中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (11): 49-57.DOI: 10.13304/j.nykjdb.2023.0625
陈炟1(), 巨吉生1, 马麒2, 徐守振2, 刘娟娟1, 袁文敏1, 李吉莲2, 王彩香1, 宿俊吉1(
)
收稿日期:
2023-08-19
接受日期:
2023-09-27
出版日期:
2023-11-15
发布日期:
2023-11-20
通讯作者:
宿俊吉
作者简介:
陈炟 E-mail: 3089781690@qq.com;
基金资助:
Da CHEN1(), Jisheng JU1, Qi MA2, Shouzhen XU2, Juanjuan LIU1, Wenmin YUAN1, Jilian LI2, Caixiang WANG1, Junji SU1(
)
Received:
2023-08-19
Accepted:
2023-09-27
Online:
2023-11-15
Published:
2023-11-20
Contact:
Junji SU
摘要:
纳米铁(FeNPs)作为一种新型纳米金属肥料,其在棉花生长发育和抗逆调节中的研究很少。设置4个FeNPs处理水平(0、1.0、2.5、5.0 mg·L-1)研究其对水培棉苗根系生长和干旱胁迫(PEG)下生理指标的影响。结果发现,5.0 mg·L-1 FeNPs培养的棉苗总根系长度、总根表面积、投影面积、根尖数目及根、茎、叶的鲜重和干重均显著高于对照和1.0、2.5 mg·L-1 FeNPs。棉花在0和5.0 mg·L-1 FeNPs的Hogland营养液中培养至四叶期,分别施加10%(质量体积分数)PEG-6000,结果发现,无FeNPs处理较5.0 mg·L-1 FeNPs处理的植株更萎蔫,其根、茎、叶鲜重显著小于FeNPs处理棉苗;在胁迫6 h内,FeNPs促进棉叶SOD、POD和CAT活性显著升高,MDA含量显著下降;而9 h后,SOD和CAT活性出现大幅下降、MDA含量显著上升。综上所述,适当水平FeNPs有助于棉苗根系生长、干物质积累和抗氧化酶活性增强,进而增强棉苗抗旱性。
中图分类号:
陈炟, 巨吉生, 马麒, 徐守振, 刘娟娟, 袁文敏, 李吉莲, 王彩香, 宿俊吉. FeNPs对苗期棉花根系生长及其对干旱响应的影响[J]. 中国农业科技导报, 2023, 25(11): 49-57.
Da CHEN, Jisheng JU, Qi MA, Shouzhen XU, Juanjuan LIU, Wenmin YUAN, Jilian LI, Caixiang WANG, Junji SU. Effects of FeNPs on Cotton Roots Growth and Its Response to Drought Stress at Seedling Stage[J]. Journal of Agricultural Science and Technology, 2023, 25(11): 49-57.
图1 不同FeNPs水平对棉花根系相关指标的影响注:图中不同小写字母表示差异显著(P<0.05)。
Fig. 1 Effects of different FeNPs levels on root related indexes of cotton.Note:Different letters in the figure mean significant difference at P<0.05 level.
图3 不同FeNPs水平对棉花株高、主根长度及根、茎、叶干物质积累的影响注:图中不同小写字母表示差异显著(P<0.05)。
Fig. 3 Effects of different FeNPs levels on plant height, main root length and dry matter accumulation in roots, stems and leaves of cottonNote:Different letters in the figure mean significant difference at P<0.05 level.
图4 10% PEG胁迫条件下FeNPs对棉花根、茎、叶生物量的影响注:图中不同小写字母表示差异显著(P<0.05)。
Fig. 4 Effects of the FeNPs on root, stem and leaf biomass of cotton under 10% PEG stress.Note:Different letters in the figure mean significant difference at P<0.05 level.
图6 10% PEG胁迫条件下FeNPs对棉花叶片抗氧化物酶活性和MDA含量的影响注:图中不同小写字母表示差异显著(P<0.05)。
Fig. 6 Effects of FeNPs on antioxidant activity and MDA content in cotton leaves under 10% PEG stressNote:Different letters in the figure mean significant difference at P<0.05 level.
