中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (3): 15-25.DOI: 10.13304/j.nykjdb.2023.0551
吴占清1(), 陈威1(
), 赵展2, 许海良1, 李豪远1, 彭星星1, 陈东旭1, 张明月1
收稿日期:
2023-07-17
接受日期:
2023-09-08
出版日期:
2024-03-15
发布日期:
2024-03-07
通讯作者:
陈威
作者简介:
吴占清 E-mail:13383782062@163.com;
基金资助:
Zhanqing WU1(), Wei CHEN1(
), Zhan ZHAO2, Hailiang XU1, Haoyuan LI1, Xingxing PENG1, Dongxu CHEN1, Mingyue ZHANG1
Received:
2023-07-17
Accepted:
2023-09-08
Online:
2024-03-15
Published:
2024-03-07
Contact:
Wei CHEN
摘要:
GRAS基因家族是植物中广泛存在的一类转录因子,在植物生长发育、生物和非生物逆境胁迫、光信号和激素信号应答等多个过程中发挥重要作用。对玉米GRAS基因家族成员的理化性质、染色体定位、系统发育、顺式作用元件等特征进行了分析。结果表明,在玉米全基因组中共鉴定出49个ZmGRAS基因,不均匀地分布于1~10号染色体上,编码蛋白质理化性质差异较大,可能在不同的微环境下发挥作用。系统进化分析将GRAS蛋白分为8个亚家族,可能在调节自身生长发育、逆境应答等过程中具有重要作用。玉米GRAS基因家族的启动子区含有激素应答、光响应、胁迫应答等多种顺式作用元件,推测其可能响应激素、胁迫等多种信号。共线性分析显示,具有共线性关系的基因可能是染色体片段复制的结果,且属于同一亚家族,具有相似的结构和功能。研究结果为进一步研究玉米GRAS基因的功能和逆境胁迫响应机制提供了依据。
中图分类号:
吴占清, 陈威, 赵展, 许海良, 李豪远, 彭星星, 陈东旭, 张明月. 玉米GRAS基因家族的全基因组鉴定及生物信息学分析[J]. 中国农业科技导报, 2024, 26(3): 15-25.
Zhanqing WU, Wei CHEN, Zhan ZHAO, Hailiang XU, Haoyuan LI, Xingxing PENG, Dongxu CHEN, Mingyue ZHANG. Genome-wide Identification and Bioinformatics Analysis of GRAS Gene Family in Maize[J]. Journal of Agricultural Science and Technology, 2024, 26(3): 15-25.
基因名称 Gene name | 基因ID Gene ID | 氨基酸长度Amino acids length/aa | 分子量Molecular weight/Da | 等电点PI | 带负电荷残基总数 Total number of negatively charged residues | 带正电荷残基总数 Total number of positively charged residues | 不稳定 指数 Instability index | 脂肪族氨基酸指数 Aliphatic index | 平均 疏水性 Grand average of hydropathicity |
---|---|---|---|---|---|---|---|---|---|
ZmGRAS1 | Zm00001eb216610 | 625 | 65 742.60 | 5.18 | 70 | 50 | 46.59 | 75.66 | -0.204 |
ZmGRAS2 | Zm00001eb107910 | 554 | 60 835.57 | 5.84 | 68 | 52 | 53.95 | 83.83 | -0.302 |
ZmGRAS3 | Zm00001eb325750 | 558 | 60 991.58 | 5.71 | 69 | 52 | 55.68 | 82.17 | -0.301 |
ZmGRAS4 | Zm00001eb106490 | 570 | 64 511.14 | 5.99 | 73 | 64 | 46.97 | 83.72 | -0.475 |
ZmGRAS5 | Zm00001eb027720 | 542 | 59 914.41 | 5.76 | 58 | 43 | 48.73 | 83.86 | -0.245 |
ZmGRAS6 | Zm00001eb170110 | 775 | 82 511.74 | 6.19 | 73 | 62 | 63.30 | 74.27 | -0.245 |
ZmGRAS7 | Zm00001eb195650 | 668 | 71 162.84 | 6.15 | 66 | 53 | 57.35 | 85.21 | -0.197 |
ZmGRAS8 | Zm00001eb288400 | 561 | 62 826.62 | 4.92 | 79 | 54 | 46.74 | 81.23 | -0.340 |
