中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (4): 58-66.DOI: 10.13304/j.nykjdb.2022.0915
潘越1(), 王宝庆2, 王季姣2,3,4, 马勇2,3,4, 李亚兰4(
)
收稿日期:
2022-10-26
接受日期:
2022-12-26
出版日期:
2024-04-15
发布日期:
2024-04-23
通讯作者:
李亚兰
作者简介:
潘越 E-mail: 18690187637@163.com;
基金资助:
Yue PAN1(), Baoqing WANG2, Jijiao WANG2,3,4, Yong MA2,3,4, Yalan LI4(
)
Received:
2022-10-26
Accepted:
2022-12-26
Online:
2024-04-15
Published:
2024-04-23
Contact:
Yalan LI
摘要:
为探索不同山葡萄品种叶片CO2响应特征差异,以5 a生山葡萄‘北冰红’‘北国红’‘双红’和‘雪兰红’为试材,采用Li-6400便携式光合仪,测定果实膨大期山葡萄叶片光合-二氧化碳响应曲线(photosynthetic CO2 response curve,Pn-Ci)以及胞间CO2浓度(intercellular CO2 concentration,Ci)、气孔导度(stomatal conductance,Gs)、水分利用率(water use efficiency,WUE)和蒸腾速率(transpiration rate,Tr)等气体交换参数,基于直角双曲线模型、Michaelis-Menten模型和直角双曲线修正模型3种模型拟合山葡萄叶片Pn-Ci响应曲线。结果表明,直角双曲线修正模型拟合的山葡萄Pn-Ci响应曲线,其拟合参数与实测值最为接近,可直接计算CO2饱和点(CO2 saturation point,CSP)。随大气CO2浓度(atmospheric CO2 concentration,Ca)的增加,4个山葡萄品种Ci呈线性递增趋势;Gs和Tr总体呈先升后降趋势;WUE先降后升,呈“U”型变化趋势。主成分分析提取出2个主成分,累计贡献率达84.613%。综合评价‘雪兰红’得分最高,光能转化利用率最高,在低Ca环境下的适应性最佳;‘双红’在不同Ca水平下均可保持较高光合效率,排名第2。综上所述,直角双曲线修正模型拟合山葡萄叶片Pn-Ci响应曲线效果最优。
中图分类号:
潘越, 王宝庆, 王季姣, 马勇, 李亚兰. 不同山葡萄品种CO2响应模型拟合及评价[J]. 中国农业科技导报, 2024, 26(4): 58-66.
Yue PAN, Baoqing WANG, Jijiao WANG, Yong MA, Yalan LI. CO2 Response Model Fitting and Evaluation of Vitis amurensis[J]. Journal of Agricultural Science and Technology, 2024, 26(4): 58-66.
品种Variety | 参数Parameter | 直角双曲线模型 Rectangular hyperbola model | Michaelis-Menten模型 Michaelis-Menten model | 直角双曲线修正模型 Modified rectangular hyperbola model | 实测值 Measured value |
---|---|---|---|---|---|
北冰红 Beibinghong | 初始羧化效率ƞ | 0.044 9 | 0.044 9 | 0.038 5 | — |
表观羧化效率ACE | 0.024 6**(R2=0.980 0) | 0.024 6**(R2=0.980 0) | 0.024 5**(R2=0.982 1) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 60.897 5 | 60.897 5 | 24.111 7 | 24.069 8 | |
CO 2 补偿点Γ/(μmol·mol-2) | 77.902 3 | 77.902 3 | 79.177 1 | 42.909 6 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 530.792 7 | 1 530.792 7 | 1 264.820 0 | 1 024.170 5 | |
光呼吸速率Rp/(μmol·mol-1) | 3.307 8 | 3.307 8 | 2.978 1 | — | |
北国红 Beiguohong | 初始羧化效率ƞ | 0.040 5 | 0.040 5 | 0.036 2 | — |
表观羧化效率ACE | 0.019 2**(R2=0.997 1) | 0.019 2**(R2=0.997 1) | 0.019 2**(R2=0.997 7) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 41.554 3 | 41.554 3 | 19.810 1 | 28.577 3 | |
CO 2 补偿点Γ/(μmol·mol-2) | 82.477 8 | 82.477 8 | 83.754 2 | 43.907 1 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 341.573 7 | 1 341.573 7 | 1 593.300 0 | 1 532.338 7 | |
光呼吸速率Rp/(μmol·mol-1) | 3.094 7 | 3.094 7 | 2.884 5 | — | |
