中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (11): 103-113.DOI: 10.13304/j.nykjdb.2022.1047
• 智慧农业 农机装备 • 上一篇
马紫涛1(), 赵智豪1, 全伟2(
), 石方刚1, 高晨1, 吴明亮1
收稿日期:
2022-11-30
接受日期:
2023-06-21
出版日期:
2023-11-15
发布日期:
2023-11-20
通讯作者:
全伟
作者简介:
马紫涛 E-mail:987885042@qq.com;
基金资助:
Zitao MA1(), Zhihao ZHAO1, Wei QUAN2(
), Fanggang SHI1, Chen GAO1, Mingliang WU1
Received:
2022-11-30
Accepted:
2023-06-21
Online:
2023-11-15
Published:
2023-11-20
Contact:
Wei QUAN
摘要:
为了提高离散元法模拟水稻秸秆在切碎还田过程中的准确性, 以水稻收获后田间的残茬秸秆为研究对象,通过斜面试验测定秸秆与钢、秸秆与秸秆之间的接触参数,基于离散元仿真模型,通过堆积角试验和剪切试验,以秸秆模型颗粒之间的粘结半径、切向临界应力、法向临界应力,秸秆之间的恢复系数、静摩擦系数、动摩擦系数为试验因素,以秸秆的抗剪力与径向堆积角为评价指标,利用Box-Behnken 试验进行多目标优化仿真标定。结果表明,秸秆颗粒之间的粘结半径为1.06 mm,秸秆法向临界应力为4.77×1010 Pa、切向临界应力为4.67×106 Pa;秸秆与秸秆之间的碰撞恢复系数为0.21、静摩擦系数为0.19、动摩擦系数为0.09。最优参数组合条件下的仿真试验与物理试验对比验证表明,仿真试验与物理试验中秸秆的抗剪力、径向堆积角的相对误差分别为1.7%、2.8%。研究结果可为秸秆与秸秆之间、秸秆与农机具之间的离散元仿真分析提供参考。
中图分类号:
马紫涛, 赵智豪, 全伟, 石方刚, 高晨, 吴明亮. 基于EDEM的水稻残茬秸秆离散元仿真参数标定[J]. 中国农业科技导报, 2023, 25(11): 103-113.
Zitao MA, Zhihao ZHAO, Wei QUAN, Fanggang SHI, Chen GAO, Mingliang WU. Calibration of Discrete Element Parameter of Rice Stubble Straw Based on EDEM[J]. Journal of Agricultural Science and Technology, 2023, 25(11): 103-113.
图2 堆积角测量及处理A:原堆积角;B:二值化处理;C:边界搜索与曲线拟合
Fig. 2 Measurement and processing of stacking angleA:Original stacking angle;B:Binarization processing;C:Boundary search and curve
材料 Material | 参数 Parameter | 数值 Value |
---|---|---|
水稻秸秆 Rice straw | 泊松比 Poisson ratio | 0.4 |
剪切模量Modulus of shear /MPa | 1 | |
密度 Density/(kg·m-3) | 126.4 | |
钢 Steel | 泊松比 Poisson ratio | 0.3 |
剪切模量 Modulus of shear/MPa | 79 000 | |
密度 Density/(kg·m-3) | 7 800 |
表1 离散元仿真材料本征参数设置
Table 1 Material of parameter setting of discrete element simulation
材料 Material | 参数 Parameter | 数值 Value |
---|---|---|
水稻秸秆 Rice straw | 泊松比 Poisson ratio | 0.4 |
剪切模量Modulus of shear /MPa | 1 | |
密度 Density/(kg·m-3) | 126.4 | |
钢 Steel | 泊松比 Poisson ratio | 0.3 |
剪切模量 Modulus of shear/MPa | 79 000 | |
密度 Density/(kg·m-3) | 7 800 |
序号 No. | 法向临界应力 Normal critical stress/(1010 Pa) | 切向临界应力 Tangential critical stress/(106 Pa) | 粘结半径 Stalk bonding radius/mm | 抗剪力 Shear resistance/N | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 7 | 7 | 0.50 | 14.3 | 39.9 |
2 | 6 | 6 | 0.75 | 20.4 | 14.2 |
3 | 5 | 5 | 1.00 | 26.2 | 10.1 |