ZmGRAS9 | Zm00001eb141310 | 447 | 48 471.03 | 6.36 | 55 | 50 | 54.57 | 89.44 | -0.145 |
ZmGRAS10 | Zm00001eb093670 | 678 | 72 083.67 | 6.18 | 67 | 55 | 56.48 | 87.23 | -0.168 |
ZmGRAS11 | Zm00001eb363140 | 449 | 48 889.56 | 6.26 | 56 | 50 | 56.39 | 89.49 | -0.133 |
ZmGRAS12 | Zm00001eb148290 | 809 | 89 139.89 | 6.06 | 101 | 88 | 44.93 | 77.00 | -0.344 |
ZmGRAS13 | Zm00001eb378590 | 616 | 65 472.30 | 6.30 | 70 | 63 | 45.04 | 71.62 | -0.240 |
ZmGRAS14 | Zm00001eb136350 | 710 | 78 391.49 | 5.30 | 92 | 73 | 53.77 | 79.77 | -0.339 |
ZmGRAS15 | Zm00001eb324600 | 452 | 48 411.17 | 6.05 | 55 | 49 | 58.80 | 96.26 | -0.044 |
ZmGRAS16 | Zm00001eb164530 | 765 | 84 654.31 | 5.30 | 103 | 78 | 49.74 | 73.02 | -0.392 |
ZmGRAS17 | Zm00001eb055700 | 551 | 59 842.10 | 5.20 | 63 | 47 | 56.67 | 86.03 | -0.091 |
ZmGRAS18 | Zm00001eb215870 | 569 | 61 233.71 | 5.08 | 63 | 44 | 57.67 | 85.59 | -0.056 |
ZmGRAS19 | Zm00001eb344400 | 508 | 56 088.05 | 5.91 | 55 | 43 | 35.75 | 90.08 | -0.105 |
ZmGRAS20 | Zm00001eb164480 | 642 | 71 250.62 | 6.67 | 84 | 80 | 52.59 | 79.63 | -0.405 |
ZmGRAS21 | Zm00001eb164490 | 666 | 73 486.54 | 5.51 | 93 | 76 | 51.16 | 74.25 | -0.425 |
ZmGRAS22 | Zm00001eb326020 | 592 | 63 904.56 | 5.67 | 64 | 50 | 58.88 | 68.06 | -0.370 |
ZmGRAS23 | Zm00001eb108250 | 456 | 49 134.09 | 5.32 | 50 | 35 | 40.45 | 90.99 | 0.057 |
ZmGRAS24 | Zm00001eb011560 | 564 | 59 835.16 | 5.12 | 65 | 44 | 43.97 | 75.30 | -0.152 |
ZmGRAS25 | Zm00001eb326210 | 456 | 49 478.48 | 5.38 | 51 | 36 | 39.36 | 89.06 | 0.011 |
ZmGRAS26 | Zm00001eb108090 | 586 | 63 755.58 | 5.49 | 66 | 53 | 59.45 | 70.56 | -0.343 |
ZmGRAS27 | Zm00001eb081760 | 607 | 66 678.45 | 6.04 | 77 | 67 | 47.34 | 80.97 | -0.287 |
ZmGRAS28 | Zm00001eb020850 | 630 | 67 547.26 | 6.15 | 65 | 53 | 66.00 | 63.40 | -0.416 |
ZmGRAS29 | Zm00001eb073130 | 623 | 65 570.98 | 6.15 | 60 | 54 | 52.23 | 87.26 | -0.116 |
ZmGRAS30 | Zm00001eb187310 | 607 | 63 032.09 | 8.75 | 54 | 59 | 46.96 | 84.93 | -0.109 |
ZmGRAS31 | Zm00001eb428430 | 623 | 65 303.67 | 6.34 | 58 | 54 | 48.36 | 84.11 | -0.137 |
ZmGRAS32 | Zm00001eb164470 | 645 | 72 101.21 | 6.37 | 78 | 70 | 47.76 | 80.96 | -0.356 |
ZmGRAS33 | Zm00001eb165340 | 639 | 72 513.56 | 6.09 | 85 | 75 | 45.77 | 81.61 | -0.384 |
