中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (8): 213-222.DOI: 10.13304/j.nykjdb.2024.0009
• 生物制造 资源生态 • 上一篇
张继东(), 张亚雄(
), 程伟, 蒲莉, 柳路行, 王亚明
收稿日期:
2024-01-05
接受日期:
2024-03-11
出版日期:
2024-08-15
发布日期:
2024-08-12
通讯作者:
张亚雄
作者简介:
张继东E-mail:gszjd@126.com;
基金资助:
Jidong ZHANG(), Yaxiong ZHANG(
), Wei CHENG, Li PU, Luhang LIU, Yaming WANG
Received:
2024-01-05
Accepted:
2024-03-11
Online:
2024-08-15
Published:
2024-08-12
Contact:
Yaxiong ZHANG
摘要:
为研究生物质炭和有机肥配施对连作苹果育苗地的改良效果,以连作5年的苹果育苗地为研究对象,采用高通量测序技术结合土壤理化性质分析,探究不同配比生物质炭和有机肥配施对苹果根际土壤理化性质和微生物群落结构的影响。结果表明,生物质炭和有机肥配施处理后土壤中养分含量显著增加,土壤pH和电导率显著上升。其中以600 kg·hm-2生物质炭配施有机肥处理土壤的速效养分含量显著增加,其土壤全氮、碱解氮、速效磷、速效钾和有机碳含量分别显著增加15.06%、27.03%、61.32%、51.55%和20.18%。此外,生物质炭和有机肥处理提高了土壤中细菌群落的多样性和丰度,降低了真菌群落的多样性和丰度,使土壤中有益菌属的丰度显著增加。相关性分析表明,土壤有机碳、速效钾和碱解氮含量对土壤中细菌群落特征影响显著;而真菌群落特征主要受土壤全氮、有机碳和速效钾含量的影响。综上,生物质炭和有机肥配施对苹果育苗地连作障碍具有一定的缓解作用,可改善土壤的微环境,提高土壤质量。
中图分类号:
张继东, 张亚雄, 程伟, 蒲莉, 柳路行, 王亚明. 生物质炭和有机肥配施对苹果重茬育苗地土壤理化性质和微生物群落特征的影响[J]. 中国农业科技导报, 2024, 26(8): 213-222.
Jidong ZHANG, Yaxiong ZHANG, Wei CHENG, Li PU, Luhang LIU, Yaming WANG. Effects of Combined Application of Biochar and Organic Fertilizer on Soil Physicochemical Properties and Microbial Community Characteristics in Apple Recropping Field[J]. Journal of Agricultural Science and Technology, 2024, 26(8): 213-222.
pH | 电导率EC/(mS·cm-1) | 全氮 TN/(g·kg-1) | 全磷 TP/(g·kg-1) | 全钾 TK/(g·kg-1) | 碱解氮AN/(mg·kg-1) | 速效磷AP/(mg·kg-1) | 速效钾AK/(mg·kg-1) | 有机碳SOC/(g·kg-1) | |
---|---|---|---|---|---|---|---|---|---|
8.13±0.02 e | 0.27±0.02 e | 1.66±0.03 e | 1.02±0.05 d | 16.81±0.02 d | 192.08±0.03 d | 30.32±0.03 e | 172.00±1.00 e | 7.88±0.01 e | |
8.17±0.03 d | 0.31±0.02 d | 1.87±0.02 c | 1.13±0.02 c | 18.00±0.04 c | 214.00±0.02 c | 33.82±0.02 d | 232.33±1.53 d | 8.59±0.02 d | |
8.29±0.01 c | 0.35±0.02 c | 1.91±0.04 a | 1.43±0.02 b | 18.35±0.03 b | 244.00±0.03 a | 48.82±0.03 a | 260.67±1.15 a | 8.87±0.03 a | |
8.46±0.02 b | 0.45±0.01 b | 1.89±0.02 b | 1.42±0.01 b | 18.40±0.03 b | 232.23±0.03 b | 43.78±0.03 c | 255.00±1.00 c | 8.83±0.02 b | |
8.51±0.01 a | 0.47±0.01 a | 1.83±0.02 d | 1.46±0.02 a | 18.91±0.02 a | 234.11±0.03 b | 45.44±0.03 b | 258.00±1.73 b | 8.81±0.01 c |