4 | 4 | 4 | 1.25 | 21.3 | 10.5 |
5 | 3 | 3 | 1.50 | 13.7 | 42.4 |
表2 最陡爬坡试验结果
Table 2 Design and results of steepest climbing test
序号 No. | 法向临界应力 Normal critical stress/(1010 Pa) | 切向临界应力 Tangential critical stress/(106 Pa) | 粘结半径 Stalk bonding radius/mm | 抗剪力 Shear resistance/N | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 7 | 7 | 0.50 | 14.3 | 39.9 |
2 | 6 | 6 | 0.75 | 20.4 | 14.2 |
3 | 5 | 5 | 1.00 | 26.2 | 10.1 |
4 | 4 | 4 | 1.25 | 21.3 | 10.5 |
5 | 3 | 3 | 1.50 | 13.7 | 42.4 |
试验因素Test factor | 低水平Low level (-1) | 中水平Middle level (0) | 高水平High level (1) |
---|---|---|---|
x1:粘结半径 Stalk bonding radius/mm | 0.75 | 1.00 | 1.25 |
x2:法向临界应力Normal critical stress/(1010 Pa) | 4 | 5 | 6 |
x3:切向临界应力Tangential critical stress/(106 Pa) | 4 | 5 | 6 |
A:碰撞恢复系数 Collision restitution coefficient | 0.21 | 0.31 | 0.41 |
B:静摩擦系数 Static friction coefficient | 0.13 | 0.23 | 0.33 |
C:动摩擦系数 Rolling friction coefficient | 0.05 | 0.15 | 0.25 |
表3 仿真试验因素与水平
Table 3 Factors and levels of simulation test
试验因素Test factor | 低水平Low level (-1) | 中水平Middle level (0) | 高水平High level (1) |
---|---|---|---|
x1:粘结半径 Stalk bonding radius/mm | 0.75 | 1.00 | 1.25 |
x2:法向临界应力Normal critical stress/(1010 Pa) | 4 | 5 | 6 |
x3:切向临界应力Tangential critical stress/(106 Pa) | 4 | 5 | 6 |
A:碰撞恢复系数 Collision restitution coefficient | 0.21 | 0.31 | 0.41 |
B:静摩擦系数 Static friction coefficient | 0.13 | 0.23 | 0.33 |
C:动摩擦系数 Rolling friction coefficient | 0.05 | 0.15 | 0.25 |
指标 Index | 静摩擦系数 Static friction coefficient | 滚动摩擦系数 Rolling friction coefficient | 碰撞恢复系数 Collision restitution coefficient |
---|---|---|---|
秸秆 | 秸秆 | 秸秆 | |
钢 steel | 0.29 | 0.17 | 0.22 |
秸秆 straw | 0.23 | 0.15 | 0.31 |
表4 秸秆接触力学参数测定结果
Table 4 Results of straw contact mechanical parameters
指标 Index | 静摩擦系数 Static friction coefficient | 滚动摩擦系数 Rolling friction coefficient | 碰撞恢复系数 Collision restitution coefficient |
---|---|---|---|
秸秆 | 秸秆 | 秸秆 | |
钢 steel | 0.29 | 0.17 | 0.22 |
秸秆 straw | 0.23 | 0.15 | 0.31 |
序号 No. | 因素水平 Factor level | 响应指标 Response index | ||
---|---|---|---|---|
x1 | x2 | x3 | F:抗剪力 Shear resistance/N | |
1 | 1 | 1 | 0 | 21.3 |
2 | -1 | 1 | 0 | 16.9 |
3 | 1 | 0 | -1 | 13.9 |
4 | 0 | -1 | 1 | 24.0 |
5 | 0 | 1 | 1 | 23.9 |
6 | -1 | -1 | 0 | 13.9 |
7 | 0 | 0 | 0 | 27.1 |
8 | 1 | 0 | 1 | 16.5 |
