中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (9): 39-49.DOI: 10.13304/j.nykjdb.2021.0155
项洪涛1(), 李琬2, 何宁2, 王强3, 曾玲玲4, 王曼力2, 杨纯杰2, 冯延江2
收稿日期:
2021-02-22
接受日期:
2021-05-29
出版日期:
2022-09-15
发布日期:
2022-10-11
作者简介:
项洪涛 E-mail:xianght@163.com
基金资助:
Hongtao XIANG1(), Wan LI2, Ning HE2, Qiang WANG3, Lingling ZENG4, Manli WANG2, Chunjie YANG2, Yanjiang FENG2
Received:
2021-02-22
Accepted:
2021-05-29
Online:
2022-09-15
Published:
2022-10-11
摘要:
为探究幼苗期淹水胁迫及喷施烯效唑( S3307)对小豆( Vigna angularis)根系生理代谢和产量的影响,以龙小豆4号和天津红为材料,盆栽条件下,苗期预喷施S3307,然后进行连续淹水5 d处理,测定淹水后小豆根系活性氧物质的积累、膜脂过氧化程度、抗氧化酶活性及小豆产量。结果表明,幼苗期淹水胁迫引起小豆根系H2O2和丙二醛(malonaldehyde,MDA)、脯氨酸、可溶性糖和可溶性蛋白含量显著提高,超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)和过氧化氢酶(catalase,CAT)活性显著提高;淹水胁迫3~5 d导致龙小豆4号单盆产量显著降低4.77%~8.40%,天津红单盆产量显著降低5.59%~9.91%。喷施S3307具有抵御淹水胁迫的作用,能有效增加小豆根系脯氨酸和可溶性糖含量,显著降低H2O2和MDA含量,显著提高SOD、POD和CAT活性并降低SOD/CAT比值。喷施S3307使淹水4 d的龙小豆4号产量显著提高2.85%,使天津红产量显著提高5.29%。综上,淹水胁迫下,不同品种小豆根系在活性氧物质积累、膜质过氧化、抗氧化酶活性以及渗透调节等方面的生理响应存在显著差异;喷施S3307能够有效缓解淹水胁迫对小豆生理和产量的影响,为进一步研究小豆苗期抵御淹水胁迫的生理机制及提高淹水胁迫下小豆产量提供理论依据。
中图分类号:
项洪涛, 李琬, 何宁, 王强, 曾玲玲, 王曼力, 杨纯杰, 冯延江. 小豆根系对水分胁迫的生理响应及S3307的缓解效应[J]. 中国农业科技导报, 2022, 24(9): 39-49.
Hongtao XIANG, Wan LI, Ning HE, Qiang WANG, Lingling ZENG, Manli WANG, Chunjie YANG, Yanjiang FENG. Physiological Response and Effect of S3307 on Water Stress of Adzuki Bean Root[J]. Journal of Agricultural Science and Technology, 2022, 24(9): 39-49.
处理Treatment | 药剂 Pesticide | 水分 Water |
---|---|---|
T1 | 蒸馏水 Distilled water | 正常土壤水分 Suitable soil moisture |
T2 | S3307 | 正常土壤水分 Suitable soil moisture |
T3 | 蒸馏水Distilled water | 淹水胁迫 Flooding stress |
T4 | S3307 | 淹水胁迫 Flooding stress |
表1 试验设计方案
Table 1 Experiment design
处理Treatment | 药剂 Pesticide | 水分 Water |
---|---|---|
T1 | 蒸馏水 Distilled water | 正常土壤水分 Suitable soil moisture |
T2 | S3307 | 正常土壤水分 Suitable soil moisture |
T3 | 蒸馏水Distilled water | 淹水胁迫 Flooding stress |
T4 | S3307 | 淹水胁迫 Flooding stress |
图1 不同处理下小豆幼苗根系的H2O2含量注:不同小写字母表示相同品种不同处理间差异在P<0.05水平具有显著性。
Fig. 1 H2O2 contents in root of adzuki bean seedlings under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments of same variety at P<0.05 level.
