异在P<0.05水平显著。
Fig. 7 Dynamic changes of maize stem diameter with effective accumulated temperatureNote:Different lowercase letters on the same line indicate significant differences at P<0.05 level.
播季 Sowing season | 品种 Variety | 参数Parameter | 决定系数R2 | 剩余平方和 SSE | F值 F value | 检验概率Probability Pr>F | ||
---|---|---|---|---|---|---|---|---|
a | b | k | ||||||
春播 Spring sowing | 驻玉216 ZY216 | 24.08 | 21.10 | 0.007 6 | 0.999 0 | 299 652.06 | 9 174.60 | <0.000 1 |
裕丰303 YF303 | 24.72 | 36.16 | 0.008 8 | 0.989 4 | 21 764.73 | 1 422.21 | <0.000 1 | |
中科玉505 ZKY505 | 25.16 | 24.25 | 0.007 7 | 0.996 1 | 27 357.22 | 2 428.83 | <0.000 1 | |
郑单958 ZD958 | 25.51 | 23.43 | 0.007 9 | 0.996 8 | 39 146.03 | 2 924.14 | <0.000 1 | |
夏播 Summer sowing | 驻玉216 ZY216 | 23.96 | 16.05 | 0.005 6 | 0.997 1 | 37 941.46 | 3 567.60 | <0.000 1 |
裕丰303 YF303 | 24.48 | 19.68 | 0.006 7 | 0.998 7 | 65 419.44 | 6 376.94 | <0.000 1 | |
中科玉505 ZKY505 | 26.79 | 32.46 | 0.008 3 | 0.987 7 | 4 564.01 | 1 378.22 | <0.000 1 | |
郑单958 ZD958 | 26.73 | 24.48 | 0.007 0 | 0.997 5 | 148 894.51 | 8 834.64 | <0.0001 |
表2 基于有效积温的玉米茎粗动态方程参数
Table 2 Dynamic equation parameters of maize stem diameter based on effective accumulated temperature
播季 Sowing season | 品种 Variety | 参数Parameter | 决定系数R2 | 剩余平方和 SSE | F值 F value | 检验概率Probability Pr>F | ||
---|---|---|---|---|---|---|---|---|
a | b | k | ||||||
春播 Spring sowing | 驻玉216 ZY216 | 24.08 | 21.10 | 0.007 6 | 0.999 0 | 299 652.06 | 9 174.60 | <0.000 1 |
裕丰303 YF303 | 24.72 | 36.16 | 0.008 8 | 0.989 4 | 21 764.73 | 1 422.21 | <0.000 1 | |
中科玉505 ZKY505 | 25.16 | 24.25 | 0.007 7 | 0.996 1 | 27 357.22 | 2 428.83 | <0.000 1 | |
郑单958 ZD958 | 25.51 | 23.43 | 0.007 9 | 0.996 8 | 39 146.03 | 2 924.14 | <0.000 1 | |
夏播 Summer sowing | 驻玉216 ZY216 | 23.96 | 16.05 | 0.005 6 | 0.997 1 | 37 941.46 | 3 567.60 | <0.000 1 |
裕丰303 YF303 | 24.48 | 19.68 | 0.006 7 | 0.998 7 | 65 419.44 | 6 376.94 | <0.000 1 | |
中科玉505 ZKY505 | 26.79 | 32.46 | 0.008 3 | 0.987 7 | 4 564.01 | 1 378.22 | <0.000 1 | |
郑单958 ZD958 | 26.73 | 24.48 | 0.007 0 | 0.997 5 | 148 894.51 | 8 834.64 | <0.0001 |
图8 基于有效积温的玉米茎粗实测值与模拟值检验评估A:春播;B:夏播
Fig. 8 Verification and evaluation of the measured and simulated values of maize stem diameter based on effective accumulated temperatureA:Spring sowing;B:Summer sowing
图10 基于有效积温的春、夏播玉米茎粗动态变化的Logistic模型特征参数A:春播;B:夏播。V1—最大生长速率;V2-快增期平均生长速率。T1—最大生长速率所需有效积温;T2-进入快增期所需有效积温;T3-进入缓增期所需有效积温;同一指标中不同小写字母表示差异在P<0.05水平显著
Fig. 10 Logistic model characteristic parameters of maize stem diameter dynamic changes based on effective accumulated temperatureA:Spring sowing;B:Summer sowing. V1 —The maximum growth rate;V2 — Average growth rate during the rapid growth period. T1— Accumulated temperature required for the maximum growth rate; T2 — Accumulated temperature required to enter the rapid increase period; T3 — Accumulated temperature required to enter the slow increase period; Different lowercase letters of same index indicate significant differences at P<0.05 level