双红 Shuanghong | 初始羧化效率ƞ | 0.040 9 | 0.040 9 | 0.037 7 | — |
表观羧化效率ACE | 0.021 1**(R2=0.997 2) | 0.021 1**(R2=0.997 2) | 0.021 1**(R2=0.997 4) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 49.173 9 | 49.173 9 | 23.937 4 | 36.960 8 | |
CO 2 补偿点Γ/(μmol·mol-2) | 70.992 2 | 70.992 2 | 71.240 6 | 28.246 8 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 427.480 8 | 1 427.480 8 | 1 892.530 0 | 1 781.738 4 | |
光呼吸速率Rp/(μmol·mol-1) | 2.739 4 | 2.739 4 | 2.578 2 | — | |
雪兰红 Xuelanhong | 初始羧化效率ƞ | 0.047 4 | 0.047 4 | 0.040 7 | — |
表观羧化效率ACE | 0.021 1**(R2=0.996 6) | 0.021 1**(R2=0.996 6) | 0.021 1**(R2=0.997 5) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 47.320 7 | 47.320 7 | 22.630 6 | 21.880 6 | |
CO 2 补偿点Γ/(μmol·mol-2) | 63.140 4 | 63.140 4 | 62.971 0 | 7.208 9 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 290.484 5 | 1 290.484 5 | 1 396.940 0 | 997.014 6 | |
光呼吸速率Rp/(μmol·mol-1) | 2.812 4 | 2.812 4 | 2.483 7 | — |
表1 不同山葡萄品种CO2响应模型的拟合值与实测值
Table 1 Fitting parameters and measured values of CO2 response model for different kind of Vitis amurensis Rupr.
品种Variety | 参数Parameter | 直角双曲线模型 Rectangular hyperbola model | Michaelis-Menten模型 Michaelis-Menten model | 直角双曲线修正模型 Modified rectangular hyperbola model | 实测值 Measured value |
---|---|---|---|---|---|
北冰红 Beibinghong | 初始羧化效率ƞ | 0.044 9 | 0.044 9 | 0.038 5 | — |
表观羧化效率ACE | 0.024 6**(R2=0.980 0) | 0.024 6**(R2=0.980 0) | 0.024 5**(R2=0.982 1) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 60.897 5 | 60.897 5 | 24.111 7 | 24.069 8 | |
CO 2 补偿点Γ/(μmol·mol-2) | 77.902 3 | 77.902 3 | 79.177 1 | 42.909 6 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 530.792 7 | 1 530.792 7 | 1 264.820 0 | 1 024.170 5 | |
光呼吸速率Rp/(μmol·mol-1) | 3.307 8 | 3.307 8 | 2.978 1 | — | |
北国红 Beiguohong | 初始羧化效率ƞ | 0.040 5 | 0.040 5 | 0.036 2 | — |
表观羧化效率ACE | 0.019 2**(R2=0.997 1) | 0.019 2**(R2=0.997 1) | 0.019 2**(R2=0.997 7) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 41.554 3 | 41.554 3 | 19.810 1 | 28.577 3 | |
CO 2 补偿点Γ/(μmol·mol-2) | 82.477 8 | 82.477 8 | 83.754 2 | 43.907 1 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 341.573 7 | 1 341.573 7 | 1 593.300 0 | 1 532.338 7 | |
光呼吸速率Rp/(μmol·mol-1) | 3.094 7 | 3.094 7 | 2.884 5 | — | |
双红 Shuanghong | 初始羧化效率ƞ | 0.040 9 | 0.040 9 | 0.037 7 | — |
表观羧化效率ACE | 0.021 1**(R2=0.997 2) | 0.021 1**(R2=0.997 2) | 0.021 1**(R2=0.997 4) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 49.173 9 | 49.173 9 | 23.937 4 | 36.960 8 | |
