1 |
MOSES L, PACHTER L. Museum of spatial transcriptomics [J]. Nat. Methods, 2022,19(5):534-546.
|
2 |
CHEN S, LOPER J, CHEN X, et al.. BARcode DEmixing through non-negative spatial regression (BarDensr) [J/OL]. PLoS Comput. Biol., 2021,17(3):e1008256 [2024-08-29]. .
|
3 |
EICHENBERGER B T, ZHAN Y X, REMPFLER M, et al.. deepBlink:threshold-independent detection and localization of diffraction-limited spots [J]. Nucl. Acids Res., 2021,49(13):7292-7297.
|
4 |
PARTEL G, HILSCHER M M, MILLI G, et al.. Automated identification of the mouse brain’s spatial compartments from in situ sequencing data [J]. BMC Biol., 2020,18(1):144.
|
5 |
PARTEL G, WÄHLBY C. Spage2vec:unsupervised representation of localized spatial gene expression signatures [J]. FEBS J., 2021,288(6):1859-1870.
|
6 |
LITTMAN R, HEMMINGER Z, FOREMAN R, et al.. Joint cell segmentation and cell type annotation for spatial transcriptomics [J/OL]. Mol. Syst. Biol.,2021,17(6):e10108 [2024-08-29]. .
|
7 |
PARK J, CHOI W, TIESMEYER S, et al.. Cell segmentation-free inference of cell types from in situ transcriptomics data [J/OL]. Nat. Commun.,2021,12(1):3545 [2024-08-29]. .
|
8 |
LIU S L, PUNTHAMBAKER S, IYER E P R, et al.. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses [J/OL]. Nucl. Acids Res., 2021,49(10):e58 [2024-08-29]. .
|
9 |
HAO Y H, HAO S, ANDERSEN-NISSEN E, et al.. Integrated analysis of multimodal single-cell data [J]. Cell, 2021,184(13):3573-3587.
|
10 |
KORSUNSKY I, MILLARD N, FAN J, et al.. Fast,sensitive and accurate integration of single-cell data with Harmony [J]. Nat. Meth., 2019,16(12):1289-1296.
|
11 |
KLESHCHEVNIKOV V, SHMATKO A, DANN E, et al.. Cell2location maps fine-grained cell types in spatial transcriptomics [J]. Nat. Biotechnol., 2022,40(5):661-671.
|
12 |
HIE B, BRYSON B, BERGER B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama [J]. Nat. Biotechnol., 2019,37(6):685-691.
|
13 |
GHAZANFAR S, LIN Y X, SU X B, et al.. Investigating higher-order interactions in single-cell data with scHOT [J].Nat. Meth., 2020,17 (8):799-806.
|
14 |
BERGENSTRÅHLE J, LARSSON L, LUNDEBERG J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows [J/OL]. BMC Genom., 2020,21(1):482 [2024-08-29]. .
|
15 |
FAN Z, CHEN R S, CHEN X W. SpatialDB:a database for spatially resolved transcriptomes [J]. Nucl. Acids Res., 2020,48(D1):D233-D237.
|
16 |
XU Z C, WANG W W, YANG T,et al.. STOmicsDB:a comprehensive database for spatial transcriptomics data sharing, analysis and visualization [J].Nucl. Acids Res., 2024,52(D1):D1053-D1061.
|
17 |
REGEV A, TEICHMANN SA, LANDER ES, et al.. The human cell atlas [J/OL]. Elife, 2017, 6:e27041 [2024-08-29]. .
|
18 |
SHAH S, LUBECK E, ZHOU W, et al.. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus [J]. Neuron, 2016,92(2):342-357.
|
19 |
OVADIA S, CUI G, ELKON R, et al.. SWI/SNF complexes are required for retinal pigmented epithelium differentiation and for the inhibition of cell proliferation and neural differentiation programs [J/OL]. Development, 2023,150(16): dev201488 [2024-08-29]. .
|
20 |
WEITZ J, GARG B, MARTSINKOVSKIY A, et al.. Pancreatic ductal adenocarcinoma induces neural injury that promotes a transcriptomic and functional repair signature by peripheral neuroglia [J]. Oncogene, 2023,42(34):2536-2546.
|
21 |
FATEMI M Y, LU Y, SHARMA C,et al.. Feasibility of inferring spatial transcriptomics from single-cell histological patterns for studying colon cancer tumor heterogeneity [J/OL]. MedRxiv, 2023 [2024-08-29]. .