表1 不同处理措施下苹果根际土壤理化性质
Table 1 Physicochemical properties of apple rhizosphere soil under different treatments
pH | 电导率EC/(mS·cm-1) | 全氮 TN/(g·kg-1) | 全磷 TP/(g·kg-1) | 全钾 TK/(g·kg-1) | 碱解氮AN/(mg·kg-1) | 速效磷AP/(mg·kg-1) | 速效钾AK/(mg·kg-1) | 有机碳SOC/(g·kg-1) | |
---|---|---|---|---|---|---|---|---|---|
8.13±0.02 e | 0.27±0.02 e | 1.66±0.03 e | 1.02±0.05 d | 16.81±0.02 d | 192.08±0.03 d | 30.32±0.03 e | 172.00±1.00 e | 7.88±0.01 e | |
8.17±0.03 d | 0.31±0.02 d | 1.87±0.02 c | 1.13±0.02 c | 18.00±0.04 c | 214.00±0.02 c | 33.82±0.02 d | 232.33±1.53 d | 8.59±0.02 d | |
8.29±0.01 c | 0.35±0.02 c | 1.91±0.04 a | 1.43±0.02 b | 18.35±0.03 b | 244.00±0.03 a | 48.82±0.03 a | 260.67±1.15 a | 8.87±0.03 a | |
8.46±0.02 b | 0.45±0.01 b | 1.89±0.02 b | 1.42±0.01 b | 18.40±0.03 b | 232.23±0.03 b | 43.78±0.03 c | 255.00±1.00 c | 8.83±0.02 b | |
8.51±0.01 a | 0.47±0.01 a | 1.83±0.02 d | 1.46±0.02 a | 18.91±0.02 a | 234.11±0.03 b | 45.44±0.03 b | 258.00±1.73 b | 8.81±0.01 c |
图1 不同处理苹果根际土壤微生物群落的α多样性A:细菌OTU韦恩图;B:细菌Shannon指数;C:细菌Simpson指数;D:真菌OTU韦恩图;E:真菌Shannon指数;F:真菌Simpson指数
Fig. 1 α diversity of microbial community in rhizosphere soil of apple under different treatmentsA: OTU Venn diagram of bacteria; B: Shannon index of bacteria; C: Simpson index of bacteria; D: OTU Venn diagram of fungi; E: Shannon index of fungi; F:Simpson index of fungi
图2 不同处理苹果根际土壤微生物群落的相对丰度A:细菌门水平;B:细菌属水平;C:真菌门水平;D:真菌属水平
Fig. 2 Relative abundances of microbial communities in rhizosphere soil of apples under different treatmentsA: Phylum level of bacteria; B: Genus level of bacteria C: Phylum level of fungi; D: Genus level of fungi
图3 不同处理苹果根际土壤微生物群落的LEfSe分析A:细菌;B:真菌
Fig. 3 LEfSe analysis of microbial communities in rhizosphere soil of apple under different treatmentsA: Bacteria; B: Fungi
图4 不同处理苹果根际土壤微生物群落与土壤理化性状的Mental分析A:细菌;B:真菌。*和**分别表示在P<0.05和P<0.01水平显著。
Fig. 4 Mental analysis between rhizosphere soil microbial communities and soil physicochemical properties under different treatmentsA: Bacteria; B: Fungi. * and ** indicate significant at P<0.05 and P<0.01 levels, respectively.