[1] | 陈斌. 种植密度对不同株高玉米茎秆抗倒伏能力的影响[J]. 农业技术与装备, 2023(12): 154-155, 158. |
CHEN B. Effect of planting density on stalk lodging resistance of maize with different plant height [J]. Agric. Technol. Equip., 2023(12): 154-155, 158. | |
[2] | 杨晨曦, 周文期, 周香艳, 等. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66. |
YANG C X, ZHOU W Q, ZHOU X Y, et al.. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agron. Sin., 2024, 50(1): 55-66. | |
[3] | 苗艳龙, 彭程, 高阳, 等. 基于地基激光雷达的玉米株高与茎粗自动测量研究[J]. 农业机械学报, 2021, 52(): 43-50. |
MIAO Y L, PENG C, GAO Y, et al.. Automatic measurement of plant height and stem thickness of maize based on terrestrial laser scanning [J]. Trans. Chin. Soc. Agric. Mach., 2021, 52(S1): 43-50. | |
[4] | 陈杨, 王磊, 白由路, 等. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系[J]. 中国农业科学, 2021, 54(22): 4761-4777. |
CHEN Y, WANG L, BAI Y L, et al.. Quantitative relationship between effective accumulated temperature and plant height & leaf area index of summer maize under different nitrogen, phosphorus and potassium levels [J]. Sci. Agric. Sin., 2021, 54(22): 4761-4777. | |
[5] | 陈震, 程千, 徐洪刚, 等. 不同水肥处理下夏玉米株高、生物量响应特征及光谱反演[J]. 干旱地区农业研究, 2023, 41(4): 198-207. |
CHEN Z, CHENG Q, XU H G, et al.. Inversion model of summer maize plant height and biomass under different water and fertilizer treatments based on UAV spectra [J]. Agric. Res. Arid Areas, 2023, 41(4): 198-207. | |
[6] | 陈杨. 有效积温与夏玉米生长发育和氮磷钾积累定量化研究[D]. 北京: 中国农业科学院, 2021. |
CHEN Y. Quantitative study on effective accumulated temperature, growth and development and accumulation of nitrogen, phosphorus and potassium in summer maize [D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
[7] | 周捷成,周富亮,梁思维,等.糯玉米茎粗系数的配合力及遗传参数分析[J].耕作与栽培,2023,43(1):39-42. |
ZHOU J C, ZHOU F L, LIANG S W, et al.. Analysis of combining ability and genetic parameters of stem diameter coefficient of waxy maize [J]. Till. Cultiv., 2023,43(1):39-42. | |
[8] | 付华, 李猛, 刘兴舟, 等. 气象因子与玉米产量及其构成因素的相关性分析[J]. 作物研究, 2023, 37(4): 343-348. |
FU H, LI M, LIU X Z, et al.. Correlation analysis of meteorological factors with maize yield and its components [J]. Crop Res., 2023, 37(4): 343-348. | |
[9] | 蔡甲冰,常宏芳,陈鹤,等.基于不同有效积温的玉米干物质累积量模拟[J].农业机械学报,2020,51(5):263-271. |
CAI J B, CHANG H F, CHEN H, et al.. Simulation of maize dry matter accumulation in normalized logistic model with different effective accumulated temperatures in field [J]. Trans.Chin. Soc. Agric. Mach., 2020,51(5):263-271. | |
[10] | 钱春荣, 王荣焕, 于洋, 等. 生态区对不同熟期玉米品种生长发育与有效积温生产效率的影响[J]. 黑龙江农业科学, 2020(9): 1-8. |
QIAN C R, WANG R H, YU Y, et al.. Effects of ecological zone on growth and development and effective accumulated temperature production efficiency of maize varieties differing in maturity [J]. Heilongjiang Agric. Sci., 2020(9): 1-8. | |
[11] | 郑国清,段韶芬,阎书波,等.玉米叶龄与器官发育模拟模型[J].玉米科学,2003,11(4):63-66. |