ZmGRAS34 | Zm00001eb236120 | 416 | 43 484.86 | 5.43 | 48 | 35 | 32.57 | 88.92 | -0.042 |
ZmGRAS35 | Zm00001eb291030 | 497 | 52 002.72 | 5.80 | 51 | 38 | 46.41 | 82.39 | -0.007 |
ZmGRAS36 | Zm00001eb291930 | 426 | 45 514.68 | 6.09 | 48 | 43 | 47.88 | 87.37 | -0.100 |
ZmGRAS37 | Zm00001eb115950 | 599 | 67 026.72 | 6.12 | 76 | 68 | 50.16 | 74.89 | -0.375 |
ZmGRAS38 | Zm00001eb074460 | 721 | 75 225.55 | 5.74 | 62 | 46 | 47.98 | 82.98 | -0.050 |
ZmGRAS39 | Zm00001eb429450 | 718 | 75 350.35 | 5.72 | 64 | 47 | 50.61 | 81.82 | -0.081 |
ZmGRAS40 | Zm00001eb186770 | 708 | 73 942.10 | 5.63 | 65 | 48 | 45.89 | 87.67 | 0.004 |
ZmGRAS41 | Zm00001eb000470 | 481 | 51 254.82 | 6.10 | 48 | 37 | 41.79 | 95.88 | 0.099 |
ZmGRAS42 | Zm00001eb196430 | 487 | 51 456.32 | 6.18 | 59 | 53 | 54.58 | 89.08 | -0.151 |
ZmGRAS43 | Zm00001eb249840 | 706 | 73 961.86 | 5.47 | 66 | 44 | 45.87 | 85.55 | 0.001 |
ZmGRAS44 | Zm00001eb202270 | 473 | 51 700.38 | 4.73 | 62 | 32 | 52.48 | 88.12 | 0.013 |
ZmGRAS45 | Zm00001eb326550 | 306 | 33 520.48 | 6.05 | 30 | 25 | 33.94 | 97.32 | 0.086 |
ZmGRAS46 | Zm00001eb139470 | 492 | 52 614.47 | 5.15 | 58 | 39 | 47.00 | 87.11 | -0.015 |
ZmGRAS47 | Zm00001eb019640 | 526 | 54 677.28 | 6.72 | 53 | 51 | 51.38 | 76.24 | -0.189 |
ZmGRAS48 | Zm00001eb405080 | 235 | 25 649.61 | 6.55 | 27 | 25 | 48.23 | 99.66 | 0.063 |
ZmGRAS49 | Zm00001eb002990 | 313 | 33 288.60 | 9.66 | 25 | 36 | 54.58 | 86.77 | 0.034 |
表1 玉米GRAS基因家族蛋白质理化性质 (续表Continued)
Table 1 Physicochemical properties of proteins encoded by the GRAS gene family in maize
基因名称 Gene name | 基因ID Gene ID | 氨基酸长度Amino acids length/aa | 分子量Molecular weight/Da | 等电点PI | 带负电荷残基总数 Total number of negatively charged residues | 带正电荷残基总数 Total number of positively charged residues | 不稳定 指数 Instability index | 脂肪族氨基酸指数 Aliphatic index | 平均 疏水性 Grand average of hydropathicity |
---|---|---|---|---|---|---|---|---|---|
ZmGRAS1 | Zm00001eb216610 | 625 | 65 742.60 | 5.18 | 70 | 50 | 46.59 | 75.66 | -0.204 |
ZmGRAS2 | Zm00001eb107910 | 554 | 60 835.57 | 5.84 | 68 | 52 | 53.95 | 83.83 | -0.302 |
ZmGRAS3 | Zm00001eb325750 | 558 | 60 991.58 | 5.71 | 69 | 52 | 55.68 | 82.17 | -0.301 |
ZmGRAS4 | Zm00001eb106490 | 570 | 64 511.14 | 5.99 | 73 | 64 | 46.97 | 83.72 | -0.475 |