图5 不同处理苹果根际土壤微生物和环境因子的RDA分析A:细菌;B:真菌。EC—电导率;TN—全氮;TP—全磷;TK—全钾;AN—碱解氮;AP—速效磷;AK—速效钾;SOC—有机碳;Acidobac—酸杆菌门;Proteobc—变形菌门;Gemmatim—芽单胞杆菌门;Actinobac—放线菌门;Firmicut—厚壁菌门;Planctom—浮霉菌门;Chlorofl—绿弯菌门;Bacteroi—拟杆菌门;Myxococc—粘菌门;Methylom—Methylomirabilota;Crenarch—泉古菌门;Verrucom—疣微菌门;NB1-j—NB1-j;Latescib—Latescibacterota;Basidiom—担子菌门;Mortierl—被孢霉门;Ascomyct—子囊菌门;Aphelidi—Aphelidiomycota;Chytridi—壶菌门;Glomerom—球囊菌门;Mucoromc—毛霉门;Olpidiom—油壶菌门;Rozellom—罗兹菌门;Blastocl—芽枝霉门;Zoopagom—Zoopagomycota;Kickxell—梳霉亚门;Monoblep—单毛壶菌门;Entomoph—虫霉门
Fig. 5 RDA analysis of microbial and environmental factors in apple rhizosphere soil under different treatmentsA: Bacteria; B: Fungi. EC—Electric conductivity; TN—Total nitrogen; TP—Total phosphorus; TK—Total potassium; AN—Alkali-hydrolyzale nitrogen; AP—Available phosphorus; AK—Available potassium; SOC—Soil organic carbon; Acidobac—Acidobacteriota; Proteobc—Proteobacteria; Gemmatim—Gemmatimonadota; Actinobac—Actinobacteriota; Firmicut—Firmicutes; Planctom—Planctomycetota; Chlorofl—Chloroflexi; Bacteroi—Bacteroidota; Myxococc—Myxococcota; Methylom—Methylomirabilota; Crenarch—Crenarchaeota; Verrucom—Verrucomicrobiota; NB1-j—NB1-j; Latescib—Latescibacterota. Fungi—Basidiom—Basidiomycota; Mortierl—Mortierellomycota; Ascomyct—Ascomycota; Aphelidi—Aphelidiomycota; Chytridi—Chytridiomycota; Glomerom—Glomeromycota; Mucoromc—Mucoromycota; Olpidiom—Olpidiomycota; Rozellom—Rozellomycota; Blastocl—Blastocladiomycota; Zoopagom—Zoopagomycota; Kickxell—Kickxellomycota; Monoblep—Monoblepharomycota; Entomoph—Entomophthoromycota
1 | 刘园,刘布春,程存刚,等.基于全球文献计量对苹果响应气候变化研究的热点分析[J].果树学报,2021,38(10):1748-1759. |
LIU Y, LIU B C, CHENG C G, et al.. Hotspot analysis of apple’s response to climate change based on global bibliometrics [J]. J. Fruit Sci., 2021, 38(10):1748-1759. | |
2 | 孙文泰,马明.黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J].植物生态学报,2021,45(9):972-986. |
SUN W T, MA M. Response of soil physical degradation and fine root growth in long-term mulching apple orchards on the Loess Plateau [J]. Chin. J. Plant Ecol., 2021, 45(9):972-986. | |
3 | 倪蔚茹,王安然,贺锡燕,等.重茬土对相同砧木不同苹果品种生理指标及叶片抗氧化酶活性的影响[J].中国农业科学,2016,49(18):3597-3607. |
NI W R, WANG A R, HE X Y, et al.. Effects of after-reap soil on physiological indexes and leaf antioxidant activity of the different apple cultivars with the same rootstock [J]. Sci. Agric. Sin., 2016, 49(18):3597-3607. | |
4 | 王晓芳,夏群,栾日昇,等.万寿菊秸秆粉末处理对镰孢菌的抑制及苹果连作土壤施用效果[J].园艺学报, 2023,50(7):1518-1534. |
WANG X F, XIA Q, LUAN R S, et al.. Inhibition of Tagetes erecta straw powder on the main pathogens of apple continuous cropping obstacle and its field application effect [J]. Acta Hortic. Sin., 2023, 50(7):1518-1534. | |
5 | PERVAIZ Z H, IQBAL J, ZHANG Q, et al.. Continuous cropping alters multiple biotic and abiotic indicators of soil health [J/OL]. Soil Syst., 2020, 4(4):59 [2023-12-20]. . |
6 | LIU H, PAN F Y, HAN X, et al.. Response of soil fungal community structure to long-term continuous soybean cropping [J/OL]. Front. Microbiol., 2019, 9:3316 [2023-12-20]. . |
7 | LIU Z X, LIU J J, YU Z H, et al.. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition [J/OL]. Soil Till. Res., 2020, 197:104503 [2023-12-20]. . |