1 | JALALI M, GHANATI F, MODARRES-SANAVI A M, et al.. Physiological effects of repeated foliar application of magnetite nanoparticles on maize plants [J]. J. Agron. Crop Sci., 2017, 203(6): 593-602. |
2 | GATTULLO C E, YOURY P, ALLEGRETTA I, et al.. Iron mobilization and mineralogical alterations induced by iron-deficient cucumber plants (Cucumis sativus L.) in a calcareous soil [J]. Pedosphere, 2018, 28(1): 59-69. |
3 | MAZAHERI-TIRANI M, KASHANI A, KOOHI-DEHKORDI M. The role of iron nanoparticles on morpho-physiological traits and genes expression (IRT1 and CAT) in rue (Ruta graveolens) [J]. Plant Mol. Biol., 2022; 110(1-2): 147-160. |
4 | WANG Y, CHEN S, DENG C, et al.. Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles [J/OL]. NanoImpact, 2021, 23: 100336 [2023-08-18]. . |
5 | DOLA D B, MANNAN M A, SARKER U, et al.. Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits [J/OL]. Front. Plant Sci., 2022, 13: 992535 [2023-08-18]. . |
6 | FARAJOLLAHI Z, EISVAND H R, NAZARIAN-FIROUZABADI F, et al.. Nano-Fe nutrition improves soybean physiological characteristics, yield, root features and water productivity in different planting dates under drought stress conditions [J/OL]. Ind. Crop. Prod., 2023, 198: 116698 [2023-08-18]. . |
7 | 马扬旸,张辰弛,曹雪松,等.叶面喷施铁基纳米材料对大豆生长的影响及机制研究[J].农业资源与环境学报,2022,39(1):139-148. |
MA Y Y, ZHANG C C, CAO X S, et al.. Mechanistic study on the effect of foliar-applied, iron-based nanomaterials on the growth of soybean [J]. J. Agric. Resour. Econ., 2022, 39(1): 139-148. | |
8 | MAHMOUD A W M, AYAD A A, ABDEL-AZIZ H S M, et al.. Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil [J/OL]. Plants, 2022, 11(19): 2599 [2023-08-18]. . |
9 | 徐江兵,王艳玲,罗小三,等.纳米Fe3O4对生菜生长及土壤细菌群落结构的影响[J].应用生态学报,2017,28(9):3003-3010. |
XU J B, WANG Y L, LUO X S, et al.. Influence of Fe3O4 nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community structure [J]. Chin. J. Appl. Ecol., 2017, 28(9): 3003-3010. | |
10 | ADREES M, KHAN Z S, ALI S, et al.. Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles [J/OL]. Chemosphere, 2020, 238: 124681 [2023-08-18]. . |
11 | WANG Y, HU J, DAI Z, et al.. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure [J]. Plant Physiol. Biochem., 2016, 108: 353-360. |
12 | YOSEFI A, MOZAFARI A A, Javadi T. In vitro assessment of strawberry (Fragaria ananassa Duch.) plant responses to water shortage stress under nano-iron application [J]. In Vitro Cell Dev-pl., 2022, 58(4): 499-510. |
13 | 龙瑶,宋玉兰.中国棉花补贴政策历史演变与未来趋势[J].中国棉花,2023,50(7):1-7. |
LONG Y, SONG Y L. China’s cotton subsidy policy: historical evolution and future trend [J] China Cotton, 2023, 50 (7): 1-7. | |
14 | 韩春丽.新疆棉花长期连作土壤养分时空变化及可持续利用研究[D].石河子:石河子大学,2010. |
HAN C L. Temporal and spatial variation of soil nutrients of long-term monocultural cotton field and soil sustainable utilization in Xinjiang [D]. Shihezi: Shihezi University, 2010. | |
15 | 李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:164-165. |
LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiment [M]. Beijing: Higher Education Press, 2000: 164-165. | |