CO 2 补偿点Γ/(μmol·mol-2) | 70.992 2 | 70.992 2 | 71.240 6 | 28.246 8 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 427.480 8 | 1 427.480 8 | 1 892.530 0 | 1 781.738 4 | |
光呼吸速率Rp/(μmol·mol-1) | 2.739 4 | 2.739 4 | 2.578 2 | — | |
雪兰红 Xuelanhong | 初始羧化效率ƞ | 0.047 4 | 0.047 4 | 0.040 7 | — |
表观羧化效率ACE | 0.021 1**(R2=0.996 6) | 0.021 1**(R2=0.996 6) | 0.021 1**(R2=0.997 5) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 47.320 7 | 47.320 7 | 22.630 6 | 21.880 6 | |
CO 2 补偿点Γ/(μmol·mol-2) | 63.140 4 | 63.140 4 | 62.971 0 | 7.208 9 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 290.484 5 | 1 290.484 5 | 1 396.940 0 | 997.014 6 | |
光呼吸速率Rp/(μmol·mol-1) | 2.812 4 | 2.812 4 | 2.483 7 | — |
图1 不同模型下拟合的CO2响应曲线A:直角双曲线模型;B:Michaelis-Menten模型;C:直角双曲线修正模型
Fig. 1 CO2 response curves fitted with different modelsA: Rectangular hyperbola model; B: Michaelis-Menten model; C: Modified rectangular hyperbola model
指标 Index | 变幅 Range | 均值 Mean | 变异系数 Coefficient of variation/% | 中位数 Median | 标准差 Standard deviation |
---|---|---|---|---|---|
初始羧化效率ƞ | 0.036 2~0.040 7 | 0.038 3 | 16.506 2 | 0.040 6 | 0.006 3 |
表观羧化效率ACE | 19.810 1~24.111 7 | 22.622 4 | 20.400 2 | 21.913 5 | 4.615 0 |
最大净光合速率Pnmax/(μmol·m-2·s-1) | 62.971 0~83.754 2 | 74.285 7 | 18.124 3 | 74.132 9 | 13.463 8 |
CO 2 补偿点Γ/(μmol·mol-2) | 1 264.280 0~1 892.530 0 | 1 536.897 5 | 17.597 2 | 1 445.000 0 | 270.451 3 |
CO 2 饱和点CSP/(μmol·mol-2) | 2.483 7~2.978 1 | 2.725 3 | 11.424 1 | 2.584 1 | 0.311 3 |
表2 4个山葡萄品种Pn -Ci响应参数的描述性统计
Table 2 Descriptive statistics of 4 Vitis amurensis Rupr. varieties Pn -Ci response
指标 Index | 变幅 Range | 均值 Mean | 变异系数 Coefficient of variation/% | 中位数 Median | 标准差 Standard deviation |
---|---|---|---|---|---|
初始羧化效率ƞ | 0.036 2~0.040 7 | 0.038 3 | 16.506 2 | 0.040 6 | 0.006 3 |
表观羧化效率ACE | 19.810 1~24.111 7 | 22.622 4 | 20.400 2 | 21.913 5 | 4.615 0 |
最大净光合速率Pnmax/(μmol·m-2·s-1) | 62.971 0~83.754 2 | 74.285 7 | 18.124 3 | 74.132 9 | 13.463 8 |
CO 2 补偿点Γ/(μmol·mol-2) | 1 264.280 0~1 892.530 0 | 1 536.897 5 | 17.597 2 | 1 445.000 0 | 270.451 3 |
CO 2 饱和点CSP/(μmol·mol-2) | 2.483 7~2.978 1 | 2.725 3 | 11.424 1 | 2.584 1 | 0.311 3 |
主成分Principal component | 提取平方载荷值Extract the value of the square load | 旋转平方载荷值Value of the rotation squared load | ||||
---|---|---|---|---|---|---|
特征根Characteristic root | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | 特征根Characteristic root | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | |
PC1 | 2.800 | 56.005 | 56.005 | 2.788 | 55.759 | 55.759 |
PC2 | 1.430 | 28.608 | 84.613 | 1.443 | 28.854 | 84.613 |
表3 主成分的特征根、方差贡献率和累计贡献率