ZmGRAS5 | Zm00001eb027720 | 542 | 59 914.41 | 5.76 | 58 | 43 | 48.73 | 83.86 | -0.245 |
ZmGRAS6 | Zm00001eb170110 | 775 | 82 511.74 | 6.19 | 73 | 62 | 63.30 | 74.27 | -0.245 |
ZmGRAS7 | Zm00001eb195650 | 668 | 71 162.84 | 6.15 | 66 | 53 | 57.35 | 85.21 | -0.197 |
ZmGRAS8 | Zm00001eb288400 | 561 | 62 826.62 | 4.92 | 79 | 54 | 46.74 | 81.23 | -0.340 |
ZmGRAS9 | Zm00001eb141310 | 447 | 48 471.03 | 6.36 | 55 | 50 | 54.57 | 89.44 | -0.145 |
ZmGRAS10 | Zm00001eb093670 | 678 | 72 083.67 | 6.18 | 67 | 55 | 56.48 | 87.23 | -0.168 |
ZmGRAS11 | Zm00001eb363140 | 449 | 48 889.56 | 6.26 | 56 | 50 | 56.39 | 89.49 | -0.133 |
ZmGRAS12 | Zm00001eb148290 | 809 | 89 139.89 | 6.06 | 101 | 88 | 44.93 | 77.00 | -0.344 |
ZmGRAS13 | Zm00001eb378590 | 616 | 65 472.30 | 6.30 | 70 | 63 | 45.04 | 71.62 | -0.240 |
ZmGRAS14 | Zm00001eb136350 | 710 | 78 391.49 | 5.30 | 92 | 73 | 53.77 | 79.77 | -0.339 |
ZmGRAS15 | Zm00001eb324600 | 452 | 48 411.17 | 6.05 | 55 | 49 | 58.80 | 96.26 | -0.044 |
ZmGRAS16 | Zm00001eb164530 | 765 | 84 654.31 | 5.30 | 103 | 78 | 49.74 | 73.02 | -0.392 |
ZmGRAS17 | Zm00001eb055700 | 551 | 59 842.10 | 5.20 | 63 | 47 | 56.67 | 86.03 | -0.091 |
ZmGRAS18 | Zm00001eb215870 | 569 | 61 233.71 | 5.08 | 63 | 44 | 57.67 | 85.59 | -0.056 |
ZmGRAS19 | Zm00001eb344400 | 508 | 56 088.05 | 5.91 | 55 | 43 | 35.75 | 90.08 | -0.105 |
ZmGRAS20 | Zm00001eb164480 | 642 | 71 250.62 | 6.67 | 84 | 80 | 52.59 | 79.63 | -0.405 |
ZmGRAS21 | Zm00001eb164490 | 666 | 73 486.54 | 5.51 | 93 | 76 | 51.16 | 74.25 | -0.425 |
ZmGRAS22 | Zm00001eb326020 | 592 | 63 904.56 | 5.67 | 64 | 50 | 58.88 | 68.06 | -0.370 |
ZmGRAS23 | Zm00001eb108250 | 456 | 49 134.09 | 5.32 | 50 | 35 | 40.45 | 90.99 | 0.057 |
ZmGRAS24 | Zm00001eb011560 | 564 | 59 835.16 | 5.12 | 65 | 44 | 43.97 | 75.30 | -0.152 |
ZmGRAS25 | Zm00001eb326210 | 456 | 49 478.48 | 5.38 | 51 | 36 | 39.36 | 89.06 | 0.011 |
ZmGRAS26 | Zm00001eb108090 | 586 | 63 755.58 | 5.49 | 66 | 53 | 59.45 | 70.56 | -0.343 |
ZmGRAS27 | Zm00001eb081760 | 607 | 66 678.45 | 6.04 | 77 | 67 | 47.34 | 80.97 | -0.287 |
ZmGRAS28 | Zm00001eb020850 | 630 | 67 547.26 | 6.15 | 65 | 53 | 66.00 | 63.40 | -0.416 |
ZmGRAS29 | Zm00001eb073130 | 623 | 65 570.98 | 6.15 | 60 | 54 | 52.23 | 87.26 | -0.116 |