8 | GAO Z Y, HAN M K, HU Y Y, et al.. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil [J/OL]. Front. Microbiol., 2019, 10:2269 [2023-12-20]. . |
9 | LIU H, PAN F J, HAN X Z, et al.. A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops [J]. J. Integr. Agric., 2020, 19(3):866-880. |
10 | TAN G, LIU Y J, PENG S G, et al.. Soil potentials to resist continuous cropping obstacle: three field cases [J/OL]. Environ. Res., 2021, 200:111319 [2023-12-20]. . |
11 | ZHANG Z Y, DONG X X, WANG S M, et al.. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China [J/OL]. Sci. Rep., 2020, 10(1):4718 [2023-12-20]. . |
12 | 陈心想,耿增超.生物质炭在农业上的应用[J].西北农林科技大学学报(自然科学版),2013,41(2):167-174. |
CHEN X X, GENG Z C. Application of biochar in agriculture [J]. J. Northwest A&F Univ. (Nat. Sci.), 2013, 41(2):167-174. | |
13 | 鲍士旦.土壤农化分析[M].第三版 北京:中国农业出版社,2000:1-495. |
14 | WANG H Y, SHENG Y F, JIANG W T, et al.. The effects of crop rotation combinations on the soil quality of old apple orchard [J]. Hortic. Plant J., 2022, 8(1):1-10. |
15 | TANG L, HAMIND Y, CHEN Z,et al.. A phytoremediation coupled with agro-production mode suppresses Fusarium wilt disease and alleviates cadmium phytotoxicity of cucumber (Cucumis sativus L .) in continuous cropping greenhouse soil [J/OL]. Chemosphere, 2021, 270:128634 [2023-12-20]. . |
16 | MA Z M, GUAN Z J, LIU Q C, et al.. Obstacles in continuous cropping: mechanisms and control measures [J]. Adv. Agron., 2023, 179:205-256. |
17 | WANG Y, JIN Y J, HAN P, et al.. Impact of soil disinfestation on fungal and bacterial communities in soil with cucumber cultivation [J/OL]. Fronti. Microbiol., 2021, 12:685111 [2023-12-20]. . |
18 | LI Q, ZHANG D, ZHANG J, et al.. Crop rotations increased soil ecosystem multifunctionality by improving keystone taxa and soil properties in potatoes [J/OL]. Front. Microbiol., 2023, 14:1034761 [2023-12-20]. . |
19 | GUIRE N, SONI A, RANGAN L, et al.. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review [J/OL]. Environ. Pollut., 2021, 268:115549 [2023-12-20]. . |
20 | 谢祖彬,刘琦.生物质炭的固碳减排与合理施用[J].农业环境科学学报,2020,39(4):901-907. |
XIE Z B, LIU Q. Rational application of biochar to sequester carbon and mitigate soil GHGs emissions: a review [J]. J. Agro-Environ. Sci., 2020, 39(4):901-907. | |
21 | ZHANG Y J, ZOU J L, MENG D L, et al.. Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: a meta‐analysis [J]. Ecol. Evol., 2020, 10(24):13602-13612. |
22 | YUAN M, YU T, SHI Q, et al.. Rhizosphere soil bacterial communities of continuous cropping-tolerant and sensitive soybean genotypes respond differently to long-term continuous cropping in mollisols [J/OL]. Front. Microbiol., 2021, 12:729047 [2023-12-20]. . |
23 | LI Y, FANG F, WEI J, et al.. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment [J/OL]. Sci. Rep., 2019, 9(1):12014 [2023-12-20]. . |
24 | GOROVTSOV A V, MINKINA T M, MANDZHIEVA S S, et al.. The mechanisms of biochar interactions with microorganisms in soil [J]. Environ. Geochem. Hlth., 2020, 42: 2495-2518. |
25 | GE X G, CAO Y H, ZHOU B Z, et al.. Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical Moso bamboo plantations [J]. Appl. Soil Ecol., 2019, 142:155-165. |
26 | SILVA L G, ANDRADE C A, BETTIOL W. Biochar amendment increases soil microbial biomass and plant growth and suppresses Fusarium wilt in tomato [J]. Trop. Plant Pathol., 2020, 45:73-83. |