Table 3 Characteristic roots, variance contribution and cumulative contribution of principal components
主成分Principal component | 提取平方载荷值Extract the value of the square load | 旋转平方载荷值Value of the rotation squared load | ||||
---|---|---|---|---|---|---|
特征根Characteristic root | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | 特征根Characteristic root | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | |
PC1 | 2.800 | 56.005 | 56.005 | 2.788 | 55.759 | 55.759 |
PC2 | 1.430 | 28.608 | 84.613 | 1.443 | 28.854 | 84.613 |
Pn-Ci响应参数 Pn-Ci response parameter | 载荷值Loading value | |
---|---|---|
PC1 | PC2 | |
初始羧化效率ƞ | 0.934 8 | -0.317 3 |
表观羧化效率ACE | 0.583 9 | -0.186 3 |
最大净光合速率Pnmax | 0.969 4 | 0.213 0 |
CO 2 补偿点Γ | -0.137 9 | 0.957 8 |
CO 2 饱和点CSP | -0.783 9 | -0.586 9 |
表4 旋转后的主成分载荷矩阵
Table 4 Principal component load matrix after rotation
Pn-Ci响应参数 Pn-Ci response parameter | 载荷值Loading value | |
---|---|---|
PC1 | PC2 | |
初始羧化效率ƞ | 0.934 8 | -0.317 3 |
表观羧化效率ACE | 0.583 9 | -0.186 3 |
最大净光合速率Pnmax | 0.969 4 | 0.213 0 |
CO 2 补偿点Γ | -0.137 9 | 0.957 8 |
CO 2 饱和点CSP | -0.783 9 | -0.586 9 |
品种 Variety | f1得分 f1 score | 排序 Ranking | f2得分 f2 score | 排序 Ranking | fz得分 fz score | 排序 Ranking |
---|---|---|---|---|---|---|
北冰红Beibinghong | 0.350 7 | 3 | -1.150 2 | 4 | -0.161 1 | 3 |
北国红Beiguohong | -0.546 3 | 4 | -0.090 7 | 2 | -0.390 9 | 4 |
双红Shuanghong | 0.659 5 | 2 | 0.426 4 | 1 | 0.580 0 | 2 |
雪兰红Xuelanhong | 1.422 0 | 1 | -0.148 8 | 3 | 0.886 3 | 1 |
表5 各主成分得分和综合得分
Table 5 Principal component scores and composite scores
品种 Variety | f1得分 f1 score | 排序 Ranking | f2得分 f2 score | 排序 Ranking | fz得分 fz score | 排序 Ranking |
---|---|---|---|---|---|---|
北冰红Beibinghong | 0.350 7 | 3 | -1.150 2 | 4 | -0.161 1 | 3 |
北国红Beiguohong | -0.546 3 | 4 | -0.090 7 | 2 | -0.390 9 | 4 |
双红Shuanghong | 0.659 5 | 2 | 0.426 4 | 1 | 0.580 0 | 2 |
雪兰红Xuelanhong | 1.422 0 | 1 | -0.148 8 | 3 | 0.886 3 | 1 |
1 | 肖石红,张卫强,黄芳芳,等. CO2加富对施盐处理下银叶树幼苗叶片光合特性的影响[J].中国水土保持科学,2020,18(5):127-135. |
XIAO S H, ZHANG W Q, HUANG F F, et al.. Effect of CO2 enrichment on photosynthetic characteristics in the leaves of Heritiera littoralis seedlings under salinity treatment [J]. Sci. Soil Water Conserv., 2020, 18(5):127-135. | |
2 | 刘晓聪,董家华,欧英娟.大气中CO2与O3浓度升高对植物光合作用影响研究[J].环境科学与管理,2016, 41(3):152-155. |
LIU X C, DONG J H, OU Y J. Research progress on effects of elevated atmospheric O3 and CO2 on plant photosynthesis [J]. Environ. Sci. Manage., 2016, 41(3):152-155. | |
3 | 郭世博,张方亮,张镇涛,等.全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J].中国农业科学,2022,55(9):1763-1780. |