|
22 |
FIGIEL S, YIN W C, DOULTSINOS D, et al.. Spatial transcriptomic analysis of virtual prostate biopsy reveals confounding effect of tissue heterogeneity on genomic signatures [J/OL]. Mol. Cancer, 2023,22(1): 162 [2024-08-29]. .
|
23 |
FENG Y W, WANG S G, XIE J J, et al.. Spatial transcriptomics reveals heterogeneity of macrophages in the tumor microenvironment of granulomatous slack skin [J].J. Pathol., 2023,261(1):105-119.
|
24 |
LIU Y Q, LI N S, QI J,et al.. A hybrid machine learning and regression method for cell type deconvolution of spatial barcoding-based transcriptomic data [J/OL]. BioRxiv,2023 [2024-08-29]. .
|
25 |
LI Y W, LUO Y. STdGCN:spatial transcriptomic cell-type deconvolution using graph convolutional networks [J/OL]. Genome Biol., 2024,25(1):206 [2024-08-29]. .
|
26 |
ROBERTSON A G, MEGHANI K, COOLEY L F, et al.. Expression-based subtypes define pathologic response to neoadjuvant immune-checkpoint inhibitors in muscle-invasive bladder cancer [J/OL]. Nat. Commun., 2023,14 (1): 2126 [2024-08-29]..
|
27 |
LARROQUETTE M, GUEGAN J P, BESSE B, et al.. Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies [J/OL]. J. Immunother. Cancer,2022,10(5):e003890 [2024-08-29]. .
|
28 |
SONG X Y, XIONG A W, WU F Y, et al.. Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody [J/OL]. J. Immunother. Cancer, 2023,11(2): e006234 [2024-08-29]. .
|
29 |
MOSQUERA M J, KIM S, BAREJA R,et al.. Extracellular matrix in synthetic hydrogel-based prostate cancer organoids regulate therapeutic response to EZH2 and DRD2 inhibitors [J/OL]. Adv. Mater., 2022,34(2): e2100096 [2024-08-29]. .
|
30 |
BARECHE Y, BUISSERET L, GRUOSSO T, et al.. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity:towards an optimized treatment approach [J]. J. Natl. Cancer Inst., 2020,112(7):708-719.
|
31 |
LIU G, HU Q F, PENG S G,et al.. The spatial and single-cell analysis reveals remodeled immune microenvironment induced by synthetic oncolytic adenovirus treatment [J/OL]. Cancer Lett., 2024,581:216485 [2024-08-29]..
|
32 |
GIACOMELLO S, SALMÉN F, TEREBIENIEC B K, et al.. Spatially resolved transcriptome profiling in model plant species [J/OL]. Nat. Plants, 2017,3:17061 [2024-08-29]. .
|
33 |
YANG X L, POELMANS W, GRONES C,et al.. Spatial transcriptomics of a lycophyte root sheds light on root evolution [J]. Curr. Biol.,2023,33(19): 4069-4084.
|
34 |
FU Y X, XIAO W X, TIAN L, et al.. Spatial transcriptomics uncover sucrose post-phloem transport during maize kernel development [J/OL]. Nat. Commun.,2023,14 (1): 7191 [2024-08-29]. .
|
35 |
MORENO-VILLENA J J, ZHOU H, GILMAN I S, et al.. Spatial resolution of an integrated C4 +CAM photosynthetic metabolism [J/OL].Sci. Adv., 2022,8(31):eabn2349 [2024-08-29]. .
|
36 |
LIU Z J, KONG X Y, LONG Y P, et al.. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation [J]. Nat. Plants, 2023,9 (4): 515-524.
|
37 |
SAARENPÄÄ S, SHALEV O, ASHKENAZY H,et al.. Spatially resolved host-bacteria-fungi interactomes via spatial metatranscriptomics [J/OL]. BioRxiv,2022 [2024-08-29]. .
|
38 |
WALKER B L, CANG Z X, REN H L, et al.. Deciphering tissue structure and function using spatial transcriptomics [J/OL]. Commun. Biol., 2022, 5(1):220 [2024-08-29]. .
|
39 |
RAO A, BARKLEY D, FRANÇA G S, et al.. Exploring tissue architecture using spatial transcriptomics [J]. Nature, 2021,596 (7871):211-220.
|
40 |
ARMINGOL E, OFFICER A, HARISMENDY O, et al.. Deciphering cell-cell interactions and communication from gene expression [J]. Nat. Rev. Genet., 2021,22(2):71-88.
|
41 |
TIAN L Y, CHEN F, MACOSKO E Z. The expanding vistas of spatial transcriptomics [J]. Nat. Biotechnol., 2023,41(6):773-782.
|