ZmGRAS30 | Zm00001eb187310 | 607 | 63 032.09 | 8.75 | 54 | 59 | 46.96 | 84.93 | -0.109 |
ZmGRAS31 | Zm00001eb428430 | 623 | 65 303.67 | 6.34 | 58 | 54 | 48.36 | 84.11 | -0.137 |
ZmGRAS32 | Zm00001eb164470 | 645 | 72 101.21 | 6.37 | 78 | 70 | 47.76 | 80.96 | -0.356 |
ZmGRAS33 | Zm00001eb165340 | 639 | 72 513.56 | 6.09 | 85 | 75 | 45.77 | 81.61 | -0.384 |
ZmGRAS34 | Zm00001eb236120 | 416 | 43 484.86 | 5.43 | 48 | 35 | 32.57 | 88.92 | -0.042 |
ZmGRAS35 | Zm00001eb291030 | 497 | 52 002.72 | 5.80 | 51 | 38 | 46.41 | 82.39 | -0.007 |
ZmGRAS36 | Zm00001eb291930 | 426 | 45 514.68 | 6.09 | 48 | 43 | 47.88 | 87.37 | -0.100 |
ZmGRAS37 | Zm00001eb115950 | 599 | 67 026.72 | 6.12 | 76 | 68 | 50.16 | 74.89 | -0.375 |
ZmGRAS38 | Zm00001eb074460 | 721 | 75 225.55 | 5.74 | 62 | 46 | 47.98 | 82.98 | -0.050 |
ZmGRAS39 | Zm00001eb429450 | 718 | 75 350.35 | 5.72 | 64 | 47 | 50.61 | 81.82 | -0.081 |
ZmGRAS40 | Zm00001eb186770 | 708 | 73 942.10 | 5.63 | 65 | 48 | 45.89 | 87.67 | 0.004 |
ZmGRAS41 | Zm00001eb000470 | 481 | 51 254.82 | 6.10 | 48 | 37 | 41.79 | 95.88 | 0.099 |
ZmGRAS42 | Zm00001eb196430 | 487 | 51 456.32 | 6.18 | 59 | 53 | 54.58 | 89.08 | -0.151 |
ZmGRAS43 | Zm00001eb249840 | 706 | 73 961.86 | 5.47 | 66 | 44 | 45.87 | 85.55 | 0.001 |
ZmGRAS44 | Zm00001eb202270 | 473 | 51 700.38 | 4.73 | 62 | 32 | 52.48 | 88.12 | 0.013 |
ZmGRAS45 | Zm00001eb326550 | 306 | 33 520.48 | 6.05 | 30 | 25 | 33.94 | 97.32 | 0.086 |
ZmGRAS46 | Zm00001eb139470 | 492 | 52 614.47 | 5.15 | 58 | 39 | 47.00 | 87.11 | -0.015 |
ZmGRAS47 | Zm00001eb019640 | 526 | 54 677.28 | 6.72 | 53 | 51 | 51.38 | 76.24 | -0.189 |
ZmGRAS48 | Zm00001eb405080 | 235 | 25 649.61 | 6.55 | 27 | 25 | 48.23 | 99.66 | 0.063 |
ZmGRAS49 | Zm00001eb002990 | 313 | 33 288.60 | 9.66 | 25 | 36 | 54.58 | 86.77 | 0.034 |
图2 不同物种GRAS家族成员进化树分析注:Os—水稻;Zm—玉米; TresCS—普通小麦;At—拟南芥;Solyc—番茄。
Fig. 2 Phylogenetic tree analysis of GRAS gene family in different speciesNote: Os—Oryza sativa; Zm—Zea mays; TresCS—Triticum aestivum Chinese Spring; At—Arabidopsis thaliana; Solyc—Solanum lycopersicum.
图5 玉米GRAS基因家族成员的共线性分析注:右侧黄色到粉红色的刻度条表示1 Mb范围内的SNP数量。
Fig. 5 Collinearity analysis of GRAS gene family members in maizeNote: The yellow-to-red scale bar on the right indicates the number of SNPs within 1 Mb domain.