图2 不同处理下小豆根系的MDA含量注:不同小写字母表示相同品种不同处理间差异在P<0.05水平显著。
Fig. 2 MDA contents in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
图3 不同处理下小豆根系的SOD活性注:不同小写字母表示相同品种不同处理间差异在P<0.05水平显著。
Fig. 3 SOD activities in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
图4 不同处理下小豆根系的POD活性注:不同小写字母表示相同品种不同处理间差异在P<0.05水平显著。
Fig. 4 POD activities in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
图5 不同处理下小豆根系的CAT活性注:不同小写字母表示相同品种不同处理间差异在P<0.05水平显著。
Fig. 5 CAT activities in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
品种 Variety | 处理 Treatment | SOD/CAT ratio | ||||
---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | ||
龙小豆4号 Longxiaodou 4 | T1 | 12.12±4.09 a | 12.57±2.74 a | 13.50±2.55 a | 12.67±2.61 a | 11.91±1.48 ab |
T2 | 10.62±1.83 ab | 13.07±1.23 a | 12.26±3.55 a | 11.39±1.98 a | 11.17±2.37 ab | |
T3 | 9.04±0.25 ab | 8.06±0.46 ab | 7.09±0.36 a | 11.10±1.64 a | 16.09±2.25 a | |
T4 | 7.58±0.25 b | 6.88±0.36 b | 6.18±0.23 a | 6.76±0.40 a | 9.59±0.81 b | |
天津红 Tianjinhong | T1 | 14.96±3.09 a | 13.14±1.04 a | 14.87±2.85 a | 12.71±1.00 a | 11.41±1.00 a |
T2 | 11.05±2.66 a | 14.83±1.44 a | 14.38±3.08 a | 11.80±0.78 a | 9.83±0.67 a | |
T3 | 8.70±0.54 a | 7.48±0.29 b | 6.78±0.20 b | 9.34±0.47 a | 9.51±0.48 a | |
T4 | 8.02±0.41 a | 7.72±0.59 b | 6.86±0.66 b | 10.04±0.97 a | 8.93±0.63 a |
表2 不同处理下小豆幼苗根系的SOD/CAT比值
Table 2 SOD/CAT ratio in root of seedlings of adzuki bean under different treatments
品种 Variety | 处理 Treatment | SOD/CAT ratio | ||||
---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | ||
龙小豆4号 Longxiaodou 4 | T1 | 12.12±4.09 a | 12.57±2.74 a | 13.50±2.55 a | 12.67±2.61 a | 11.91±1.48 ab |
T2 | 10.62±1.83 ab | 13.07±1.23 a | 12.26±3.55 a | 11.39±1.98 a | 11.17±2.37 ab | |
T3 | 9.04±0.25 ab | 8.06±0.46 ab | 7.09±0.36 a | 11.10±1.64 a | 16.09±2.25 a | |
T4 | 7.58±0.25 b | 6.88±0.36 b | 6.18±0.23 a | 6.76±0.40 a | 9.59±0.81 b | |
天津红 Tianjinhong | T1 | 14.96±3.09 a | 13.14±1.04 a | 14.87±2.85 a | 12.71±1.00 a | 11.41±1.00 a |
T2 | 11.05±2.66 a | 14.83±1.44 a | 14.38±3.08 a | 11.80±0.78 a | 9.83±0.67 a | |
T3 | 8.70±0.54 a | 7.48±0.29 b | 6.78±0.20 b | 9.34±0.47 a | 9.51±0.48 a | |
T4 | 8.02±0.41 a | 7.72±0.59 b | 6.86±0.66 b | 10.04±0.97 a | 8.93±0.63 a |
图6 不同处理下小豆根系的脯氨酸含量注:不同小写字母表示相同品种不同处理间差异在P<0.05水平显著。
Fig. 6 Proline contents in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
图7 不同处理下小豆根系的可溶性糖的含量注:不同小写字母表示相同品种不同处理间差异在P<0.05水平显著。
Fig. 7 Soluble sugar contents in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
图8 不同处理下小豆根系的可溶性蛋白的含量注:不同小写字母表示相同品种不同处理间差异在P<0.05水平显著。
Fig. 8 Soluble protein contents in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
