中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (9): 186-196.DOI: 10.13304/j.nykjdb.2022.0111
高静1,2(), 徐明岗1,2, 李然3, 蔡泽江3, 孙楠3(), 张强4(), 郑磊4
收稿日期:
2022-02-17
接受日期:
2022-08-18
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
孙楠,张强
作者简介:
高静E-mail:1131320695@qq.com
基金资助:
Jing GAO1,2(), Minggang XU1,2, Ran LI3, Zejiang CAI3, Nan SUN3(), Qiang ZHANG4(), Lei ZHENG4
Received:
2022-02-17
Accepted:
2022-08-18
Online:
2023-09-15
Published:
2023-09-28
Contact:
Nan SUN,Qiang ZHANG
摘要:
为量化生物炭施用对土壤pH的影响,为生物炭在改良土壤、培肥地力中提供理论依据,采用数据整合分析(Meta-analysis)的方法,基于中国知网、万方数据和Web of Science数据库,用关键词“生物炭”“Biochar”“土壤pH”和“土壤酸碱度”进行检索,收集到国内外关于生物炭对土壤酸碱度影响研究已公开发表的59篇文献中413组试验数据,分析土壤条件、生物炭特性、生物炭施用量等对土壤pH的定量影响。结果表明,与不施生物炭相比,生物炭施用能显著提高土壤pH,平均增幅为8.70%。其中,以强酸性(4.5<pH≤5.5)和极强酸性土壤(pH≤4.5)增幅最大,分别为15.17%和9.68%;不同原料生物炭对土壤pH的提升效果表现为秸秆类生物炭(10.04%)>壳渣类生物炭(7.02%)>木材类生物炭(6.61%)。不同热解温度下,以≤400 ℃制得的生物炭提升效果最佳,为15.26%;而在热解温度400~700 ℃时,随着热解温度升高,提升效果降低。施用生物炭3个月内土壤pH的增幅最大,之后增幅逐渐减缓。以上结果表明在强酸性(4.5<pH≤5.5)土壤中,优先选用秸秆低温(≤400 ℃)热解生物炭施用能更好地改善土壤pH,结果为生物炭的推广应用提供科学依据。
中图分类号:
高静, 徐明岗, 李然, 蔡泽江, 孙楠, 张强, 郑磊. 整合分析生物炭施用对土壤pH的影响[J]. 中国农业科技导报, 2023, 25(9): 186-196.
Jing GAO, Minggang XU, Ran LI, Zejiang CAI, Nan SUN, Qiang ZHANG, Lei ZHENG. Effects of Biochar Application on Soil pH: A Meta-Analysis[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 186-196.
图1 生物炭施用后土壤pH变化的响应比注: M和SE分别表示土壤pH变化响应比的平均值和均值的标准误。
Fig. 1 Response ratio of soil pH change with biochar applicationNote: M and SE represent the mean and standard error of soil pH change response ratio, respectively.
图2 不同酸碱度土壤施用生物炭对土壤pH的权重响应比注: 括号内数值分别为土壤pH的增幅百分数和样本量。
Fig. 2 Weighted response ratio of biochar application to soil pH under different pHNote: Values in brackets show the percentage increased in soil pH and sample size, respectively.
图3 施用不同原料制备的生物炭对土壤pH的权重响应比注: 括号内数值分别为土壤pH的增幅百分数和样本量。
Fig. 3 Weighted response ratio of biochar prepared with different raw materials to soil pHNote: Values in brackets show the percentage increased in soil pH and sample size, respectively.
图4 施用不同热解温度范围下的生物炭对土壤pH的权重响应比注: 括号内数值分别为土壤pH的增幅百分数和样本量。
Fig. 4 Weighted response ratio of biochar to soil pH under different pyrolysis temperature rangesNote: Values in brackets show the percentage increased in soil pH and sample size, respectively.
图5 施用不同pH的生物炭对土壤pH的权重响应比注: 括号内数值分别为土壤pH的增幅百分数和样本量。
Fig. 5 Weighted response ratio of biochar with different pH values to soil pHNote: Values in brackets show the percentage increased in soil pH and sample size, respectively.
图6 生物炭施用量对土壤pH的权重响应比注: 括号内数值分别为土壤pH的增幅百分数和样本量。
Fig. 6 Weight response ratio of biochar application rate to soil pHNote: Values in brackets show the percentage increased in soil pH and sample size, respectively.