1 | HOU S, ZHANG Q, CHEN J, et al.. Genome-wide identification and analysis of the GRAS transcription factor gene family in Theobroma cacao [J/OL]. Genes (Basel), 2022, 14(1):57 [2023-09-03]. . |
2 | LIU Y, HUANG W, XIAN Z, et al.. Overexpression of SIGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling [J/OL]. Front. Plant Sci., 2017, 8:1659 [2023-09-03]. . |
3 | WANG X, LI G, SUN Y, et al.. Genome-wide analysis and characterization of GRAS family in switchgrass [J]. Bioengineered, 2021, 12(1):6096-6114. |
4 | LI P, ZHANG B, SU T, et al.. BrLAS, a GRAS transcription factor from Brassica rapa, is involved in drought stress tolerance in transgenic arabidopsis [J/OL]. Front. Plant Sci., 2018, 9:1792 [2023-09-03]. . |
5 | LU X H, LIU W Q, XIANG C G, et al.. Genome-wide characterization of GRAS family and their potential roles in cold tolerance of cucumber (Cucumis sativus L.) [J/OL]. Int. J. Mol. Sci., 2020, 21(11):3857 [2023-09-03].. |
6 | BOLLE C. The role of GRAS proteins in plant signal transduction and development [J]. Planta, 2004, 218(5):683-692. |
7 | SUN X, JONES W T, RIKKERINK E H. GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling [J]. Biochem. J. 2012, 442(1):1-12. |
8 | 孔豆豆,毛成志,王蕾,等.大麦基因组GRAS基因家族的全基因组鉴定与表达分析 [J]. 分子植物育种, 2021, 19(1):22-33. |
KONG D D, MAO C Z, WANG L, et al.. Genome-wide identification and phylogenetic analysis of the GRAS gene family in barley (Hordeum vulgare L.) [J]. Mol. Plant Breed., 2021, 19(1):22-33. | |
9 | 郑玲,闫晓曼.甜瓜GRAS家族全基因组的鉴定与表达分析[J].江苏农业科学, 2023, 51(11):53-59. |
10 | 张文慧,何光鑫,王子鑫,等.绿豆GRAS基因家族鉴定及其非生物胁迫下的表达模式分析[J].农业生物技术学报, 2022, 30(5):861-872. |
ZHANG W H, HE G X, WANG Z X, et al.. Identification of GRAS gene family and its expression on pattern analysis under abiotic stress in Vigna radiata [J]. J. Agric. Biotechnol., 2022, 30(5):861-872. | |
11 | 王智兰,韩康妮,杜晓芬,等.谷子GRAS转录因子家族的全基因组鉴定、表达分析及标记开发 [J]. 核农学报, 2022, 36(9):1723-1737. |
WANG Z L, HAN K N, DU X F, et al.. Identification, expression analysis and marker development of GRAS transcription factor in foxtail millet [J]. Acta Agric. Nucl. Sin., 2022, 36(9):1723-1737. | |
12 | TIAN C, WAN P, SUN S, et al.. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis [J]. Plant Mol. Biol., 2004, 54(4):519-532. |
13 | WANG T, YU T, FU J, et al.. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance [J]. Front. Plant Sci., 2020, 11:604690 [2023-09-03]. . |
14 | 郭栋,宋雅菲,张佳阔,等.玉米CCCH基因家族鉴定及分析[J].中国农业科技导报, 2019, 21(8):19-27. |
GUO D, SONG Y F, ZHANG J K, et al.. Identification and analysis of CCCH gene family in maize [J]. J. Agric. Sci. Technol., 2019, 21(8):19-27. | |
15 | HUSON D H, BRYANT D. Application of phylogenetic networks in evolutionary studies [J]. Mol. Biol. Evol., 2006, 23:254-267. |
16 | NAM J, MA H, NEI M. Antiquity and evolution of the MADSbox gene family controlling flower development in plants [J]. Mol. Biol. Evol., 2003, 20(9):1435-1447. |
17 | MOORE R C, PURUGGANAN M D. The evolutionary dynamics of plant duplicate genes [J]. Curr. Opin. Plant Biol., 2005, 8(2):122-128. |
