中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (4): 179-191.DOI: 10.13304/j.nykjdb.2023.0765
• 生物制造 资源生态 • 上一篇
侯赛赛1(), 仝姗姗2, 王鹏企1, 谢冰雪1, 张瑞芳2,3,4, 王鑫鑫2,3,4(
)
收稿日期:
2023-10-18
接受日期:
2024-03-04
出版日期:
2025-04-15
发布日期:
2025-04-15
通讯作者:
王鑫鑫
作者简介:
侯赛赛E-mail:hss11022021@163.com;
基金资助:
Saisai HOU1(), Shanshan TONG2, Pengqi WANG1, Bingxue XIE1, Ruifang ZHANG2,3,4, Xinxin WANG2,3,4(
)
Received:
2023-10-18
Accepted:
2024-03-04
Online:
2025-04-15
Published:
2025-04-15
Contact:
Xinxin WANG
摘要:
生物炭和玉米秸秆具有改良土壤质量、促进作物生长的作用,其改良效果因物种不同而存在差异,探究不同作物生长性状和养分吸收效率对生物炭和玉米秸秆的响应差异对农业生产具有实践意义。以大白菜、冰草、石竹和紫花苜蓿4种不同科属的作物为材料,采用盆栽试验,分别设置不添加物料、添加生物炭、添加玉米秸秆、生物炭与玉米秸秆配施处理,分析不同处理下土壤养分变化、作物生长和养分吸收的变化规律。结果表明,生物炭、玉米秸秆以及二者配施影响了土壤养分(全氮、有效磷、速效钾和有机碳)含量,变化幅度分别在-28.78%~40.41%、-17.85%~53.20%、-3.45%~62.51%。生物炭与玉米秸秆配施影响了4种作物的生长,其中,地上部干重增加23.74%~80.89%。生物炭、玉米秸秆以及二者配施使根长分别增加22.51%~77.91%、25.86%~80.45%和45.93%~149.24%,养分吸收效率分别提高3.40%~143.73%、1.07%~188.80%和9.82%~290.32%。施用生物炭和玉米秸秆对4种作物的生长均有明显的改善,生物炭和玉米秸秆增加了土壤养分,促进了作物养分吸收,促进了作物地上部和根部的生长。研究结果为生物炭和秸秆的广泛利用和推广提供了理论基础。
中图分类号:
侯赛赛, 仝姗姗, 王鹏企, 谢冰雪, 张瑞芳, 王鑫鑫. 生物炭和秸秆对不同作物生长性状和养分吸收的影响[J]. 中国农业科技导报, 2025, 27(4): 179-191.
Saisai HOU, Shanshan TONG, Pengqi WANG, Bingxue XIE, Ruifang ZHANG, Xinxin WANG. Effects of Biochar and Straw on Growth Characteristics and Nutrient Uptake of Different Crops[J]. Journal of Agricultural Science and Technology, 2025, 27(4): 179-191.
指标 Index | 作物(自由度=3) Crop(df=3) | 物料(自由度=3) Material(df=3) | 作物×物料(自由度=9) Crop×material(df=9) |
---|---|---|---|
土壤pH Soil pH | 12.49*** | 21.37*** | 21.33*** |
速效钾 Available K/(mg·kg-1) | 620.67*** | 107.51*** | 4.70** |
有机碳 Organic matter/(g·kg-1) | 13.84*** | 5.47** | 17.73*** |
全氮 Total N/(g·kg-1) | 106.07*** | 154.18*** | 15.12*** |
有效磷 Olsen-P/(mg·kg-1) | 117.73*** | 18.61*** | 4.02** |
地上部干重 Shoot dry weight/g | 603.83*** | 42.22*** | 7.28*** |
株高 Plant height/cm | 1 112.72*** | 42.32*** | 8.35*** |
茎粗 Stem diamter/mm | 511.12*** | 13.02*** | 6.68*** |
叶绿素 SPAD | 43.30*** | 139.57*** | 12.58*** |
根部干重 Root dry weight/g | 1 795.04*** | 152.18*** | 37.71*** |
根长 Root length/cm | 370.50*** | 110.00*** | 20.29*** |
根表面积 Root surface area/cm2 | 1 553.86*** | 73.68*** | 32.40*** |
根直径 Root diameter/mm | 2 947.57*** | 446.32*** | 41.38*** |
根体积 Root volume/cm3 | 1 447.37*** | 140.91*** | 20.50*** |
根尖数 Number of apex | 676.45*** | 139.91*** | 54.50*** |
细根长 Fine root length/cm | 294.22*** | 266.68*** | 45.28*** |
比根长 Specific root length/(cm·g-1) | 186.88*** | 37.93*** | 24.27*** |
根冠比 Root/shoot ratio | 716.43*** | 41.57*** | 9.70*** |
地上部N含量 Shoot N content/(mg·g-1) | 254.68*** | 206.16*** | 12.84*** |
地上部P含量 Shoot P content/(mg·g-1) | 50.01*** | 121.23*** | 8.06*** |
地上部K含量 Shoot K content/(mg·g-1) | 84.61*** | 126.31*** | 12.80*** |
根部N含量 Root N content/(mg·g-1) | 499.62*** | 75.29*** | 2.54* |
根部P含量 Root P content/(mg·g-1) | 101.38*** | 263.39*** | 31.36*** |