品种 Variety | 处理 Treatment | 单盆产量 Yield per pot/g | ||||
---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | ||
龙小豆4号 Longxiaodou 4 | T1 | 30.37±0.22 a | 30.37±0.22 a | 30.37±0.22 ab | 30.37±0.22 a | 30.37±0.22 a |
T2 | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | |
T3 | 30.12±0.39 a | 29.85±0.39 a | 28.92±0.24 c | 28.07±0.25 b | 27.82±0.86 b | |
T4 | 30.27±0.16 a | 29.97±0.32 a | 29.73±0.17 b | 28.87±0.13 a | 28.32±0.25 b | |
天津红 Tianjinhong | T1 | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b |
T2 | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | |
T3 | 22.57±1.07 b | 22.70±0.50 b | 22.30±0.20 c | 21.73±0.22 c | 21.28±0.15 d | |
T4 | 23.45±0.33 ab | 23.10±0.33 b | 22.92±0.13 bc | 22.88±0.12 b | 22.40±0.16 c |
表3 不同处理下小豆的单盆产量
Table 3 Yield per pot of adzuki bean under different treatments
品种 Variety | 处理 Treatment | 单盆产量 Yield per pot/g | ||||
---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | ||
龙小豆4号 Longxiaodou 4 | T1 | 30.37±0.22 a | 30.37±0.22 a | 30.37±0.22 ab | 30.37±0.22 a | 30.37±0.22 a |
T2 | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | |
T3 | 30.12±0.39 a | 29.85±0.39 a | 28.92±0.24 c | 28.07±0.25 b | 27.82±0.86 b | |
T4 | 30.27±0.16 a | 29.97±0.32 a | 29.73±0.17 b | 28.87±0.13 a | 28.32±0.25 b | |
天津红 Tianjinhong | T1 | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b |
T2 | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | |
T3 | 22.57±1.07 b | 22.70±0.50 b | 22.30±0.20 c | 21.73±0.22 c | 21.28±0.15 d | |
T4 | 23.45±0.33 ab | 23.10±0.33 b | 22.92±0.13 bc | 22.88±0.12 b | 22.40±0.16 c |
1 | 刘晓慧,伍海兵,张圣美,等.淹水胁迫对丝瓜幼苗生长及呼吸酶活性的影响[J].江西农业学报,2020,32(3):48-54. |
LIU X H, WU H B, ZHANG S M, et al.. Effects of waterlogging stress on growth and respiratory enzyme activities of Luffa seedings [J]. Acta Agric. Jiangxi, 2020, 32(3):48-54. | |
2 | 王诗雅,郑殿峰,项洪涛,等.初花期淹水胁迫对大豆叶片AsA-GSH循环的损伤及烯效唑的缓解效应[J].中国农业科学,2021,54(2):271-285. |
WANG S Y, ZHENG D F, XIANG H T, et al.. Damage of AsA-GSH cycle of soybean leaves under waterlogging stress at initial stage and the mitigation effect of uniconazole [J]. Sci. Agric. Sin., 2021, 54(2):271-285. | |
3 | 项洪涛,李琬,郑殿峰,等.外源ABA对低温胁迫下小豆幼苗生理和产量的影响[J].干旱地区农业研究,2020,38(6):52-60. |
XIANG H T, LI W, ZHENG D F, et al.. Effects of exogenous ABA on cold resistance physiology and yield of adzuki bean seedlings under low temperature stress [J]. Agric. Res. Arid Areas, 2020, 38(6):52-60. | |
4 | 项洪涛,李琬,郑殿峰,等.幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J].作物学报,2021,47(3):494-506. |
XIANG H T, LI W, ZHENG D F, et al.. Effects of uniconazole and waterlogging stress in seedling stage on the physiology and yield in adzuki bean [J]. Acta Agric. Sin., 2021, 47(3):494-506. | |