ZHENG G Q, DUAN S F, YAN S B, et al.. Simulation models of the development of leaf age and organs in maize [J]. J. Maize Sci., 2003,11(4):63-66. | |
[12] | 林忠辉,项月琴,莫兴国,等.夏玉米叶面积指数增长模型的研究[J].中国生态农业学报,2003,11(4):69-72. |
LIN Z H, XIANG Y Q, MO X G, et al.. Normalized leaf area index model for summer maize [J]. Chin. J. Eco-Agric., 2003,11(4):69-72. | |
[13] | 陈杨,徐孟泽,王玉红,等.有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J].中国农业科学,2022,55(15):2973-2987. |
CHEN Y, XU M Z, WANG Y H, et al.. Quantitative study on effective accumulated temperature and dry matter and nitrogen accumulation of summer maize under different nitrogen supply levels [J]. Sci. Agric. Sin., 2022, 55(15):2973-2987. | |
[14] | 简小春,凯铃,李尧,等.基于有效积温的甜玉米茎粗模拟研究[J].仲恺农业工程学院学报,2014,27(2):10-12. |
JIAN X C, KAI L, LI Y, et al.. Simulation research for sweet corn stalk diameter based on effective accumulated temperature [J]. J. Zhongkai Univ. Agric. Eng., 2014, 27(2):10-12. | |
[15] | 仇瑞承,苗艳龙,张漫,等.基于线性回归的玉米生物量预测模型及验证[J].农业工程学报,2018,34(10):131-137. |
QIU R C, MIAO Y L, ZHANG M, et al.. Modeling and verification of maize biomass based on linear regression analysis [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(10):131-137. | |
[16] | 李明,唐炳雪,卞乐怡,等.不同钾肥水平下糯玉米茎粗和株高变化规律分析[J].仲恺农业工程学院学报,2018,31(3):20-23, 29. |
LI M, TANG B X, BIAN L Y, et al.. Effect of different levels of potassium fertilizer on variation of stem diameter and plant height in waxy maize [J]. J. Zhongkai Univ. Agric. Eng., 2018,31(3):20-23, 29. | |
[17] | 张书萍,王延波,赵海岩,等.东北春玉米区温度条件与玉米生长发育及产量形成的量化分析[J].玉米科学,2022,30(3):54-62. |
ZHANG S P, WANG Y B, ZHAO H Y, et al.. Quantitative analysis of temperature conditions and maize growth and yield formation in spring maize region of Northeast China [J]. J.Maize Sci., 2022, 30(3):54-62. | |
[18] | BANNAYAN M, HOOGENBOOM G. Using pattern recognition for estimating cultivar coefficients of a crop simulation model [J]. Field Crops Res., 2009,111(3):290-302. |
[19] | 张善炫,黄影华,张华杰,等.不同氮肥梯度下甜玉米株高和茎粗变化规律研究[J].湖北农业科学,2020,59(12):17-21. |
ZHANG S X, HUANG Y H, ZHANG H J, et al.. Study on the variation of plant height and stem thickness of sweet corn under different nitrogen fertilizer levels [J]. Hubei Agric. Sci.,2020, 59(12):17-21. | |
[20] | 魏湜,曹广才,高洁,等.玉米生态基础[M].北京:中国农业出版社,2010:40-49. |
[21] | 霍仕平, 晏庆九, 黄文章, 等. 温度和日长对玉米植株性状的效应[J]. 中国农业气象, 1996(5): 24-27. |
HUO S P, YAN Q J, HUANG W Z, et al.. The effects of temperature and day length on maize plant traits [J]. Chin. J. Agrometeorol., 1996 (5): 24-27. | |
[22] | 袁海燕,张晓煜,亢艳莉.宁夏灌区玉米径粗与气温的关系[J].农业科学研究,2007,28(2):5-10. |
YUAN H Y, ZHANG X Y, KANG Y L. On the relationship between stem-diameter of corn and temperature in Ningxia irrigation area [J]. J. Agric. Sci., 2007, 28(2):5-10. | |
[23] | 周文期,张贺通,何海军,等.调控玉米株高和穗位高候选基因Zmdle1的定位[J].中国农业科学,2023,56(5):821-837. |
ZHOU W Q, ZHANG H T, HE H J, et al.. Candidate gene localization of Zmdle1 gene regulating plant height and ear height in maize [J]. Sci. Agric. Sin., 2023, 56(5):821-837. | |