GUO S B, ZHANG F L, ZHANG Z T, et al.. The Possible effects of global warming on cropping systems in China ⅪⅤ. distribution of high-stable-yield zones and agro meteorological disasters of soybean in Northeast China [J]. Sci. Agric. Sin., 2022, 55(9):1763-1780. | |
4 | IPCC. Climate change 2013: The physical science basis. Working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change, 2013. |
5 | JIANG Y L, XU Z Z, ZHOU G S, et al.. Elevated CO2 can modify the response to a water status gradient in a steppe grass: from cell organelles to photo-synthetic capacity to plant growth [J/OL]. BMC Plant Biol., 2016, 16(1):157 [2022-09-20]. . |
6 | 叶子飘,康华靖,段世华,等.不同CO2浓度下大豆叶片的光合生理生态特性[J].应用生态学报,2018,29(2):583-591. |
YE Z P, KANG H J, DUAN S H, et al.. Photosynthetic physio-ecological characteristics in soybean leaves at different CO2 concentrations [J]. Chin. J. Appl. Ecol., 2018, 29(2):583-591. | |
7 | 康华靖,陶月良,权伟,等.植物光合CO2响应模型对光下(暗)呼吸速率拟合的探讨[J].植物生态学报,2014,38(12):1356-1363. |
KANG H J, TAO Y L, QUAN W, et al.. Fitting mitochondrial respiration rates under light by photosynthetic CO2 response models [J]. Chin. J. Plant Ecol., 2014, 38(12):1356-1363. | |
8 | 叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用[J].生态学杂志,2007,26(8):1323-1326. |
YE Z P. Application of light-response model in estimating the photosynthesis of super-hybrid rice combination Ⅱ Youming 86 [J]. Chin. J. Ecol., 2007, 26(8):1323-1326. | |
9 | HARLEY P C, THOMAS R B, REYNOLDS J F, et al.. Modelling photosynthesis of cotton grown in elevated CO2 [J]. Plant Cell Environ., 2010,15(3):271-282. |
10 | 叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740. |
YE Z P. A review on modeling of responses of photosynthesis to light and CO2 [J]. Chin. J. Plant Ecol., 2010, 34(6):727-740. | |
11 | 赖帅彬,潘新雅,简春霞,等.转苜蓿MsOr基因烟草光合-光响应和光合-CO2响应曲线特征研究[J].草地学报,2020,28(1):20-30. |
LAI S B, PAN X Y, JIAN C X, et al.. Characteristics of photosynthetic light response and photosynthetic CO2 response curves in transgenic Alfalfa MsOr gene tobacco [J]. Acta Agrestia Sin., 2020, 28(1):20-30. | |
12 | 王秀伟,毛子军.7个光响应曲线模型对不同植物种的实用性[J].植物研究,2009,29(1):43-48. |
WANG X W, MAO Z J. Practicability of 7 light responsive curve models to different plant species [J]. Bull. Bot. Rese., 2009, 29(1):43-48. | |
13 | 杨欢,张庆田,刘洪章,等.东北山葡萄区域化及酿酒特性研究概况[J].北方果树,2016(3):1-4. |
YANG H, ZHANG Q T, LIU H Z, et al.. The research situation of Northeast Vitis amurensis regionalization and vinification characteristics [J]. Northern Fruits, 2016(3):1-4. | |
14 | 左倩倩,郑婷,纪薇,等.中国地方葡萄品种分布及收集利用现状[J].中外葡萄与葡萄酒,2019(5):76-80. |