根部K含量 Root K content/(mg·g-1) | 1 981.13*** | 146.93*** | 44.36*** |
表1 土壤pH、养分含量及作物生长性状对作物和物料处理的响应(F值)
Table 1 Responses of soil pH, nutrient content and crop growth characteristics to crops and material treatments (F value)
指标 Index | 作物(自由度=3) Crop(df=3) | 物料(自由度=3) Material(df=3) | 作物×物料(自由度=9) Crop×material(df=9) |
---|---|---|---|
土壤pH Soil pH | 12.49*** | 21.37*** | 21.33*** |
速效钾 Available K/(mg·kg-1) | 620.67*** | 107.51*** | 4.70** |
有机碳 Organic matter/(g·kg-1) | 13.84*** | 5.47** | 17.73*** |
全氮 Total N/(g·kg-1) | 106.07*** | 154.18*** | 15.12*** |
有效磷 Olsen-P/(mg·kg-1) | 117.73*** | 18.61*** | 4.02** |
地上部干重 Shoot dry weight/g | 603.83*** | 42.22*** | 7.28*** |
株高 Plant height/cm | 1 112.72*** | 42.32*** | 8.35*** |
茎粗 Stem diamter/mm | 511.12*** | 13.02*** | 6.68*** |
叶绿素 SPAD | 43.30*** | 139.57*** | 12.58*** |
根部干重 Root dry weight/g | 1 795.04*** | 152.18*** | 37.71*** |
根长 Root length/cm | 370.50*** | 110.00*** | 20.29*** |
根表面积 Root surface area/cm2 | 1 553.86*** | 73.68*** | 32.40*** |
根直径 Root diameter/mm | 2 947.57*** | 446.32*** | 41.38*** |
根体积 Root volume/cm3 | 1 447.37*** | 140.91*** | 20.50*** |
根尖数 Number of apex | 676.45*** | 139.91*** | 54.50*** |
细根长 Fine root length/cm | 294.22*** | 266.68*** | 45.28*** |
比根长 Specific root length/(cm·g-1) | 186.88*** | 37.93*** | 24.27*** |
根冠比 Root/shoot ratio | 716.43*** | 41.57*** | 9.70*** |
地上部N含量 Shoot N content/(mg·g-1) | 254.68*** | 206.16*** | 12.84*** |
地上部P含量 Shoot P content/(mg·g-1) | 50.01*** | 121.23*** | 8.06*** |
地上部K含量 Shoot K content/(mg·g-1) | 84.61*** | 126.31*** | 12.80*** |
根部N含量 Root N content/(mg·g-1) | 499.62*** | 75.29*** | 2.54* |
根部P含量 Root P content/(mg·g-1) | 101.38*** | 263.39*** | 31.36*** |
根部K含量 Root K content/(mg·g-1) | 1 981.13*** | 146.93*** | 44.36*** |
图1 不同处理下种植不同作物土壤的pH和养分含量注:同一作物中不同小写字母表示不同处理间在P < 0.05水平差异显著。
Fig. 1 Soil pH and nutrient content of different crop species under different treatmentsNote: Different lowercase letters in same crop indicate significant differences between different treatments at P < 0.05 level.
图2 不同处理下作物地上部生长性状注:同一作物中不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 2 Shoot growth traits of crop species under different treatmentsNote: Different lowercase letters in same crop indicate significant differences between different treatments at P<0.05 level.
图3 不同处理下作物根部生长性状注:同一作物中不同小写字母表示不同处理间在P < 0.05水平差异显著。
Fig. 3 Root growth traits of crop species under different treatmentsNote:Different lowercase letters in same crop indicate significant differences between different treatments at P < 0.05 level.
图4 不同处理下作物地上部和根部养分含量注:同一作物中不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 4 Nutrient content in the ground and root of crop species under different treatmentsNote: Different lowercase letters in same crop indicate significant differences between different treatments at P<0.05 level.