5 | 李建平,陈振国,谭本奎,等.水涝胁迫对烤烟理化特性及产质量的影响[J].安徽农业科学,2020,48(23):68-71. |
LI J P, CHEN Z G, TAN B K, et al.. Effects of waterlogging stress on physicochemical properties, yield and quality of flue-cured tobacco [J]. J. Anhui Agric. Sci., 2020, 48(23):68-71. | |
6 | 吴麟,张伟伟,葛晓敏,等.植物对淹水胁迫的响应机制研究进展[J].世界林业研究,2012,25(6):27-33. |
WU L, ZHANG W W, GE X M, et al.. A review of the response mechanisms of plants to waterlogging stress [J]. World For. Res., 2012, 25(6):27-33. | |
7 | 余卫东,冯利平,胡程达,等.苗期涝渍对黄淮地区夏玉米生长和产量的影响[J].生态学杂志,2015,34:2161-2166. |
YU W D, FENG L P, HU C D, et al.. Effects of waterlogging during seedling stage on the growth and yield of summer maize in Huang-Huai region [J]. Chin. J. Ecol., 2015, 34:2161-2166. | |
8 | 于奇,冯乃杰,王诗雅,等.S3307对始花期和始粒期淹水绿豆光合作用及产量的影响[J].作物学报,2019,45:1080-1089. |
YU Q, FENG N J, WANG S Y, et al.. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress [J]. Acta Agric. Sin., 2019, 45:1080-1089. | |
9 | 张洪鹏,张盼盼,李冰,等.烯效唑对淹水胁迫下大豆叶片光合特性及产量的影响[J].中国油料作物学报,2016,38:611-618. |
ZHANG H P, ZHANG P P, LI B, et al.. Effects of uniconazole on leaf photosynthetic characteristics and yield of soybean under waterlogging stress [J]. Chin. J. Oil Crop Sci., 2016, 38:611-618. | |
10 | 张锦强,张坤,豆鑫,等.烯效唑对'夏黑'葡萄生理特性及品质的影响[J].西北林学院学报,2020,35(6):135-141. |
ZHANG J Q, ZHANG K, DOU X, et al.. Effets of application of uniconazole on physiological characteristics and quality of 'Summer Black'grape [J]. J. Northwest For. Univ., 2020, 35(6):135-141. | |
11 | 李琬,项洪涛,何宁,等.烯效唑(S3307)提高作物抗逆性研究进展[J].中国农学通报,2020,36(20):101-106. |
LI W, XIANG H T, HE N, et al.. Uniconazole (S3307) improving resistance of crop: A review [J].Chin. Agric. Sci. Bull., 2020, 36(20):101-106. | |
12 | 项洪涛,李琬,何宁,等.苗期胁迫下烯效唑对红小豆根系抗寒生理及产量的影响[J].草业学报,2019,28(7):92-102. |
XIANG H T, LI W, HE N, et al.. Effects of S3307 on physiology of chilling resistance in root and yield of adzuki bean under low temperature stress during seeding stage [J]. Acta Pratac. Sin., 2019, 28(7):92-102. | |
13 | JULIA B S, RUTH C. Sensing and signalling in response to oxygen deprivation in plants and other organisms [J]. Annals Bot., 2005, 96:507-518. |
14 | REN B Z, ZHANG J W, DONG S, et al.. Effects of duration of waterlogging at different growth stages on grain growth of summer maize (Zea mays L.) under field conditions [J]. J. Agron. Crop Sci., 2016, 202:564-575. |
15 | 李合生,孙群,赵世杰.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000: 1-278. |
LIH S, SUN Q, ZHAO S J. Principles and Techniques of Plant Physiological Biochemical Experimental [M]. Beijing: Higher Education Press, 2000: 1-278. | |
16 | 张宪政.作物生理研究法[M].北京:农业出版社,1992: 1-220. |