图7 生物炭施用时间对土壤pH的权重响应比注: 括号内数值分别为土壤pH的增幅百分数和样本量。
Fig. 7 Weighted response ratio of biochar application time to soil pHNote: Values in brackets show the percentage increased in soil pH and sample size, respectively.
图8 土壤pH的变化量与土壤pH、生物炭pH、生物炭热解温度和生物炭施用量的关系注: **表示相关程度在P<0.01水平显著。
Fig. 8 Relationship between soil pH change and soil pH, biochar pH, biochar pyrolysis temperature and biochar pplication amountNote: **indicates significant correlation at P<0.01 level.
1 | 张强, 魏钦平, 齐鸿雁, 等. 北京果园土壤养分和pH与微生物数量的相关分析及优化方案[J]. 果树学报, 2011, 28(1): 15-19. |
ZHANG Q, WEI Q P, QI H Y, et al.. Optimal schemes and correlation analysis between soil nutrient, pH and microorganism population in orchard of Beijing suburb [J]. J. Fruit Sci., 2011, 28(1): 15-19. | |
2 | 唐琨, 朱伟文, 周文新, 等. 土壤pH对植物生长发育影响的研究进展[J]. 作物研究, 2013, 27(2): 207-212. |
TANG K, ZHU W W, ZHOU W X, et al.. Research progress on effects of soil pH on plant growth and development [J]. Crop Res., 2013, 27(2): 207-212. | |
3 | 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244. |
XU R K. Research progresses in soil acidification and its control [J]. Soils, 2015, 47(2): 238-244. | |
4 | PETE S. Soil carbon sequestration and biochar as negative emission technologies [J]. Global Change Biol., 2016, 22(3): 1315-1324. |
5 | El-NAGGAR A, LEE S S, RINKLEBE J, et al.. Biochar application to low fertility soils: a review of current status, and future prospects [J]. Geoderma, 2019, 337: 536-554. |
6 | PURAKAYASTHA T J, BERA T, BHADURI D, et al.. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security [J]. Chemosphere, 2019, 227: 345-365. |
7 | YOUNIS U, MALIK S A, RIZWAN M, et al.. Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes [J]. Environ. Sci. Poll. Res., 2016, 23(21): 1-10. |
8 | 袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402-1417. |
YUAN S, ZHAO L X, MENG H B, et al.. The main types of biochar and their properties and expectative researches [J]. J. Plant Nutr. Fert., 2016, 22(5): 1402-1417. | |
9 | 阎海涛, 殷全玉, 丁松爽, 等. 生物炭对褐土理化特性及真菌群落结构的影响[J]. 环境科学, 2018, 39(5): 2412-2419. |
YAN H T, YIN Q Y, DING S S, et al.. Effect of biochar amendment on physicochemical properties and fungal community structures of cinnamon soil [J]. Environ. Sci., 2018, 39(5): 2412-2419. | |
10 | 花莉. 城市污泥堆肥资源化过程与污染物控制机理研究[D].杭州:浙江大学, 2008. |
HUA L. Research on mechanism of sludge reclamation and pollution control [D]. Hangzhou:Zhejiang University, 2008. | |
11 | 徐秋桐, 邱志腾, 章明奎. 生物质炭对不同pH土壤中碳氮磷的转化与形态的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(3): 303-313. |
XU Q T, QIU Z T, ZHANG M K. Effects of biochar application on transformation and chemical forms of C,N and P in soils with different pH [J]. J. Zhejiang Univ. (Agric. Life Sci.), 2014, 40(3): 303-313. | |
12 | 黄超, 刘丽君, 章明奎. 生物质炭对红壤性质和黑麦草生长的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 439-445. |
HUANG C, LIU L J, ZHANG M K. Effects of biochar on properties of red soil and ryegrass growth [J]. J. Zhejiang Univ. (Agric. Life Sci.), 2011, 37(4): 439-445. | |