图5 土壤pH、养分含量及作物生长性状在外施物料下的变异系数注:同一作物性状中不同小写字母表示不同处理间变异系数在P<0.05水平差异显著。pH—土壤pH;K—速效钾;C—土壤有机碳;N—全氮;P—有效磷;SDW—地上部干重;PH—株高;SD—茎粗;SPAD—叶绿素;RDW—根部干重;RL—根长;RS—根表面积;RD—根直径;RV—根体积;RT—根尖数;FRL—细根长;SRL—比根长;RSR—根冠比;SN—地上部N含量;SP—地上部P含量;SK—地上部K含量;RN—根部N含量;RP—根部P含量;RK—根部K含量。
Fig. 5 Coefficient of variation of soil pH, nutrient content and crop growth characteristics under external application materialsNote: Different lowercase letters in same crop indicate significant differences of the coefficient of variation between different treatments. pH—Soil pH; K—Available K; C—Soil organic carton; N—Total N;P—Olsen-P; SDW—Shoot dry weight; PH—Plant height; SD—Stem diameter; SPAD—Chlorophyll; RDW—Root dry weight; RL—Root length; RS—Root surface area; RD—Root diameter; RV—Root volume; RT—Number of apex; FRL—Fine root length; SRL—Specific root length; RSR—Root-shoot ratio; SN—Shoot N content; SP—Shoot P content; SK—Shoot K content; RN—Root N content; RP—Root P content; RK—Root K content.
指标Index | SDW | PH | SD | SPAD | pH | N | K | P | C | RDW | RL | RS | RD | RV | RT | FRL | SRL | RSR | SN | SP | SK | RN | RP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | -0.49** | ||||||||||||||||||||||
SD | 0.72** | -0.90** | |||||||||||||||||||||
SPAD | -0.21 | 0.26 | -0.11 | ||||||||||||||||||||
pH | -0.01 | -0.35* | 0.09 | -0.22 | |||||||||||||||||||
N | 0.02 | 0.15 | -0.05 | 0.62** | 0.01 | ||||||||||||||||||
K | -0.72** | 0.31* | -0.40** | 0.64** | 0.03 | 0.39** | |||||||||||||||||
P | 0.24 | 0.51** | -0.33* | -0.14 | -0.27 | -0.12 | -0.27 | ||||||||||||||||
C | 0.04 | 0.16 | -0.10 | 0.37* | -0.11 | 0.43** | 0.06 | -0.10 | |||||||||||||||
RDW | 0.01 | 0.80** | -0.62** | 0.16 | -0.26 | 0.25 | -0.12 | 0.60** | 0.28 | ||||||||||||||
RL | 0.05 | -0.07 | 0.09 | 0.42** | 0.17 | 0.82** | 0.26 | -0.42** | 0.31* | 0.11 | |||||||||||||
RS | 0.08 | 0.57** | -0.46** | 0.04 | -0.07 | 0.48** | -0.20 | 0.30* | 0.26 | 0.80** | 0.49** | ||||||||||||
RD | 0.28 | 0.64** | -0.40** | 0.05 | -0.29* | 0.21 | -0.31* | 0.72** | 0.15 | 0.93** | 0.07 | 0.78** | |||||||||||
RV | 0.11 | 0.78** | -0.57** | 0.07 | -0.30* | 0.16 | -0.18 | 0.73** | 0.15 | 0.94** | -0.04 | 0.73** | 0.95** | ||||||||||
RT | -0.22 | 0.26 | -0.26 | 0.30* | 0.02 | 0.59** | 0.32* | -0.22 | 0.24 | 0.31* | 0.74** | 0.59** | 0.25 | 0.16 | |||||||||
FRL | 0.15 | -0.02 | 0.08 | 0.44** | 0.22 | 0.86** | 0.21 | -0.16 | 0.24 | 0.17 | 0.90** | 0.53** | 0.17 | 0.07 | 0.63** | ||||||||
SRL | -0.24 | -0.59** | 0.33* | -0.21 | 0.41** | -0.27 | 0.26 | -0.44** | -0.43** | -0.82** | -0.18 | -0.70** | -0.78** | -0.78** | -0.18 | -0.20 | |||||||
RSR | -0.15 | 0.87** | -0.72** | 0.19 | -0.29* | 0.26 | -0.01 | 0.54** | 0.27 | 0.98** | 0.10 | 0.80** | 0.87** | 0.91** | 0.33* | 0.158 | -0.80** | ||||||
SN | -0.40** | 0.15 | -0.10 | 0.76** | -0.21 | 0.49** | 0.83** | -0.25 | 0.14 | -0.15 | 0.36* | -0.22 | -0.27 | -0.17 | 0.17 | 0.34* | 0.11 | -0.08 | |||||