9 | 1 | -1 | 0 | 14.1 |
10 | 0 | 0 | 0 | 25.2 |
11 | 0 | 0 | 0 | 26.2 |
12 | -1 | 0 | -1 | 15.7 |
13 | -1 | 0 | 1 | 16.8 |
14 | 0 | 0 | 0 | 24.2 |
15 | 0 | 1 | -1 | 24.1 |
16 | 0 | 0 | 0 | 25.8 |
17 | 0 | -1 | -1 | 16.1 |
表5 试验设计及结果
Table 5 Experimental design and results
序号 No. | 因素水平 Factor level | 响应指标 Response index | ||
---|---|---|---|---|
x1 | x2 | x3 | F:抗剪力 Shear resistance/N | |
1 | 1 | 1 | 0 | 21.3 |
2 | -1 | 1 | 0 | 16.9 |
3 | 1 | 0 | -1 | 13.9 |
4 | 0 | -1 | 1 | 24.0 |
5 | 0 | 1 | 1 | 23.9 |
6 | -1 | -1 | 0 | 13.9 |
7 | 0 | 0 | 0 | 27.1 |
8 | 1 | 0 | 1 | 16.5 |
9 | 1 | -1 | 0 | 14.1 |
10 | 0 | 0 | 0 | 25.2 |
11 | 0 | 0 | 0 | 26.2 |
12 | -1 | 0 | -1 | 15.7 |
13 | -1 | 0 | 1 | 16.8 |
14 | 0 | 0 | 0 | 24.2 |
15 | 0 | 1 | -1 | 24.1 |
16 | 0 | 0 | 0 | 25.8 |
17 | 0 | -1 | -1 | 16.1 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F 值 F value | P 值 P value |
---|---|---|---|---|---|
模型 Model | 377.01 | 9 | 41.89 | 22.57 | 0.000 2** |
x1 | 0.78 | 1 | 0.78 | 0.42 | 0.537 2 |
x2 | 40.95 | 1 | 40.95 | 22.06 | 0.002 2** |
x3 | 16.24 | 1 | 16.24 | 8.75 | 0.021 2 * |
x1x2 | 4.41 | 1 | 4.41 | 2.38 | 0.167 1 |
x1x3 | 0.56 | 1 | 0.56 | 0.30 | 0.599 1 |
x2x3 | 16.40 | 1 | 16.40 | 8.84 | 0.020 7 * |
x12 | 251.27 | 1 | 251.27 | 135.38 | <0.000 1 ** |
x22 | 8.55 | 1 | 8.55 | 4.61 | 0.069 0 |
x32 | 21.32 | 1 | 21.32 | 11.48 | 0.011 6 * |
残差 Residual error | 12.99 | 7 | 1.86 | ||
失拟项 Lack of fit | 14.20 | 3 | 2.76 | 2.34 | 0.215 1 |
纯误差 Pure error | 4.72 | 4 | 1.18 | ||
总和 Total | 390.00 | 16 |
表6 抗剪力方差分析
Table 6 Variance analysis of shearing resistance
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F 值 F value | P 值 P value |
---|---|---|---|---|---|
模型 Model | 377.01 | 9 | 41.89 | 22.57 | 0.000 2** |
x1 | 0.78 | 1 | 0.78 | 0.42 | 0.537 2 |
x2 | 40.95 | 1 | 40.95 | 22.06 | 0.002 2** |
x3 | 16.24 | 1 | 16.24 | 8.75 | 0.021 2 * |
x1x2 | 4.41 | 1 | 4.41 | 2.38 | 0.167 1 |
x1x3 | 0.56 | 1 | 0.56 | 0.30 | 0.599 1 |
x2x3 | 16.40 | 1 | 16.40 | 8.84 | 0.020 7 * |
x12 | 251.27 | 1 | 251.27 | 135.38 | <0.000 1 ** |
x22 | 8.55 | 1 | 8.55 | 4.61 | 0.069 0 |
x32 | 21.32 | 1 | 21.32 | 11.48 | 0.011 6 * |
残差 Residual error | 12.99 | 7 | 1.86 | ||
失拟项 Lack of fit | 14.20 | 3 | 2.76 | 2.34 | 0.215 1 |
纯误差 Pure error | 4.72 | 4 | 1.18 | ||
总和 Total | 390.00 | 16 |