13 | 张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8): 979-984. |
ZHANG X, WANG D, JIANG C C, et al.. Effect of biochar on physicochemical properties of red and yellow brown soils in the South China region [J]. Chin. J. Eco-Agric., 2013, 21(8): 979-984. | |
14 | 陈心想,何绪生,耿增超,等.生物炭对不同土壤化学性质、小麦和糜子产量的影响[J]. 生态学报, 2013, 33(20): 6534-6542. |
CHEN X X, HE X S, GENG Z C, et al.. Effects of biochar on selected soil chemical properties and on wheat and millet yield [J]. Acta Ecol. Sin., 2013, 33(20): 6534-6542. | |
15 | 杨彩迪, 宗玉统, 卢升高. 不同生物炭对酸性农田土壤性质和作物产量的动态影响[J]. 环境科学, 2020, 41(4): 1914-1920. |
YANG C D, ZONG Y T, LU S G. Dynamic effects of different biochars on soil properties and crop yield of acid farmland [J]. Environ. Sci., 2020, 41(4): 1914-1920. | |
16 | 董颖. 不同地区油菜秸秆生物质炭改良红壤酸度的差异性研究[D]. 洛阳:河南科技大学, 2018. |
DONG Y. Amelioration of an ultisol acidity by biochars derived from canola straw varied with their cultivating soils [D]. Luoyang:Henan University of Science and Technology, 2018. | |
17 | 武春成, 王彩云, 曹霞, 等. 不同用量生物炭对连作土壤改良及黄瓜生长的影响[J]. 北方园艺, 2017 (19): 150-154. |
WU C C, WANG C Y, CAO X, et al.. Effects of different biochar application rate on improvement of continuous cropping soil and cucumber growth [J]. Northern Hortic., 2017(19): 150-154. | |
18 | 孙向阳. 土壤学[M]. 北京: 中国林业出版社, 2005: 1-360. |
19 | 吴伟祥, 孙雪, 董达, 等. 生物质炭土壤环境效应[M]. 北京: 科学出版社, 2015: 1-468. |
WU W X, SUN X, DONG D, et al.. Environmental Effects of Biochar in Soil [M]. Beijing: Science Press, 2015: 1-468. | |
20 | 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998: 1-1253. |
21 | 郭明, 李新. Meta分析及其在生态环境领域研究中的应用[J]. 中国沙漠, 2009, 29(5): 911-919. |
GUO M, LI X. Meta-analysis: a new quantitative research approach in eco-environmental sciences [J]. J. Desert Res., 2009, 29(5): 911-919. | |
22 | 肖婧, 徐虎, 蔡岸冬, 等. 生物质炭特性及施用管理措施对作物产量影响的整合分析[J]. 中国农业科学, 2017, 50(10): 1830-1840. |
XIAO J, XU H, CAI A D, et al.. A meta-analysis of effects of biochar properties and management practices on crop yield [J]. Sci. Agric. Sin., 2017, 50(10): 1830-1840. | |
23 | HEDGES L V, GUREVITCH J, CURTIS P S, et al.. The meta-analysis of response ratios in experimental ecology [J]. Ecology, 1999, 80(4): 1150-1156. |
24 | LUO Y, HUI D, ZHANG D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis [J]. Ecology, 2006, 87(1): 53-63. |
25 | NIU L A, HAO J M, ZHANG B Z, et al.. Influences of long-term fertilizer and tillage management on soil fertility of the north China plain [J]. Pedosphere, 2011, 21(6): 813-820. |
26 | 鲁艳红, 廖育林, 聂军, 等. 长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响[J]. 土壤学报, 2016, 53(1): 202-212. |
LU Y H, LIAO Y L, NIE J, et al.. Effects of long-term application of N, P, K fertilizer and lime on acid properties of red paddy soil [J]. Acta Pedol. Sin., 2016, 53(1): 202-212. | |
27 | UCHIMIYA M, WARTELLE L H, KLASSON K T, et al.. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil [J]. J. Agric. Food Chem., 2011, 59(6): 2501-2510. |
28 | 袁金华,徐仁扣. 稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报, 2010, 26(5): 472-476. |