ZUO Q Q, ZHANG T, JI W, et al.. The present situation of distribution and collection and utilization of grape varieties in China [J]. Sino-Overseas Grapevine Wine, 2019(5):76-80. | |
15 | 牛生洋,刘崇怀,刘强,等.葡萄种质果实有机酸组分及其含量特性[J].食品科学,2022,43(12):228-234. |
NIU S Y, LIU C H, LIU Q, et al.. Composition and contents of organic acids in different grape germplasms [J]. Food Sci., 2022, 43(12):228-234.. | |
16 | 徐美隆,乔改霞,仝倩,等.山葡萄砧木对‘黑比诺’葡萄耐旱寒的影响研究[J].中外葡萄与葡萄酒,2021(6):66-70. |
XU M L, QIAO G X, TONG Q, et al.. Effect of Vitis amurensis rootstock on drought and cold tolerance of ‘Pinot Noir’grapevine [J]. Sino-Overseas Grapevine Wine, 2021(6):66-70. | |
17 | 袁军伟,李敏敏,贾楠,等.21份葡萄砧木品种资源耐盐性鉴定[J].西北农业学报,2019,28(4):602-606. |
YUAN J W, LI M M, JIA N, et al.. Evaluation of salt stress tolerance identification in twenty-one grape rootstock [J]. Acta Agric. Bor-Occid. Sin., 2019, 28(4):602-606. | |
18 | 金宇宁.东北葡萄产区不同产地及树龄对‘北冰红’酒质影响的研究[D].北京:中国农业科学院,2021. |
JIN Y N. Study on the effects of different places and tree age on the wine quality of ‘Beibinghong’ in northeast grape production area [D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
19 | 裴辰玉,张薇,李悦,等.CO2浸渍法对北冰红山葡萄酒中成分影响的研究[J].食品工业,2019,40(3):315-319. |
PEI C Y, ZHANG W, LI Y, et al.. Study on the effect of maceration carbonique composition of Beibinghong grape wine [J]. Food Ind., 2019, 40(3):315-319. | |
20 | 刘阳阳,潘越,王世伟,等.不同山葡萄品种光响应模型拟合及综合评价[J].中国农业科技导报,2022,24(2):104-114. |
LIU Y Y, PAN Y, WANG S W, et al.. Light response model fitting and comprehensive evaluation for Vitis amurensis [J]. J. Agric. Sci. Technol., 2022, 24(2):104-114. | |
21 | 公丽艳,孟宪军,刘乃侨,等.基于主成分与聚类分析的苹果加工品质评价[J].农业工程学报,2014,30(13):276-285. |
GONG L Y, MENG X J, LIU N Q, et al.. Evaluation of apple quality based on principal component and hierarchical cluster analysis [J]. Trans. Chin. Soc. Agric. Eng., 2014, 30(13):276-285. | |
22 | 潘越,史彦江,陈淑英,等.喷施叶面肥对平欧杂种榛‘新榛1号’嫩枝扦插的影响[J].江西农业大学学报,2016,38(5):920-926. |
PAN Y, SHI Y J, CHEN S Y, et al.. Effect of foliar fertilizers on the hybrid hazel ‘New hazel one’ twig cutting [J]. Acta Agirc. Univ. Jiangxiensis, 2016, 38(5):920-926. | |
23 | 潘越,史开奇,刘珩,等.伊犁不同山葡萄品种的光响应模型筛选及光能利用效率评价[J].经济林研究,2022,40(1):178-188. |
PAN Y, SHI K Q, LIU H, et al.. Light response model fitting and light use efficiency evaluation for different Vitis amurensis varieties in Yili region [J]. Non-wood For. Res., 2022, 40(1):178-188. | |
24 | 李丽霞,刘济明,黄小龙,等.不同氮素条件米槁幼苗光合作用对CO2响应特征[J].东北农业大学学报,2017,48(2):29-36. |