[24] | 袁如芯, 孟新梅, 杨荣, 等. 不同灌水定额处理下基于有效积温玉米生长状况模拟研究[J]. 干旱区资源与环境, 2024, 38(3): 132-143. |
YUAN R X, MENG X M, YANG R, et al.. Effect of different irrigating quotas on growth of maize : a perspective of effective accumulative temperature [J]. J. Arid Land Resour. Environ., 2024, 38(3): 132-143. | |
[25] | 高伟, 金继运, 何萍, 等. 我国北方不同地区玉米养分吸收及累积动态研究[J]. 植物营养与肥料学报, 2008, 14(4): 623-629. |
GAO W, JIN J Y, HE P, et al.. Dynamics of maize nutrient uptake and accumulation in different regions of Northern China [J]. Plan. Nutr. Fert. Sci., 2008, 14(4): 623-629. | |
[26] | 赵凡. 基于Richards模型的全膜双垄沟播与传统栽培模式玉米生长势差异研究[J]. 干旱地区农业研究, 2016, 34(4): 211-217. |
ZHAO F. Research on growth variations of maize by whole film double furrow sowing based on Richards model from traditional cultivation mode [J]. Agric. Res. Arid Areas, 2016, 34(4): 211-217. | |
[27] | 李向岭,赵明,李从锋,等.播期和密度对玉米干物质积累动态的影响及其模型的建立[J].作物学报,2010,36(12):2143-2153. |
LI X L, ZHAO M, LI C F, et al.. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize [J]. Acta Agron.Sin., 2010, 36(12):2143-2153. | |
[28] | 王雪蓉, 张润芝, 李淑敏, 等. 不同供氮水平下玉米/大豆间作体系干物质积累和氮素吸收动态模拟[J]. 中国生态农业学报, 2019, 27(9): 1354-1363. |
WANG X R, ZHANG R Z, LI S M, et al.. Simulation of dry matter accumulation and nitrogen absorption in a maize/soybean intercropping system supplied with different nitrogen levels [J]. Chin. J. Eco-Agric., 2019, 27(9): 1354-1363. |
[1] | 段丽君, 丁献华, 李为琴, 闫双堆. 栎树皮与玉米秸秆共热解行为及热解产物分析研究[J]. 中国农业科技导报, 2025, 27(5): 164-172. |
[2] | 毛桃桃, 赵小强, 柏小栋, 余斌. 低温胁迫对玉米幼苗光合性能、抗氧化酶系统及相关基因表达的影响[J]. 中国农业科技导报, 2025, 27(5): 49-60. |
[3] | 侯赛赛, 仝姗姗, 王鹏企, 谢冰雪, 张瑞芳, 王鑫鑫. 生物炭和秸秆对不同作物生长性状和养分吸收的影响[J]. 中国农业科技导报, 2025, 27(4): 179-191. |
[4] | 王子豪, 周雪, 张冬寒, 梁红怡, 王岩, 赵子昂, 陈清. 含腐植酸水溶肥料对玉米苗生长及土壤改良的影响[J]. 中国农业科技导报, 2025, 27(4): 209-220. |
[5] | 张余莽, 陈贵娟, 常洪艳, 王永恒, 刘淑霞, 应允秀. 水分胁迫下新型土壤保水剂对玉米苗期发育的影响[J]. 中国农业科技导报, 2025, 27(1): 201-210. |
[6] | 石纹碹, 谭金芳, 张倩, 李岚涛, 王宜伦. 一次性施肥对不同生态区夏玉米产量和氮肥效率的影响[J]. 中国农业科技导报, 2024, 26(9): 193-202. |
[7] | 吴梅, 张金珠, 王振华, 刘健, 温越, 李宣志. 水气互作对膜下滴灌玉米生理生长及产量的影响[J]. 中国农业科技导报, 2024, 26(8): 189-200. |
[8] | 高山, 闫晓翠, 王楠, 张梦洁, 李友鹏, 刁文达, 段会军. 基于10K SNP芯片分析255份玉米种质资源的遗传多样性[J]. 中国农业科技导报, 2024, 26(8): 20-33. |
[9] | 刘忠祥, 周文期, 李永生, 王晓娟, 杨彦忠, 连晓荣, 何海军, 周玉乾. 玉米矮秆突变体20F421的表型鉴定及遗传分析[J]. 中国农业科技导报, 2024, 26(6): 22-29. |
[10] | 曹炎, 杨艳涛, 王国刚. 我国玉米生产与消费时空格局演变及匹配性分析[J]. 中国农业科技导报, 2024, 26(5): 1-10. |
[11] | 徐佳睿, 王逸茹, 赵绍赓, 李坤, 郑军. 玉米木质素合成途径基因ZmCCoAOMT1功能研究及转录组分析[J]. 中国农业科技导报, 2024, 26(5): 30-43. |
[12] | 安东升, 严程明, 刘洋, 赵宝山, 孔冉, 苏俊波, 徐志军. 甘蔗间作系统生产力分析及适宜品种筛选[J]. 中国农业科技导报, 2024, 26(4): 37-45. |
[13] | 赵亚凤, 王孟雪, 王德帅, 王冬冬, 李园, 胡峻峰. 基于CP-DeepLabv3+的玉米根系图像分割[J]. 中国农业科技导报, 2024, 26(3): 110-116. |
[14] | 吴占清, 陈威, 赵展, 许海良, 李豪远, 彭星星, 陈东旭, 张明月. 玉米GRAS基因家族的全基因组鉴定及生物信息学分析[J]. 中国农业科技导报, 2024, 26(3): 15-25. |
[15] | 丛文成, 袁立敏, 蒙仲举, 杨宇. 玉米芯颗粒对风沙土毛管水运移和蒸发特性的影响[J]. 中国农业科技导报, 2024, 26(2): 198-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||