YUAN J H, XU R K. Effect of rice-hull-based biochar regulating acidity of red soil and yellow brown soil [J]. J. Ecol. Rural Environ., 2010, 26(5): 472-476. | |
29 | YUAN J H, XU R K, WANG N, et al.. Amendment of acid soils with crop residues and biochars [J]. Pedosphere, 2011, 21(3): 302-308. |
30 | 王义祥, 辛思洁, 叶菁, 等. 生物炭对强酸性茶园土壤酸度的改良效果研究[J]. 中国农学通报, 2018, 34(12): 108-111. |
WANG Y X, XIN S J, YE J, et al.. Improvement effect of biochar on soil acidity in strong acidity tea garden [J]. Chin. Agric. Sci. Bull., 2018, 34(12): 108-111. | |
31 | MOKOLOBATE M S, HAYNES R J. Increases in pH and soluble salts influence the effect that additions of organic residues have on concentrations of exchangeable and soil solution aluminium [J]. Eur. J. Soil Sci.,2010,53(3):481-489. |
32 | 赵旋彤, 王鸿斌, 赵兰坡, 等. 吉林省三种典型农耕土壤酸碱缓冲性能及影响因素[J/OL]. 吉林农业大学学报,2020:55752[2022-01-06].. |
ZHAO X T, WANG H B, ZHAO L P, et al.. Acid-base buffering properties and influencing factors of three typical agricultural soils in Jilin province [J/OL]. J. Jilin Agric. Univ.,2020:55752 [2022-01-06].. | |
33 | 李艳梅, 孙焱鑫, 廖上强, 等. 不同原料与温度制备生物炭的性质及其农用潜力分析[C]//《环境工程》2019年全国学术年会论文集(下册). 北京:《环境工程》编辑部,2019: 731-736. |
LI Y M, SUN Y X, LIAO S Q, et al.. Effects of feedstock sources and pyrolysis temperature on biochar’s property and their resulting agronomic effects [C] // Proceedings of the 2019 National Conference on Environmental Engineering (Volume 2).Beijing: Editorial Department of Environmental Engineering,2019: 731-736. | |
34 | 吴愉萍, 李雅颖, 周萍, 等. 不同原料及热解条件下农业废弃物生物炭的特性[J]. 江苏农业科学, 2019, 47(8): 230-233. |
WU Y P, LI Y Y, ZHOU P, et al.. Characteristics of agricultural waste biochar under different raw materials and pyrolysis conditions [J]. Jiangsu Agric. Sci., 2019, 47(8): 230-233. | |
35 | 陈义轩, 宋婷婷, 方明, 等. 四种生物炭对潮土土壤微生物群落结构的影响[J]. 农业环境科学学报, 2019, 38(2): 394-404. |
CHEN Y X, SONG T T, FANG M, et al.. The effect of four biochar on the structure of microbial communities in alluvial soil [J]. J. Agro-Environ. Sci., 2019, 38(2): 394-404. | |
36 | GASKIN J W, STEINER C, HARRIS K, et al.. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Trans. Asabe, 2008, 51( 6) : 2061-2069. |
37 | HOSSAIN M K, STREZOV V, CHAN K, et al.. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum) [J]. Chemosphere, 2010, 78(9): 1167-1171. |
38 | CANTRELL K B, HUNT P G, UCHIMIYA M, et al.. Impact of pyrolysis temperature and manure source on physicochemical [J]. Bioresour. Technol., 2012, 107: 419-428. |
39 | HAO Z, WANG Z, XIA D, et al.. Characteristics and nutrient values of biochars produced from giant reed at different temperatures [J]. Bioresour. Technol., 2013, 130(2):463-471. |
40 | CAO X, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J]. Bioresour. Technol., 2010, 101(14):5222-5228. |
41 | 周强, 黄代宽, 余浪, 等. 热解温度和时间对生物炭pH值的影响[J]. 地球环境学报,2015,6(3):195-200. |
ZHOU Q, HUANG D K, YU L, et al.. Effects of pyrolysis temperature, time and biochar mass ratio on pH value determination for four biochar solutions [J]. J. Earth Environ., 2015,6(3):195-200. | |