16 | 陈刚,李胜.植物生理学实验.北京:高等教育出版社,2016:59-69. |
CHEN G, LI S. Plant Physiology Experiment[M]. Beijing: Higher Education Press., 2016: 59-69. | |
17 | 张丽,古超峰,王锐.叶面补铁对贺兰山东麓酿酒葡萄生理调节及品质提升的影响[J].中国土壤与肥料, 2021, (6): 233-238. |
ZHANG L, GU C F, WANG R. Effects of foliar iron supplement on physiological regulation and quality improvement of wine grapes in eastern Helan Mountains [J]. Soil Fertil. Sci. China, 2021, (6): 233-238. | |
18 | 高洪波,陈贵林,章铁军,等.施铁对萝卜芽生长、产量及品质的影响[J].园艺学报,2006,33(5):1096-1098. |
GAO H B, CHEN G L, ZHANG T J, et al.. Effect of iron application on growth, yield and quality in radish sprouts [J]. Acta Hortic. Sin., 2006, 33(5): 1096-1098. | |
19 | 张迎芳,李欣苗,李艳,等.螯合铁肥对艾生长及产量品质的影响[J].中国野生植物资源,2022,41(10):7-13. |
ZHANG Y F, LI X M, LI Y, et al.. Effects of chelating iron fertilizer on growth, yield and quality of Artemisia argyi [J]. Chinese Wild Plant Resour., 2022, 41(10): 7-13. | |
20 | 胡华锋,介晓磊,郭孝,等.喷施硫酸亚铁对紫花苜蓿草产量、品质及矿质营养的影响[J].吉林农业大学学报,2009,31(3):291-296. |
HU H F, JIE X L, GUO X, et al.. Effect of leaf surface spraying ferrous sulphate on herbage yield quality and mineral nutrition of alfalfa [J]. J. Jilin Agric. Univ., 2009, 31(3): 291-296. | |
21 | 周春涛,张茹艳,石铭福,等.铁肥形态对马铃薯块茎内源激素、产量及品质的影响[J].西北农林科技大学学报(自然科学版),2022,50(4):42-49. |
ZHOU C T, ZHANG R Y, SHI M F, et al.. Effects of iron different forms of iron fertilizers on endogenous hormones, yield and quality of potato [J]. J. Northwest A&F Univ. (Nat. Sci. Ed.), 2022, 50(4): 42-49. | |
22 | 贾红霞,刘风珍,张秀荣,等.不同类型铁肥改善花生缺铁效果研究[J].花生学报,2021, 50(2):38-43+63. |
JIA H X, LIU F Z, ZHANG X R, et al.. Effect of different types of iron fertilizer on alleviating iron deficiency of peanut [J]. J. Peanut Sci., 2021, 50(2): 38-43+63. | |
23 | 刘蓉,叶宇萍,海丹,等. 锌、铁微肥对夏玉米产量和品质的影响[J].西北农业学报,2017, 26(11):1598-1605. |
LIU R, YE Y P, HAI D, et al.. Effects of zinc and iron micro-fertilizer on yield and quality of summer maize [J]. Acta Agric. Boreali-occidentalis Sin., 2017, 26(11): 1598-1605. | |
24 | 付力成,王人民,孟杰,等.叶面锌、铁配施对水稻产量、品质及锌铁分布的影响及其品种差异[J].中国农业科学,2010,43(24):5009-5018. |
FU L C, WANG R M, MENG J, et al.. Effect of foliar application of zinc and iron fertilizers on distribution of zinc and iron,quality and yield of rice grain [J]. Sci. Agric. Sin., 2010, 43(24): 5009-5018. | |
25 | 楚燕蒙,毛颖超,蔡剑,等.二氢卟吩铁对小麦渍水胁迫耐性的影响[J].中国农业科学,2023,56(10):1848-1858. |
CHU Y M, MAO Y C, CAI J, et al.. Effect of Phytochlorin Iron on Stress Tolerance to Waterlogging in Wheat [J]. Sci. Agric. Sin., 2023, 56 (10): 1848-1858. | |
26 | 张士荣,白灯莎·买买提艾力,冯固.新疆棉花幼叶黄化现象及其铁锌含量差异分析[J].植物营养与肥料学报,2007,(4):745-748. |
ZHANG S R, MAIMAITIELI B, FENG G. The phenomenon of chlorosis and analysis of difference in Fe and Zn content of cotton in Xinjiang [J]. Plant Nutr. Fert. Sci., 2007, (4): 745-748. | |
27 | KAH M, KOOKANA R S, GOGOS A, et al.. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues [J]. Nat. Nanotechnol., 2018, 13(8): 677-684. |
28 | ASKARY M, AMIRJANI M R, SABERI T. Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus [J]. J. Plant Nutr., 2017, 40(7): 974-982. |
