1 |
邱月.黑龙江省水稻恶苗病发病条件及药剂防治技术研究[D].大庆: 黑龙江八一农垦大学,2021.
|
|
QIU Y. Study on incidence conditions and fungicide prevention and control technology of rice bakanae disease in Heilongjiang province [D]. Daqing: Heilongjiang Bayi Agricultural University, 2021.
|
2 |
邵丽华,李鹏.水稻恶苗病接种试验初步研究[J].北方水稻,2023, 53(5): 30-32.
|
|
SHAO L H, LI P. Preliminary study on inoculation test of rice bakanae [J]. North. Rice, 2023, 53(5):30-32.
|
3 |
李鹏.恶苗病对不同水稻品种产量的影响[J].北方水稻,2023,53(1):31-34.
|
|
LI P. Effect of bakanae on yield of different rice varieties [J]. North. Rice, 2023, 53(1):31-34.
|
4 |
MA L Y, JI Z J, BAO J S, et al.. Responses of rice genotypes carrying different dwarf genes to Fusarium moniliforme and gibberellic acid [J]. Plant Production Sci., 2008, 11(1):134-138
|
5 |
季芝娟,曾宇翔,梁燕,等.水稻恶苗病抗性研究进展[J].中国水稻科学, 2021,35(1): 1-10.
|
|
JI Z J, ZENG Y X, LIANG Y, et al.. Research and progress of bakanae disease resistance in rice [J]. Chin. J. Rice Sci., 2019, 35(1):1-10.
|
6 |
MATIĆ S, BAGNARESI P, BISELLI C, et al.. Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi [J]. BMC Genomics, 2016, 17: 608-624.
|
7 |
JI Z J, ZENG Y X, LIANG Y, et al.. Transcriptomic dissection of the rice-Fusarium fujikuroi interaction by RNA-Seq [J].Euphytica, 2016, 211(1):123-137.
|
8 |
JI Z, ZENG Y, LIANG Y, et al.. Proteomic dissection of the rice-Fusarium fujikuroi interaction and the correlation between the proteome and transcriptome under disease stress [J/OL]. BMC Genom.,2019,20(1):91 [2024-03-30]. .
|
9 |
季芝娟.水稻恶苗病抗性相关基因的鉴定及多抗基因的聚合育种利用[D].沈阳:沈阳农业大学,2016.
|
|
JI Z J. Identification of the resistance-related gene to bakanae disease and pyramiding of multiple resistance genes in rice breeding [D]. Shenyang: Shenyang Agricultural University, 2016.
|
10 |
ASHBURNER M, BALL C A, BLAKE J A, et al.. Gene ontology:tool for the unification of biology. the gene ontology consortium [J]. Cell Death Discov., 2000,25(1):25-29.
|
11 |
KANEHISA M, GOTO S, KAWASHIMA S, et al.. The KEGG resource for deciphering the genome [J].J. Speech Lang.Hear.Res., 2004, 32(D1):277-280.
|
12 |
KANEHISA M, GOTO S, HATTORI M, et al.. From genomics to chemical genomics:new developments in KEGG [J]. Meth. Mol. Biol., 2006, 34(D1):354-357.
|
13 |
ZHOU W, EUDES F, LAROCHE A.Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host,Triticum aestivum [J].Proteomics, 2006,6(16):4599-4609.
|
14 |
WANG Y, YANG L, XU H, et al.. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum [J]. Proteomics, 2005, 5(17): 4496-4503.
|
15 |
RAMPITSCH C, BYKOVA N V, MAUTHE W, et al..Phosphoproteomic profiling of wheat callus labelled in vivo [J].Plant Sci., 2006, 171(4): 488-496.
|
16 |
RAMPITSCH C, BYKOVA N V, MCCALLUM B, et al.. Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a compatible host-pathogen interaction [J]. Proteomics, 2006, 6:1897-1907.
|
17 |
VENTELON-DEBOUT M, DELALANDE F, BRIZARD J P,et al..Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa Japonica cellular suspensions undergoing rice yellow mottle virus infection [J].Proteomics,2004, 4(1): 216-225.
|
18 |
MARGARIA P, PALMANO S. Response of the Vitis vinifera L. CV. ‘Nebbiolo’ proteome to flavescence dore’e phytoplasma infection [J]. Proteomics, 2011, 11: 212-224.
|