ZHANG X Z. Crop Physiology Research Method [M]. Beijing: Chinese Agriculture Press, 1992: 1-220. | |
17 | 王诗雅,冯乃杰,项洪涛,等.水分胁迫对大豆生长与产量的影响及应对措施[J].中国农学通报,2020,36(27):41-45. |
WANG S Y, FENG N J, XIANG H T, et al.. Water stress: Effects on growth and yield of soybean and the countermeasures [J]. Chin. Agric. Sci. Bull., 2020, 36(27):41-45. | |
18 | 李颖,赵继浩,李金融,等.外源6-BA对不同生育时期淹水花生根系生长和荚果产量的影响[J].中国农业科学,2020,53(18):3665-3678. |
LI Y, ZHAO J H, LI J R, et al.. Effects of exogenous 6-BA on root growth and pod yield of flooded peanut at different growth stages [J]. Sci. Agric. Sin., 2020, 53(18):3665-3678. | |
19 | ARNCZARSKA M, BEDNARSKI W. Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots [J]. Plant Physiol. Biochem., 2004, 42(3):233-240. |
20 | ZHOU Z G, OOSTERHUIS Derrick M. Physiological mechanism of nitrogen mediating cotton (Gossypium hirsutum L.) seedlings growth under water-stress conditions [J]. Am. J. Plant Sci., 2012, 3(6):721-730. |
21 | 齐玉军,方传文,徐泽俊,等.外源二乙基二硫代氨基甲酸钠对花期淹水大豆根系抗氧化系统的影响[J].中国油料作物学报,2019,41(4):577-587. |
QI Y J, FANG C W, XU Z J, et al.. Effect of exogenous sodium diethyldithiocarbamate on antioxidation system in soybean root on waterlogging at flowering stage [J].Chin. J. Oil Crop Sci., 2019, 41(4):577-587. | |
22 | 张洪鹏,张盼盼,李冰,等.烯效唑对淹水胁迫下大豆农艺形状及生理生化指标的影响[J].中国油料作物学报,2017,39(5):655-663. |
ZHANG H P, ZHANG P P, LI B, et al.. Effects of uniconazole on alleviation of waterlogging stress in soybean [J]. Chin. J. Oil Crop Sci., 2017, 39(5):655-663. | |
23 | AHMED S, NAWATA E, HOSOKAWA M, et al.. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging [J]. Plant Sci., 2002, 163(1):117-123. |
24 | 周青云,李梦初,漆栋良,等.拔节期淹水条件下施氮量对春玉米生理特性的影响[J].灌溉排水学报,2020,39():40-44. |
ZHOU Q Y, LI M C, QI D L, et al.. Effects of nitrogen rate on physiological characteristics of spring maize under waterlogging at jointing stage [J]. J. Irrigat. Drain., 2020, 39(Supp.2):40-44. | |
25 | 李文静,朱进,彭玉全,等.烯效唑对淹水胁迫对油麦菜生长、生理和解剖结构的影响[J].植物生理学报,2020,56(10):2233-2240. |
LI W J, ZHU J, PENG Y Q, et al.. Effects of waterlogging stress on growth, physiology and anatomical structure of Latuca sativa seedlings [J]. Plant Physiol. J., 2020, 56(10):2233-2240. | |
26 | 杨文钰,徐精文,张鸿.烯效唑对秧苗抗寒性的影响及其作用机理研究[J].杂交水稻,2003,18(2):53-57. |
YANG W Y, XU J W, ZHANG H. Studies on action mechanism and effect of uniconzole (S-3307) on cold resistance of rice seedlings [J]. Hybrid Rice, 2003, 18(2):53-57. | |
27 | KANAZAWA S, SANO S, KOSHIBA T, et al.. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence [J]. Physiol. Plant, 2010, 109:211-216. |
28 | 张嘉雯,卢绍浩,赵喆,等.外源褪黑素对低温胁迫下烟草幼苗生理指标的影响[J].中国农业科技导报,2020,22(9):78-86. |