序号 No. | 因素水平 Factor level | 响应指标 Response index | ||
---|---|---|---|---|
A | B | C | θ:堆积角 Stacking angle/(°) | |
1 | 0 | 0 | 0 | 24.1 |
2 | 0 | -1 | -1 | 20.1 |
3 | 0 | 0 | 0 | 23.8 |
4 | 0 | 0 | 0 | 24.8 |
5 | 0 | 0 | 0 | 23.9 |
6 | -1 | 1 | 0 | 24.2 |
7 | -1 | 0 | -1 | 21.8 |
8 | 0 | 0 | 0 | 24.1 |
9 | 1 | 0 | -1 | 22.8 |
10 | 1 | -1 | 0 | 23.4 |
11 | 0 | 1 | 1 | 25.5 |
12 | 0 | -1 | 1 | 22.8 |
13 | -1 | -1 | 0 | 20.6 |
14 | 1 | 1 | 0 | 25.5 |
15 | 1 | 0 | 1 | 24.2 |
16 | 0 | 1 | -1 | 26.6 |
17 | -1 | 0 | 1 | 23.1 |
表7 试验设计及试验结果
Table 7 Experimental design and results
序号 No. | 因素水平 Factor level | 响应指标 Response index | ||
---|---|---|---|---|
A | B | C | θ:堆积角 Stacking angle/(°) | |
1 | 0 | 0 | 0 | 24.1 |
2 | 0 | -1 | -1 | 20.1 |
3 | 0 | 0 | 0 | 23.8 |
4 | 0 | 0 | 0 | 24.8 |
5 | 0 | 0 | 0 | 23.9 |
6 | -1 | 1 | 0 | 24.2 |
7 | -1 | 0 | -1 | 21.8 |
8 | 0 | 0 | 0 | 24.1 |
9 | 1 | 0 | -1 | 22.8 |
10 | 1 | -1 | 0 | 23.4 |
11 | 0 | 1 | 1 | 25.5 |
12 | 0 | -1 | 1 | 22.8 |
13 | -1 | -1 | 0 | 20.6 |
14 | 1 | 1 | 0 | 25.5 |
15 | 1 | 0 | 1 | 24.2 |
16 | 0 | 1 | -1 | 26.6 |
17 | -1 | 0 | 1 | 23.1 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F 值 F value | P 值 P value |
---|---|---|---|---|---|
模型 Model | 42.27 | 9 | 4.70 | 11.77 | 0.001 9** |
A | 4.81 | 1 | 4.81 | 12.04 | 0.010 4* |
B | 27.75 | 1 | 27.75 | 69.51 | <0.000 1** |
C | 2.31 | 1 | 2.31 | 5.79 | 0.047 0* |
AB | 0.56 | 1 | 0.56 | 1.41 | 0.273 9 |
AC | 0.025 | 1 | 0.025 | 0.063 | 0.939 1 |
BC | 3.61 | 1 | 3.61 | 9.04 | 0.019 7* |
A2 | 2.34 | 1 | 2.34 | 5.85 | 0.046 1* |
B2 | 0.038 | 1 | 0.038 | 0.095 | 0.925 1 |
C2 | 0.74 | 1 | 0.74 | 1.86 | 0.214 8 |
残差 Residual error | 2.79 | 7 | 0.40 | ||
失拟项 Lack of fit | 2.18 | 3 | 0.73 | 4.75 | 0.083 1 |
纯误差 Pure error | 0.61 | 4 | 0.15 | ||
总和 Total | 45.07 | 16 |
表 8 堆积角方差分析
Table 8 Variance analysis of stacking angle
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F 值 F value | P 值 P value |
---|---|---|---|---|---|
模型 Model | 42.27 | 9 | 4.70 | 11.77 | 0.001 9** |
A | 4.81 | 1 | 4.81 | 12.04 | 0.010 4* |
B | 27.75 | 1 | 27.75 | 69.51 | <0.000 1** |
C | 2.31 | 1 | 2.31 | 5.79 | 0.047 0* |
AB | 0.56 | 1 | 0.56 | 1.41 | 0.273 9 |
AC | 0.025 | 1 | 0.025 | 0.063 | 0.939 1 |
BC | 3.61 | 1 | 3.61 | 9.04 | 0.019 7* |
A2 | 2.34 | 1 | 2.34 | 5.85 | 0.046 1* |