27 | 杨阳,李海亮,马凯丽,等.连作对党参根际土壤理化性质、微生物活性及群落特征的影响[J].环境科学,2023,44(11):6387-6398. |
YANG Y, LI H L, MA K L, et al.. Effect of continuous cropping on the physicochemical properties, microbial activity, and community characteristics of the rhizosphere soil of Codonopsis pilosula [J]. Chin. J. Environ. Sci., 2023, 44(11):6387-6398. | |
28 | 孔晨晨,张世文,王维瑞,等.不同连作年限设施农用地土壤有机碳与细菌群落功能特征[J].农业机械学报,2024,55(2):326-337. |
KONG C C, ZHANG S W, WANG W R, et al.. Characteristics of soil organic carbon and bacterial communities functional in agricultural soils of facilities with different continuous cropping period [J]. Trans. Chin. Soc. Agric. Mach., 2024, 55(2):326-337. | |
29 | LASOTA J, BLONSKA E, BABIAK T, et al.. Effect of charcoal on the properties, enzyme activities and microbial diversity of temperate pine forest soils [J/OL]. Forests, 2021, 12(11):1488 [2023-12-20]. . |
30 | KERNER P, STRUHS E, MIRKOUEI A, et al.. Microbial responses to biochar soil amendment and influential factors: a three-level meta-analysis [J/OL]. BioRxiv, 2023, 6(2):543269 [2023-12-20]. . |
31 | ZHOU R R, WANG Y, TIAN M M, et al.. Mixing of biochar, vinegar and mushroom residues regulates soil microbial community and increases cucumber yield under continuous cropping regime [J/OL]. Appl. Soil Ecol., 2021, 161:103883 [2023-12-20]. . |
32 | 王光华,刘俊杰,于镇华,等.土壤酸杆菌门细菌生态学研究进展[J].生物技术通报,2016,32(2):14-20. |
WANG G H, LIU J J, YU Z H, et al.. Research progress of Acidobacteria ecology in soils [J]. Biotechnol. Bull., 2016, 32 (2):14-20. | |
33 | GE Z, LI S Y, BOL R, et al.. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition [J]. Soil Till. Res., 2021, 213:105120 [2023-12-20]. . |
[1] | 杨娅琳, 吴峰婧琳, 陈健鑫, 武自强, 刘丽, 张东华, 马焕成, 伍建榕. 油茶根腐病根际土壤、根系内真菌群落结构和多样性分析[J]. 中国农业科技导报, 2024, 26(7): 121-135. |
[2] | 周喜新, 袁世林, 杨柳, 夏滔, 张毅, 范伟. 连作烟草根系分泌物鉴定及潜在化感物质的筛选研究[J]. 中国农业科技导报, 2024, 26(7): 136-146. |
[3] | 谢勇俊, 潘小卓, 陈福慧, 尹凯波, 金嘉悦, 王一兵. 人参酚酸类自毒物质降解菌的筛选鉴定及生防研究[J]. 中国农业科技导报, 2024, 26(7): 147-155. |
[4] | 蒲子天, 王红, 赵斌, 王鑫鑫. 不同土壤改良物料对连作黄芩生长及土壤酶活性的影响[J]. 中国农业科技导报, 2024, 26(7): 189-198. |
[5] | 王子凡, 李燕, 张庆银, 王丹丹, 师建华, 耿晓彬, 田东良, 钟增明, 赵晓明, 齐连芬. 微生物菌剂对设施番茄主要病害及土壤微生物群落的影响[J]. 中国农业科技导报, 2024, 26(6): 102-112. |
[6] | 陈雨欣, 赵红梅, 杨卫君, 杨梅, 郭颂, 宋世龙, 惠超. 生物质炭对土壤微生物碳源利用及春小麦产量的影响[J]. 中国农业科技导报, 2024, 26(5): 174-183. |
[7] | 高丽敏, 顾泽辰, 贡雪菲, 崔联明, 郭东森, 周影, 王琳, 魏启舜. 果园生草对中国果树-土壤系统生产性能影响的Meta分析[J]. 中国农业科技导报, 2024, 26(4): 184-194. |
[8] | 张桐毓, 勾颖, 李琪, 杨莉. 人参锈腐病对人参品质和土壤相关因子的影响研究[J]. 中国农业科技导报, 2024, 26(3): 124-133. |
[9] | 周旭东, 韩天华, 申云鑫, 施竹凤, 贺彪, 杨明英, 裴卫华, 何永宏, 杨佩文. 4种轮作模式下长期连作烟田土壤微生态的响应特征[J]. 中国农业科技导报, 2024, 26(3): 174-187. |
[10] | 张二豪, 刘盼盼, 何萍, 简阅, 徐雨婷, 陈诚欣, 禄亚洲, 兰小中, 索朗桑姆. 甘青青兰根际土壤理化性质及微生物群落结构特征分析[J]. 中国农业科技导报, 2024, 26(3): 201-213. |
[11] | 郭靖捷, 任晓萌, 蒙仲举, 王涛, 祁帅, 宋佳佳, 宝孟克那顺, 韩胜利. 半干旱风沙草原区盐湖植物防护体系土壤理化性状特征[J]. 中国农业科技导报, 2024, 26(1): 182-192. |
[12] | 肖锐, 谭璐, 吴亮, 张皓, 郭佳源, 杨海君. 镉胁迫下地肤根际与非根际土壤微生物群落结构及多样性[J]. 中国农业科技导报, 2023, 25(8): 203-215. |
[13] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[14] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
[15] | 庞喆, 王启龙, 李娟. 不同土壤改良剂对陕北低洼盐碱地土壤理化性质及水稻产量和经济效益的影响[J]. 中国农业科技导报, 2023, 25(6): 174-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||