LI L X, LIU J M, HUANG X L, et al.. Response characteristic of Cinnamomum migao seedling’s photosynthesis to CO2 in different conditions of nitrogen [J]. J. Northeast Agric. Univ., 2017, 48(2):29-36. | |
25 | 陆佩玲,于强,罗毅,等.冬小麦光合作用的光响应曲线的拟合[J].中国农业气象,2001,22(2):13-15. |
LU P L, YU Q, LUO Y, et al.. Fitting light response curves of photosynthesis of winter wheat [J]. Chin. J. Agrometeorol., 2001, 22(2):13-15. | |
26 | 马兴东,郭晔红,李梅英,等.施氮对干旱区黑果枸杞光合-CO2响应及药效成分的影响[J].西北植物学报,2020,40(7):1209-1218. |
MA X D, GUO Y H, LI M Y, et al.. Leaf CO2 response curve and fruit medicinal components of Lycium ruthenicum affected by nitrogen application in the arid area [J]. Acta Bot. Bor-Occid. Sin., 2020, 40(7):1209-1218. | |
27 | KYEI-BOAHEN S, LADA R, ASTATKIE T, et al.. Photo-synthetic response of carrots to varying irradiances [J]. photosynthetica, 2003, 41(2):301-305. |
28 | LEAKEY A D B, URIBELARREA M, AINSWORTH E A, et al.. Photosynthesis, productivity, and yield of maize are not affected by open air elevation of CO2 concentration in the absence of drought [J]. Plant Physiol., 2006, 140(2): 779-790. |
29 | 任博,李俊,同小娟,等.太行山南麓栓皮栎和刺槐光合作用-CO2响应模拟[J].应用生态学报,2018,29(1):1-10. |
REN B, LI J, TONG X J, et al.. Simulation on photosynthetic-CO2 response of Quercus variabilis and Robinia pseudoacacia in the southern foot of the Taihang mountain, China [J]. Chin. J. Appl. Ecol., 2018, 29(1):1-10. | |
30 | 郭芳芸,哈蓉,马亚平,等.CO2浓度升高对宁夏枸杞苗木光合特性及生物量分配影响[J].西北植物学报,2019,39(2):302-309. |
GUO F Y, HA R, MA Y P, et al.. Effects of elevated CO2 concentration on photosynthesis characteristics and biomass allocation of Lycium barbarum seedlings [J]. Acta Bot. Bor-Occid. Sin., 2019, 39(2):302-309. | |
31 | YU Q. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes [J]. Ann. Bot., 2004, 93(4):435-441. |
32 | 董志新,韩清芳,贾志宽,等.不同苜蓿(Medicago sativa L.)品种光合速率对光和CO2浓度的响应特征[J].生态学报,2007,27(6):2272-2278. |
DONG Z X, HAN Q F, JIA Z K, et al.. Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieties [J]. Acta Ecol. Sin., 2007, 27(6):2272-2278. | |
33 | JAVAID A, Growth MAHMOOD N., nodulation and yield response of soybean to biofertilizers and organic manures [J]. Pakistan J. Bot., 2010, 42(2):863-871. |
34 | 李唯.植物生理学[M].北京:高等教育出版社,2012:71-72. |
35 | 郑凤英,彭少麟.不同尺度上植物叶气孔导度对升高CO2的响应[J].生态学杂志,2003,22(1):26-30. |
ZHENG F Y, PENG S L. Responses of plant stomatal conductance to elevated CO2 at different scales. [J]. Chin. J. Ecol., 2003, 22(1):26-30. | |
36 | BLOOM A J. Resoured limitation in plants an economic analogy [J]. Annu. Rev. Ecol. Syst., 1985(16): 541-549. |