B2 | 0.038 | 1 | 0.038 | 0.095 | 0.925 1 |
C2 | 0.74 | 1 | 0.74 | 1.86 | 0.214 8 |
残差 Residual error | 2.79 | 7 | 0.40 | ||
失拟项 Lack of fit | 2.18 | 3 | 0.73 | 4.75 | 0.083 1 |
纯误差 Pure error | 0.61 | 4 | 0.15 | ||
总和 Total | 45.07 | 16 |
1 | 刘淑军, 李冬初, 黄晶, 等. 1988—2018年中国水稻秸秆资源时空分布特征及还田替代化肥潜力[J]. 农业工程学报, 2021,37(11):151-161. |
LIU S J, LI D C, HUANG J,et al.. Temporal and spatial distribution characteristics of rice stalk resources and its potential of synthetic fertilizers substitution returning to farmland in China from 1988 to 2018 [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(11):151-161. | |
2 | 侯杰, 谢方平, 王修善, 等. 水稻茎秆接触物理参数测定与离散元仿真标定[J]. 江西农业大学学报, 2022,44(3):747-758. |
HOU J, XIE F P, WANG X S, et al.. Measurement of contact physical parameters of flexible rice straw and discrete element simulation calibration [J]. Acta Agric. Univ. Jiangxiensis, 2022,44(3):747-758. | |
3 | 邱进, 吴明亮, 方友祥, 等. 水稻秸秆利用研究现状与发展趋势[J]. 当代农机, 2015(4):72-75. |
QIU J, WU M L, FANG Y X,et al.. Research status and development trend of rice straw scales [J].Contemporary Farm Mach., 2015(4):72-75. | |
4 | 逯克鑫, 屈佳伟, 于晓芳, 等. 沙壤土条件下秸秆还田减施氮肥对不同玉米品种氮效率的影响[J]. 内蒙古农业大学学报(自然科学版), 2022, 43(5): 37-45. |
LU K X, QU J W, YU X F,et al.. Effect of straw returning and nitrogen fertilizer reduction on nitrogen efficiency of different maize varieties in sandy ioam soils [J]. J. Inner Mongolia Agric.Univ. (Nat. Sci. ), 2022, 43(5): 37-45. | |
5 | 张博睿, 蔡影, 刘文雯, 等. 水稻秸秆还田对小麦季农田径流氮磷及COD的影响[J]. 安徽科技学院学报, 2022,36(1):18-24. |
ZHANG B R, CAI Y, LIU W W,et al.. Rice straw return measures on nitrogen, phosphorus and COD of wheat season in farm runoff [J]. J. Anhui Sci. Technol. Univ., 2022,36(1):18-24. | |
6 | 崔思远, 朱新开, 张莀茜, 等. 水稻秸秆还田年限对稻麦轮作田土壤碳氮固存的影响[J]. 农业工程学报, 2019,35(7):115-121. |
CUI S Y, ZHU X K, ZHANG C Q,et al.. Effects of years of rice straw retention on soil carbon and nitrogen sequestration in rice-wheat system [J].Trans. Chin. Soc. Agric. Eng., 2019,35(7):115-121. | |
7 | 曹阳, 陈新兵, 沙之敏, 等. 水稻秸秆还田量对土壤重金属及小麦产量的影响[J]. 上海交通大学学报(农业科学版), 2019,37(4):6-11. |
CAO Y, CHEN X B, SHA Z M,et al.. Effect of rice straw returning on accumulation of heavy metals in soil and yield of wheat [J]. J. Shanghai Jiaotong Univ. (Agric. Sci.), 2019,37(4):6-11. | |
8 | 曹若梅. 水稻秸秆还田对土壤含水量的影响[J]. 安徽农业科学, 2019,47(18):85-87. |