18 | TANG H, BOWERS J E, WANG X, et al.. Synteny and collinearity in plant genomes [J]. Science, 2008, 320 (5875):486-488. |
19 | PENG J, CAROL P, RICHARDS D E, et al.. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses [J]. Genes Dev., 1997, 11:3194-3205. |
20 | SILVERSTONE A L, CIAMPAGLIO C N, SUN T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway [J]. Plant Cell, 1998, 10:155-169. |
21 | IKEDA A, UEGUCHI-TANAKA M, SONODA Y, et al.. Slender rice, a constitutive gibberellin response mutant.; is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8 [J]. Plant Cell, 2001, 13:999-1010. |
22 | STUURMAN J, JAGGI F, KUHLEMEIER C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells [J]. Genes Dev., 2002, 16:2213-2218. |
23 | MOROHASHI K, MINAMI M, TAKASE H, et al.. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression [J]. J. Biol. Chem., 2003, 278:20865-20873. |
24 | BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction [J]. Genes Dev., 2000, 14:1269-1278. |
25 | YUAN Y, FANG L, KARUNGO S K, et al.. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis [J]. Plant Cell Rep., 2016, 35:655-666. |
26 | JI C, XU L N, LI Y J, et al.. The O2-ZmGRAS11 transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize [J]. Mol. Plant, 2022, 15(3):468-487. |
27 | LI Y, MA S, ZHAO Q Q, et al.. ZmGRAS11, transactivated by opaque2, positively regulates kernel size in maize [J]. J. Integr. Plant Biol., 2021, 63(12):2031-2037. |
[1] | 赵亚凤, 王孟雪, 王德帅, 王冬冬, 李园, 胡峻峰. 基于CP-DeepLabv3+的玉米根系图像分割[J]. 中国农业科技导报, 2024, 26(3): 110-116. |
[2] | 丛文成, 袁立敏, 蒙仲举, 杨宇. 玉米芯颗粒对风沙土毛管水运移和蒸发特性的影响[J]. 中国农业科技导报, 2024, 26(2): 198-207. |
[3] | 刘博, 王旺田, 马骊, 武军艳, 蒲媛媛, 刘丽君, 方彦, 孙万仓, 张岩, 刘睿敏, 曾秀存. 白菜型油菜IPT基因家族鉴定及表达分析[J]. 中国农业科技导报, 2024, 26(2): 56-66. |
[4] | 曹婷婷, 刘春, 范又维, 马力, 任志雨, 袁素霞, 张军云, 钱遵姚, 杨光炤. 不同氮素供应水平对微型盆栽月季生长发育的影响[J]. 中国农业科技导报, 2024, 26(2): 67-79. |
[5] | 孟盼盼, 何海燕, 曹钰昕, 张丽欣, 吕清豪, 祁瑞林, 张红瑞. 5个栽培类型药菊分枝期抗旱性综合评价[J]. 中国农业科技导报, 2024, 26(2): 90-99. |
[6] | 王韵弘, 苗琪, 李俊超, 王红叶, 张济世, 崔振岭. 田间管理措施对滨海盐渍地区中低产田生产力的影响[J]. 中国农业科技导报, 2024, 26(1): 163-172. |
[7] | 邓玉荣, 韩联, 王金龙, 韦兴翰, 王旭东, 赵颖, 魏小红, 李朝周. 藜麦SOD家族基因的鉴定及其对混合盐碱胁迫的响应[J]. 中国农业科技导报, 2024, 26(1): 28-39. |
[8] | 李生梅, 庞博, 耿世伟, 宋武, 李红梅, 马茂森, 张茹, 王新燕, 高文伟. 棉花海陆回交群体盛铃期的光合特性及其生理基础[J]. 中国农业科技导报, 2024, 26(1): 40-51. |
[9] | 姚建民, 马俊奎, 王忠祥, 毕昕媛, 李瑞珍, 杨瑞平, 刘钊, 郭丰辉. 全生物降解渗水地膜在大豆-玉米带状复合种植中的应用效果研究[J]. 中国农业科技导报, 2023, 25(9): 178-185. |
[10] | 高静, 徐明岗, 李然, 蔡泽江, 孙楠, 张强, 郑磊. 整合分析生物炭施用对土壤pH的影响[J]. 中国农业科技导报, 2023, 25(9): 186-196. |
[11] | 田蕊, 张华, 黄玫红, 邵振启, 李喜焕, 张彩英. 大豆抗旱遗传位点及候选基因发掘[J]. 中国农业科技导报, 2023, 25(9): 69-82. |
[12] | 赵明宇, 贾浩, 石晓宇, 潘义, 黄妤韵, 王凯澄, 褚庆全. 近30年黄淮海农作区冬小麦水足迹分布变化[J]. 中国农业科技导报, 2023, 25(8): 138-147. |
[13] | 张晨阳, 徐明岗, 王斐, 李然, 孙楠. 施用有机肥对我国大豆产量及土壤养分的影响[J]. 中国农业科技导报, 2023, 25(8): 148-156. |
[14] | 孟亚轩, 马玮, 姚旭航, 孙颖琦, 钟鑫, 黄山, 瓮巧云, 刘颖慧, 袁进成. 玉米产量对氮肥的响应因素研究[J]. 中国农业科技导报, 2023, 25(7): 153-160. |
[15] | 苑雅俊, 冯家兴, 杨启帆, 白雪, PUSHPA R A J, 边大红, 崔彦宏. 黄淮海平原北部不同熟性夏玉米品种抗倒伏能力研究[J]. 中国农业科技导报, 2023, 25(7): 21-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||