ZHANG J W, LU S H, ZHAO Z, et al.. Influences of exogenous melatonin on physiological properties of tobacco seedlings under low temperature stress [J]. J. Agric. Sci. Technol., 2020, 22(9):78-86. | |
29 | 尉欣荣,张智伟,周雨,等.褪黑素对低温和干旱胁迫下多年生黑麦草幼苗生长和抗氧化系统的调节作用[J].草地学报,2020,28(5):1337-1345. |
YU X R, ZHANG Z W, ZHOU Y, et al.. Effects of melatonin on growth and antioxidant system of perennial ryegrass seedlings under cold and drought stress [J]. Acta Agric. Sin., 2020, 28(5):1337-1345. | |
30 | 罗洁,袁龙义.淹水胁迫对观赏向日葵幼苗生长及生理指标的影响[J].湖北农业科学,2020,59(9):86-90. |
LUO J, YUAN Y L. Effects of waterlogging stress on growth and physiology characters of ornamental sunflower seedlings [J]. Hubei Agric. Sci., 2020, 59(9):86-90. | |
31 | 古丽江·许库尔汗,孙雅丽,阿依古丽·铁木儿,等.低温胁迫对红加仑枝条渗透物质含量、膜质过氧化及保护酶活性的影响[J].新疆农业科学,2019,56(4):685-695. |
GULIJIANG X, SUN Y L, AYIGULI T, et al.. Effects of low temperature stress on the content of penetration substance, membrane peroxidation and protective enzyme activity in Ribes rubrum [J]. Xinjiang Agric. Sci., 2019, 56(4):685-695. |
[1] | 向开宏, 吕旭, 舒川海, 伍杂日曲, 张金悦, 朱岳梅, 杨志远, 孙永健, 马均. 有机无机肥配施对精量穴直播水稻产量及氮素利用的影响[J]. 中国农业科技导报, 2022, 24(9): 149-165. |
[2] | 陈元伟, 郑华斌, 王慰亲, 旷娜, 罗友谊, 邹丹, 唐启源. 刈割处理对再生稻头季全株生物量、青贮品质和再生季产量的影响[J]. 中国农业科技导报, 2022, 24(8): 161-171. |
[3] | 魏全全, 高英, 芶久兰, 张萌, 饶勇, 杨斌, 凡迪, 冯文豪, 肖华贵. 播种量和播种方式对冬油菜养分吸收利用及产量的影响[J]. 中国农业科技导报, 2022, 24(8): 182-191. |
[4] | 刘雪静, 鲍晓远, 候晓阳, 甄文超. 海河平原春季限水灌溉下冬小麦农田水分动态及产量形成特征[J]. 中国农业科技导报, 2022, 24(7): 167-176. |
[5] | 彭增莹, 申莹莹, 段松江, 吴一帆, 李宗润, 郭仁松, 张巨松. 化学调控对不同施氮量棉花冠层结构及产量的影响[J]. 中国农业科技导报, 2022, 24(7): 177-186. |
[6] | 白思琦, 邹晓荣, 丁鹏, 林铭. 基于环境因子的东南太平洋智利竹筴鱼剩余产量模型建立[J]. 中国农业科技导报, 2022, 24(7): 197-204. |
[7] | 党翼, 张建军, 赵刚, 樊廷录, 王磊, 李尚中, 周刚. 控释尿素和普通尿素配施对旱地玉米产量和水氮利用效率的影响[J]. 中国农业科技导报, 2022, 24(6): 156-165. |
[8] | 高桐梅, 李丰, 苏小雨, 王东勇, 田媛, 张鹏钰, 李同科, 杨自豪, 卫双玲. 减施氮肥对芝麻农艺性状、光合特性及产量的影响[J]. 中国农业科技导报, 2022, 24(6): 176-188. |
[9] | 赵晨光, 牛司耘, 陈勋, 方丽, 李海涛, 王佩星, 沈镔镔, 石元值. 复合肥料对茶叶产量、品质及茶园土壤肥力的影响[J]. 中国农业科技导报, 2022, 24(6): 206-217. |
[10] | 赵宏岩, 谭君伟, 张杰, 陈浩楠, 王春旭, 赵地, 李海鹏, 朱李霞, 韩毅强. 小豆和绿豆茎基感病部位真菌群落结构研究[J]. 中国农业科技导报, 2022, 24(5): 129-136. |
[11] | 王鑫, 张玉霞, 陈卫东, 林聪颖, 候文慧, 斯日古楞, 丛百明. 追施氮肥对不同饲用燕麦品种产量及光合荧光特性的影响[J]. 中国农业科技导报, 2022, 24(5): 170-179. |
[12] | 刘辉, 江解增, 张昊, 张永仙, 钱佳宇, 李东昇, 吕艳, 吴桓锐. 浅水土表覆盖秸秆对缓解土壤盐渍化及水生蔬菜生长的影响[J]. 中国农业科技导报, 2022, 24(5): 202-208. |
[13] | 易媛, 张会云, 刘立伟, 王静, 朱雪成, 赵娜, 冯国华. 活性腐殖酸缓释肥替代尿素对徐麦新品种产量和群体质量的影响[J]. 中国农业科技导报, 2022, 24(4): 144-153. |
[14] | 齐天明, 李志坚, 秦培友, 任贵兴, 周帮伟. 藜麦栽培技术研究与应用展望[J]. 中国农业科技导报, 2022, 24(3): 157-165. |
[15] | 董林林, 查金芳, 沈明星, 王海候, 施林林, 陶玥玥, 周新伟, 陆长婴. 长期秸秆还田对稻麦轮作区土壤有机碳组分构成的影响[J]. 中国农业科技导报, 2022, 24(3): 166-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||