CAO R M. Effects of returning rice straw to field on soil moisture content [J]. J. Anhui Agric. Sci., 2019,47(18):85-87. | |
9 | 邱进, 吴明亮, 官春云, 等. 动定刀同轴水稻秸秆切碎还田装置结构设计与试验[J]. 农业工程学报, 2015,31(10):11-19. |
QIU J, WU M L, GUAN C Y, et al.. Design and experiment of chopping device with dynamic fixed knife coaxial for rice straw [J].Trans. Chin. Soc. Agric. Eng., 2015,31(10):11-19. | |
10 | 薛惠岚,薛少平,杨青,等. 秸秆粉碎覆盖与施肥播种联合作业的实现及机具设计[J]. 农业工程学报, 2003, 19(3):104-107. |
XUE H L, XUE S P, YANG Q, et al.. Implementation of combined work of straw crushed for mulching and seeding with fertilizer and design of the machine [J].Trans. Chin. Soc. Agric. Eng., 2003, 19(3):104-107. | |
11 | 贾洪雷, 赵佳乐, 姜鑫铭, 等. 行间免耕播种机防堵装置设计与试验[J]. 农业工程学报, 2013,29(18):16-25. |
JIA H L, ZHAO J L, JIANG X M, et al.. Design and experiment of anti-blocking mechanism for inter-row no-tillage seeder [J]. Trans. Chin. Soc. Agric. Eng., 2013, 29(18): 16-25. | |
12 | 陈晓光, 武涛, 张增学, 等. 基于EDEM甘蔗切割器入土切割仿真试验分析[J]. 农机化研究, 2021,43(11):7-13. |
CHEN X G, WU T, ZHANG Z X, et al.. Simulation test analysis of cutting into the soil based on EDEM sugarcane cutter [J]. J. Agric. Mech. Res., 2021,43(11):7-13. | |
13 | 周里群, 许欣, 关汗青, 等. 基于离散元法的沥青混凝土振动切削过程的数值模拟[J]. 机械工程学报, 2017,53(22):166-175. |
ZHOU L Q, XU X, GUAN H Q,et al.. Numerical simulation of vibration cutting for asphalt concrete paving based on discrete element method [J]. J. Mech. Eng.,2017,53(22):166-175. | |
14 | 赵淑红, 高连龙, 袁溢文, 等. 基于离散元法的深松作业玉米秸秆运动规律[J]. 农业工程学报, 2021,37(20):53-62. |
ZHAO S H, GAO L L, YUAN Y W, et al.. Maize straw motion law in subsoiling operation using discrete element method [J].Trans. Chin. Soc. Agric. Eng.,2021,37(20):53-62. | |
15 | 耿端阳, 孙延成, 牟孝栋, 等. 基于差速辊的青贮玉米籽粒破碎仿真试验及优化[J]. 吉林大学学报(工学版), 2022,52(3):693-702. |
GENG D Y, SUN Y C, MOU X D, et al.. Simulation test and optimization of grain breakage of silage maize based on differential roller [J]. J. Jilin Univ. (Eng. Technol.) 2022,52(3):693-702. | |
16 | 张锋伟, 宋学锋, 张雪坤, 等. 玉米秸秆揉丝破碎过程力学特性仿真与试验[J]. 农业工程学报, 2019,35(9):58-65. |
ZHANG F W, SONG X F, ZHANG X K, et al.. Simulation and experiment on mechanical characteristics of kneading and crushing process of corn straw [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(9):58-65. | |