37 | 吕扬,刘廷玺,闫雪,等.科尔沁沙丘-草甸相间地区黄柳和小叶锦鸡儿光合速率对光照强度和CO2浓度的响应[J].生态学杂志,2016,35(12):3157 -3164. |
LYU Y, LIU T X, YAN X, et al.. Response of photosynthetic rate of Salix gordejevii and Caragana microphylla to light intensity and CO2 concentration in the dune-meadow transitional area of Horqin sandy land [J]. Chin. J. Ecol., 2016, 35(12):3157-3164. | |
38 | 尹丽,胡庭兴,刘永安,等.施氮量对麻疯树幼苗生长及叶片光合特性的影响[J].生态学报,2011,31(17):4977-4984. |
YIN L, HU T X, LIU Y A, et al.. Effect of nitrogen application rate on growth and leaf photosynthetic characteristics of Jatropha curcas L. seedlings [J]. Acta Ecol. Sin., 2011, 31(17):4977-4984. | |
39 | 董菊兰,麻文俊,王军辉,等.氮素对楸树无性系幼苗的生长影响研究[J].西部林业科学,2012,41(5):31-35. |
DONG J L, MA W J, WANG J H, et al.. Growth responses of Catalpa bungei to nitrogen [J]. J. West China For. Sci., 2012, 41(5):31-35. | |
40 | 冯会丽,吴正保,史彦江,等.基于因子分析的灰枣优良无性系果实品质评价[J].食品科学,2016,37(9):77-81. |
FENG H L, WU Z B, SHI Y J, et al.. Fruit quality evaluation of superior clones of Zizyphus jujube cv. Huizao based on factor analysis [J]. Food Sci., 2016, 37(9):77-81. |
[1] | 李江博, 高文举, 运晓东, 赵杰银, 耿世伟, 韩春斌, 陈全家, 陈琴. 不同水分胁迫处理对陆地棉核心种质资源的影响[J]. 中国农业科技导报, 2024, 26(3): 26-39. |
[2] | 曹婷婷, 刘春, 范又维, 马力, 任志雨, 袁素霞, 张军云, 钱遵姚, 杨光炤. 不同氮素供应水平对微型盆栽月季生长发育的影响[J]. 中国农业科技导报, 2024, 26(2): 67-79. |
[3] | 孟盼盼, 何海燕, 曹钰昕, 张丽欣, 吕清豪, 祁瑞林, 张红瑞. 5个栽培类型药菊分枝期抗旱性综合评价[J]. 中国农业科技导报, 2024, 26(2): 90-99. |
[4] | 李生梅, 庞博, 耿世伟, 宋武, 李红梅, 马茂森, 张茹, 王新燕, 高文伟. 棉花海陆回交群体盛铃期的光合特性及其生理基础[J]. 中国农业科技导报, 2024, 26(1): 40-51. |
[5] | 卢倩倩, 阿布都外力·阿不力米提, 侯毅兴, 李志慧, 王爽, 周龙. 复合盐碱胁迫下7个鲜食葡萄品种光合特性研究[J]. 中国农业科技导报, 2023, 25(7): 63-76. |
[6] | 麻仲花, 陈娟, 吴娜, 满本菊, 王晓港, 者永清, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期光合特性与总生物量的影响[J]. 中国农业科技导报, 2023, 25(6): 190-200. |
[7] | 朱士江, 李虎, 徐文, 冯雅婷. 三峡库区土壤含水量对柑橘园果实品质的影响[J]. 中国农业科技导报, 2023, 25(6): 201-207. |
[8] | 王爽, 侯毅兴, 冯琳骄, 卢倩倩, 周龙. 干旱胁迫对鲜食葡萄叶片解剖结构的影响[J]. 中国农业科技导报, 2023, 25(6): 40-49. |
[9] | 郑淑琳, 石玉涛, 王飞权, 吴邦强, 李远华, 张渤, 叶乃兴. 不同茶树种质资源花器矿质元素含量分析与综合评价[J]. 中国农业科技导报, 2023, 25(4): 178-188. |
[10] | 王向东, 宋玥, 马艳芝. 不同生姜品种的品质比较与综合评价[J]. 中国农业科技导报, 2023, 25(4): 56-66. |
[11] | 郭胜微, 边思文, 丁建文, 张晓辰, 杨兴, 杜锦, 向春阳. 糯玉米萌发期耐低温品种资源的综合评价[J]. 中国农业科技导报, 2023, 25(2): 38-47. |
[12] | 张月欣, 麻云霞, 马秀枝, 张金旺, 王月林, 俞海生. 大青山不同林龄榆树林的土壤酶和养分特征[J]. 中国农业科技导报, 2023, 25(12): 168-176. |
[13] | 刘宇鹏, 陈芳, 古书鸿, 王芳. 贵州不同产地冬荪营养成分及品质评价[J]. 中国农业科技导报, 2023, 25(11): 143-153. |
[14] | 张会芳, 张建红, 刘海礁, 孙岩, 齐红志, 王楠, 段俊枝, 郭燕, 尹海燕. 近20年黄淮冬麦区南片小麦种质性状演变及其育种价值评价[J]. 中国农业科技导报, 2023, 25(11): 28-41. |
[15] | 丁丁, 郑伶杰, 王红宝, 郑丽锦, 郭艳超. 滨海地区不同茶菊品种农艺性状及有效成分综合评价[J]. 中国农业科技导报, 2023, 25(10): 45-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||