42 | XU X, CAO X, ZHAO L, et al.. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar [J]. Environ. Sci. Poll. Res. Int., 2013, 20(1):358-368. |
43 | KEILUWEIT M, NICO P S, JOHNSON M G, et al.. Dynamic molecular structure of plant biomass-derived black carbon (biochar) [J]. Environ. Sci. Technol., 2010, 44(4):1247-1253. |
44 | 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所), 2017. |
WEI S Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar [D]. Guangzhou:University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, CAS), 2017. | |
45 | LEHMANN J. Bio-energy in the black [J]. Front. Ecol. Environ., 2007, 5: 381–387. |
46 | 郑慧芬, 吴红慧, 翁伯琦, 等. 施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料, 2019(2): 68-74. |
ZHENG H F, WU H H, WEN B Q, et al.. Improved soil microbial characteristics and enzyme activities with wheat straw biochar addition to an acid tea plantation in red soil [J]. Soil Fert. Sci. China, 2019(2): 68-74. | |
47 | DAI Z, ZHANG X, TANG C, et al.. Potential role of biochars in decreasing soil acidification: a critical review [J]. Sci. Total Environ., 2017, 581/582: 601-611. |
48 | RYSA D, NI N, JNNA D, et al.. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification [J]. Chemosphere, 2019, 234: 43-51. |
49 | 张文锋, 周际海, 袁颖红, 等. 低剂量生物质炭对旱地红壤增肥增产效果[J]. 生态学杂志, 2016(3): 647-654. |
ZHANG W F, ZHOU J H, YUAN Y H, et al.. Effects of low-dose biochar on the enhancement of fertility and yield in upland red soils [J]. Chin. J. Ecol., 2016(3): 647-654. |
[1] | 张晨阳, 徐明岗, 王斐, 李然, 孙楠. 施用有机肥对我国大豆产量及土壤养分的影响[J]. 中国农业科技导报, 2023, 25(8): 148-156. |
[2] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
[3] | 王旭东, 任雪冰, 汤舒, 郭琴, 薛梦瑶, 金鹏, 张云华. 污泥生物炭在土壤改良中的应用研究[J]. 中国农业科技导报, 2023, 25(6): 165-173. |
[4] | 刘云飞, 韦凤杰, 夏茂林, 于兆锦, 夏昊, 衣春宇, 常剑波, 姬小明. 新型复合水凝胶对镉胁迫烟草幼苗的缓解效应[J]. 中国农业科技导报, 2023, 25(3): 188-197. |
[5] | 杨玲, 张富仓, 孙鑫, 张少辉, 王海东, ABDELGHANY Ahmed Elsayed, 陈占飞, 方玉川. 生物炭和滴灌量对陕北榆林沙土性质和马铃薯生长的影响[J]. 中国农业科技导报, 2023, 25(3): 221-233. |
[6] | 郑云珠, 孙树臣. 秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J]. 中国农业科技导报, 2023, 25(2): 152-162. |
[7] | 刘著文, 杨龙飞, 刘茂林, 贾国涛, 姚倩, 马一琼, 崔廷, 杨欣玲, 陈洋, 程良琨. 不同土壤改良剂对土壤养分及烤烟内在品质的影响[J]. 中国农业科技导报, 2022, 24(11): 190-198. |
[8] | 周蕾, 陈兆兰, 严玉波, 李桥. 鸡粪生物炭吸附固定铅的研究[J]. 中国农业科技导报, 2022, 24(11): 199-207. |
[9] | 魏俞涌, 张庆法, 盛奎川. 生物炭对玉米醇溶蛋白/聚丙烯复合材料力学性能的影响[J]. 中国农业科技导报, 2022, 24(10): 161-168. |
[10] | 朱利霞, 陈居田, 徐思薇, 陈如冰, 李俐俐. 生物炭施用下土壤微生物量碳氮的动态变化[J]. 中国农业科技导报, 2021, 23(8): 193-200. |
[11] | 胡朝华, 刘曰明, 庞孜钦, 袁照年. 农田土壤活性氮损失现状和生物炭调控途径研究进展[J]. 中国农业科技导报, 2021, 23(6): 120-129. |
[12] | 黄清扬, 江超, 俞元春, 谢祖彬. 不同秸秆生物炭复配基质对波斯菊生理性质的影响[J]. 中国农业科技导报, 2021, 23(6): 147-153. |
[13] | 何甜甜, 刘天, 云菲, 马彩娟, 符云鹏. 生物炭对农田N2O排放的影响机制研究[J]. 中国农业科技导报, 2021, 23(5): 124-131. |
[14] | 王鑫宇1,2,张曦2,孟海波2,沈玉君2,解恒燕1*,周海宾2,程红胜2,宋立秋2. 温度对生物炭吸附重金属特性的影响研究[J]. 中国农业科技导报, 2021, 23(2): 150-158. |
[15] | 肖生苓1,荆勇1,2,冯晶2,申瑞霞2*,赵立欣2,王全亮1,张迎2. 木质生物炭对厌氧发酵产甲烷性能的影响[J]. 中国农业科技导报, 2021, 23(1): 128-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||