17 | TEKESTE M Z, BALVANZ L R, HATFIELD J L, et al.. Discrete element modeling of cultivator sweep-to-soil interaction: worn and hardened edges effects on soil-tool forces and soil flow [J/OL]. J. Terramechanics, 2019, 82:1-11 [2022-10-30]. . |
18 | ABDIEL R L B, ULRICH H, THAI S D, et al.. Hypoplastic particle finite element model for cutting tool-soil interaction simulations: numerical analysis and experimental validation [J]. Underg. Space, 2018,3(1):61-71. |
19 | 马彦华, 宋春东, 宣传忠, 等. 苜蓿秸秆压缩仿真离散元模型参数标定[J]. 农业工程学报, 2020,36(11):22-30. |
MA Y H, SONG C D, XUAN C Z, et al.. Parameters calibration of discrete element model for alfalfa straw compression simulation [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(11):22-30. | |
20 | 张涛, 刘飞, 赵满全, 等. 玉米秸秆接触物理参数测定与离散元仿真标定[J]. 中国农业大学学报, 2018,23(4):120-127. |
ZHANG T, LIU F, ZHAO M Q, et al..Determination of corn stalk contact parameters and calibration of discrete element method simulation [J]. J. China Agric. Univ., 2018,23(4):120-127. | |
21 | 王万章, 刘婉茹, 袁玲合, 等. 基于EDEM的收获期小麦植株离散元参数标定[J]. 河南农业大学学报, 2021,55(1):64-72. |
WANG W Z, LIU W R, YUAN L H, et al..Calibration of discrete element parameters of wheat plants at harvest period based on EDEM [J]. J. Henan Agric. Univ., 2021,55(1):64-72. | |
22 | ANNOUSSAMY M, RICHARD G, RECOUS S, et al.. Change in mechanical properties of wheat straw due to decomposition abd moisture [J]. Appl. Eng. Agric., 2000,16(6):657-664. |
23 | 刘凡一. 清选装置中小麦颗粒和短茎秆离散元建模研究[D]. 杨凌:西北农林科技大学, 2018. |
LIU F Y. Discrete element modelling of the wheat particles and short straw in cleaning devices [D]. Yangling: Northwest A&F Universit, 2018. | |
24 | JIA H L, DENG J Y, DENG Y L, et al.. Contact parameter analysis and calibration in discrete element simulation of rice straw [J]. Int. J. Agric. Biol. Eng, 2021,14(3):72-81. |
25 | MAK J, CHEN Y, SADEK M A. Determining parameters of a discrete element model for soil-tool interaction [J]. Soil Till. Res., 2012,118:117-122. |
26 | 丁启朔, 任骏, BELAL Eisa Adam, 等. 湿粘水稻土深松过程离散元分析[J]. 农业机械学报, 2017,48(3):38-48. |
DING Q S, REN J, BELAL E A, et al.. DEM analysis of subsoiling process in wet clayey paddy soil [J] Trans. Chin. Soc. Agric. Eng, 2017,48(3):38-48. | |
27 | 沈成, 李显旺, 张彬, 等. 苎麻茎秆台架切割试验与分析[J]. 农业工程学报, 2016,32(1):68-76. |