29 | GUHA T, GOPAL G, CHATTERJEE R, et al.. Differential growth and metabolic responses induced by nano-scale zero valent iron in germinating seeds and seedlings of Oryza sativa L. cv. Swarna [J/OL]. Ecotoxicol. Environ. Saf., 2020, 204: 111104 [2020-08-10]. . |
30 | 徐江兵,王艳玲,罗小三,等.纳米Fe3O4对生菜生长及土壤细菌群落结构的影响[J].应用生态学报,2017,28(9):3003-3010. |
XU J B, WANG Y L, LUO X S, et al.. Influence of Fe3O4 nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community structure [J]. Chin. J. Appl. Ecol., 2017, 28(9): 3003-3010. | |
31 | 孟令煜,杨涛,王引权,等.叶面喷施纳米铁对当归生理生化特性及药材产量、品质的影响[J].时珍国医国药,2022, 33(10):2497-2501. |
MENG L Y, YANG T, WANG Y Q, et al.. Effects of spraying nano iron on physiological and biochemical characteristics of Angelica sinensis and its yield and quality [J]. Lishizhen Medicine Materia Medica Res., 2022, 33(10): 2497-2501. | |
32 | 杨涛,赵疆,闫鹏勋,等.纳米铁和褪黑素对驯化栽培条件下甘肃贝母产量和品质的影响[J].中国实验方剂学杂志,2021,27(7):144-150. |
YANG T, ZHAO J, YAN P X, et al.. Effect of zero-valent iron nanoparticles and melatonin on yield and quality of fritillaria przewalskii in domesticated cultivation conditions [J]. Chin. J. Exp. Traditional Med. Formulae, 21, 27(7): 144-150. | |
33 | RUI M, MA C, HAO Y, et al.. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea) [J/OL]. Front. Plant Sci., 2016, 7: 815 [2023-08-18]. . |
34 | NEMATI LAFMEJANI Z, JAFARI A A, MORADI P, et al.. Impact of foliar application of iron-chelate and iron nano particles on some morpho-physiological traits and rssential oil composition of peppermint (Mentha piperita L.) [J]. J. Essent. Oil Bear. Pl., 2018, 21(5): 1374-1384. |
[1] | 王为, 赵强, 穆妮热·阿卜杜艾尼, 阿里木·阿木力null, 李欣欣, 田阳青. 烯效唑复配不同外源物质对棉花化学封顶及产量品质的影响[J]. 中国农业科技导报, 2023, 25(9): 57-68. |
[2] | 吴香, 李娟, 曹艳, 程艳荣, 闫旭宇, 李玲. 植物根系分泌物响应镉胁迫的研究进展[J]. 中国农业科技导报, 2023, 25(7): 12-20. |
[3] | 孙正冉, 张翠萍, 张晋丽, 吴昊, 刘秀艳, 王振凯, 杨玉珍, 贺道华. 喷施化学打顶剂对关中棉区棉花植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 167-177. |
[4] | 黄丽芳, 龙宇宙, 李金芹, 董云萍, 王晓阳, 陈鹏, 王宪文, 闫林. 低温胁迫对小粒种咖啡幼苗生理特性的影响[J]. 中国农业科技导报, 2023, 25(2): 60-67. |
[5] | 王诗雅, 王欣怡, 刘莹, 胡慧颖, 孙海燕, 郭伟. 石墨烯对土壤养分转化及玉米苗期根系生长的影响[J]. 中国农业科技导报, 2023, 25(11): 192-206. |
[6] | 张曼, 张进, 张新雨, 王国宁, 王省芬, 张艳. 陆地棉GhNAC1基因的克隆及抗黄萎病功能分析[J]. 中国农业科技导报, 2023, 25(10): 35-44. |
[7] | 陆国清, 马彩霞, 孙国清, 郭惠明, 程红梅. 抗除草剂棉花GV-2的分子特征和遗传稳定性分析[J]. 中国农业科技导报, 2023, 25(1): 42-49. |
[8] | 项洪涛, 李琬, 何宁, 王强, 曾玲玲, 王曼力, 杨纯杰, 冯延江. 小豆根系对水分胁迫的生理响应及S3307的缓解效应[J]. 中国农业科技导报, 2022, 24(9): 39-49. |
[9] | 刘艳, 鲍红帅, 尚红燕, 王国宁, 张艳, 王省芬, 马峙英, 吴金华. 棉花枯萎病菌及其培养条件筛选[J]. 中国农业科技导报, 2022, 24(8): 124-132. |
[10] | 贾睿琪, 郭子昂, 姚晨, 李璞, 腊贵晓, 陆夏梓, 郭虹妤, 李烜桢. 低磷胁迫对小麦镉吸收的影响[J]. 中国农业科技导报, 2022, 24(8): 154-160. |
[11] | 刘海涛, 韩鑫, 兰玉彬, 伊丽丽, 王宝聚, 崔立华. 基于YOLOv4网络的棉花顶芽精准识别方法[J]. 中国农业科技导报, 2022, 24(8): 99-108. |
[12] | 孙正文, 谷淇深, 张艳, 王省芬, 马峙英. 棉花基因发掘与分子育种研究进展[J]. 中国农业科技导报, 2022, 24(7): 32-38. |
[13] | 闫成川, 曾庆涛, 陈琴, 付锦程, 王婷伟, 陈全家, 曲延英. 陆地棉花铃期抗旱指标筛选及评价[J]. 中国农业科技导报, 2022, 24(7): 46-57. |
[14] | 郝艳玲, 闫伟. 混合盐胁迫对白榆幼苗形态及生理指标的影响[J]. 中国农业科技导报, 2022, 24(7): 69-76. |
[15] | 吴楠, 杨君, 张艳, 孙正文, 张冬梅, 李丽花, 吴金华, 马峙英, 王省芬. 过表达棉花葡萄糖醛酸激酶基因GbGlcAK促进拟南芥细胞伸长[J]. 中国农业科技导报, 2022, 24(6): 36-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||