SHEN C, LI X W, ZHANG B, et al..Bench experiment and analysis on ramie stalk cutting [J] Trans. Chin. Soc. Agric. Eng., 2016,32(1):68-76. | |
28 | 王洪波,樊志鹏,乌兰图雅,等.揉碎玉米秸秆螺旋输送仿真离散元模型参数标定[J].中国农业科技导报,2023,25(3):96-106. |
WANG H B, FAN Z P, Wulantuya, et al..Parameter calibration of discrete element model for simulation of crushed corn stalk screw conveying [J]. J. Agric. Sci. Technol. China,2023,25(3): 96-106. | |
29 | 陈声显. 玉米秸秆力学模型及压缩成型设备研究[D].长春:吉林大学, 2011. |
CHEN S X. Research on mechanical model and compression molding equipment of corn straw [D]. Changchun: Jilin University, 2011. | |
30 | 赵吉坤,宋武斌,李晶晶.基于EDEM的水稻秸秆建模及力学性能分析[J].土壤通报,2020,51(5):1086-1093. |
ZHAO J K, SONG W B, LI J J.Modeling and mechanical analysis of rice straw based on discrete element mechanical model [J]. Chin. J. Soil Sci., 2020,51(5):1086-1093. |
[1] | 钱政, 杨孙哲, 张国卿, 郭紫微, 张林朋, 万家兴, 杨红云. 基于卷积神经网络的水稻氮素营养诊断[J]. 中国农业科技导报, 2023, 25(9): 113-121. |
[2] | 郭带贵, 廖宇兰, 张惜辉, 袁成宇, 吴中野. 木薯种植机参数优化与试验[J]. 中国农业科技导报, 2023, 25(9): 122-130. |
[3] | 李慧君, 张伟健, 吴伟健, 李高洋, 陈艺杰, 黄枫城, 黄永相, 蔺中, 甄珍. 种植海水稻对滨海盐土化学性质和微生物群落影响[J]. 中国农业科技导报, 2023, 25(9): 147-156. |
[4] | 邵社刚, 李婷, 柳勇, 林兰稳, 张东, 倪栋, 李俊杰, 朱立安. 外源菌剂对稻秆腐解及微生物群落结构的影响[J]. 中国农业科技导报, 2023, 25(9): 166-177. |
[5] | 单莉莉. 孕穗期低温对水稻叶片生理、产量的影响及外源褪黑素缓解效应[J]. 中国农业科技导报, 2023, 25(9): 23-33. |
[6] | 张冬梦, 姚栋萍, 吴俊, 罗秋红, 庄文, 刘雄伦, 邓启云, 柏斌. 灌浆期田间自然低温对稻米蒸煮食味品质的影响[J]. 中国农业科技导报, 2023, 25(6): 144-153. |
[7] | 饶中秀, 孙继民, 张娜, 李龙涛, 董春华, 杨曾平, 黄凤球. 基料添加艾草秸秆对平菇生长及品质的影响[J]. 中国农业科技导报, 2023, 25(6): 208-215. |
[8] | 肖芬芳, 张从合, 王慧, 叶亚峰, 张道林, 汪和廷, 李波, 吴跃进, 刘斌美. 杂交水稻花粉收集装置气力输送系统仿真优化[J]. 中国农业科技导报, 2023, 25(4): 110-122. |
[9] | 王洪波, 樊志鹏, 乌兰图雅, 王春光, 马哲. 揉碎玉米秸秆螺旋输送仿真离散元模型参数标定[J]. 中国农业科技导报, 2023, 25(3): 96-106. |
[10] | 郑云珠, 孙树臣. 秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J]. 中国农业科技导报, 2023, 25(2): 152-162. |
[11] | 高日平, 刘小月, 潘遵天, 张东旭, 沈祥军, 栗艳芳, 黄洁, 景宇鹏. 生物菌剂对玉米秸秆堆沤过程水热状况及酶活性的影响[J]. 中国农业科技导报, 2023, 25(2): 174-181. |
[12] | 尹林江, 李威, 赵卫权, 赵祖伦, 吕思思, 孙小琼. 水稻多时相植被指数特征及覆盖度提取研究[J]. 中国农业科技导报, 2023, 25(2): 83-98. |
[13] | 邵东伟, 刘文斌, 栾积毅, 韩平, 钟海涛, 冯海城. 玉米秸秆颗粒燃料层燃特性研究[J]. 中国农业科技导报, 2023, 25(10): 109-118. |
[14] | 梁玉玥, 郑侃, 夏俊芳. 稻麦兼用排种器检测与吹种装置性能模拟与试验[J]. 中国农业科技导报, 2023, 25(10): 99-108. |
[15] | 张豫丹, 王卫民, 倪博, 马晓寒, 李俊领, 许自成, 贾玮, 史久长. 烟草秸秆绿原酸提取工艺优化及其抑菌效果研究[J]. 中国农业科技导报, 2023, 25(1): 119-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||