SP | -0.09 | 0.06 | 0.10 | 0.77** | -0.28 | 0.66** | 0.57** | -0.24 | 0.28 | -0.04 | 0.60** | 0.04 | -0.05 | -0.10 | 0.56** | 0.53** | -0.06 | -0.03 | 0.70** | ||||
SK | -0.22 | 0.65** | -0.46** | 0.57** | -0.49** | 0.64** | 0.46** | 0.30* | 0.29 | 0.52** | 0.40** | 0.52** | 0.48** | 0.54** | 0.50** | 0.44** | -0.49** | 0.56** | 0.55** | 0.60** | |||
RN | -0.19 | 0.48** | -0.44** | 0.37* | -0.05 | 0.68** | 0.23 | -0.05 | 0.51** | 0.60** | 0.70** | 0.78** | 0.49** | 0.42** | 0.85** | 0.62** | -0.47** | 0.62** | 0.10 | 0.42** | 0.60** | ||
RP | -0.15 | 0.51** | -0.39** | 0.58** | -0.02 | 0.59** | 0.50** | 0.21 | 0.20 | 0.53** | 0.55** | 0.48** | 0.47** | 0.45** | 0.65** | 0.61** | -0.36* | 0.51** | 0.47** | 0.63** | 0.68** | 0.63** | |
RK | -0.51** | -0.15 | 0.07 | 0.51** | -0.09 | 0.12 | 0.78** | -0.46** | -0.03 | -0.59** | 0.06 | -0.64** | -0.70** | -0.61** | -0.01 | -0.01 | 0.53** | -0.51** | 0.79** | 0.56** | 0.15 | -0.20 | 0.10 |
表2 土壤pH、养分含量及作物生长性状的Person相关性分析
Table 2 Person’s correlation analysis of soil pH, nutrient content and crop growth traits
指标Index | SDW | PH | SD | SPAD | pH | N | K | P | C | RDW | RL | RS | RD | RV | RT | FRL | SRL | RSR | SN | SP | SK | RN | RP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | -0.49** | ||||||||||||||||||||||
SD | 0.72** | -0.90** | |||||||||||||||||||||
SPAD | -0.21 | 0.26 | -0.11 | ||||||||||||||||||||
pH | -0.01 | -0.35* | 0.09 | -0.22 | |||||||||||||||||||
N | 0.02 | 0.15 | -0.05 | 0.62** | 0.01 | ||||||||||||||||||
K | -0.72** | 0.31* | -0.40** | 0.64** | 0.03 | 0.39** | |||||||||||||||||
P | 0.24 | 0.51** | -0.33* | -0.14 | -0.27 | -0.12 | -0.27 | ||||||||||||||||
C | 0.04 | 0.16 | -0.10 | 0.37* | -0.11 | 0.43** | 0.06 | -0.10 | |||||||||||||||
RDW | 0.01 | 0.80** | -0.62** | 0.16 | -0.26 | 0.25 | -0.12 | 0.60** | 0.28 | ||||||||||||||
RL | 0.05 | -0.07 | 0.09 | 0.42** | 0.17 | 0.82** | 0.26 | -0.42** | 0.31* | 0.11 | |||||||||||||
RS | 0.08 | 0.57** | -0.46** | 0.04 | -0.07 | 0.48** | -0.20 | 0.30* | 0.26 | 0.80** | 0.49** | ||||||||||||
RD | 0.28 | 0.64** | -0.40** | 0.05 | -0.29* | 0.21 | -0.31* | 0.72** | 0.15 | 0.93** | 0.07 | 0.78** | |||||||||||
RV | 0.11 | 0.78** | -0.57** | 0.07 | -0.30* | 0.16 | -0.18 | 0.73** | 0.15 | 0.94** | -0.04 | 0.73** | 0.95** | ||||||||||
RT | -0.22 | 0.26 | -0.26 | 0.30* | 0.02 | 0.59** | 0.32* | -0.22 | 0.24 | 0.31* | 0.74** | 0.59** | 0.25 | 0.16 | |||||||||
FRL | 0.15 | -0.02 | 0.08 | 0.44** | 0.22 | 0.86** | 0.21 | -0.16 | 0.24 | 0.17 | 0.90** | 0.53** | 0.17 | 0.07 | 0.63** | ||||||||
SRL | -0.24 | -0.59** | 0.33* | -0.21 | 0.41** | -0.27 | 0.26 | -0.44** | -0.43** | -0.82** | -0.18 | -0.70** | -0.78** | -0.78** | -0.18 | -0.20 | |||||||
RSR | -0.15 | 0.87** | -0.72** | 0.19 | -0.29* | 0.26 | -0.01 | 0.54** | 0.27 | 0.98** | 0.10 | 0.80** | 0.87** | 0.91** | 0.33* | 0.158 | -0.80** | ||||||
SN | -0.40** | 0.15 | -0.10 | 0.76** | -0.21 | 0.49** | 0.83** | -0.25 | 0.14 | -0.15 | 0.36* | -0.22 | -0.27 | -0.17 | 0.17 | 0.34* | 0.11 | -0.08 | |||||
SP | -0.09 | 0.06 | 0.10 | 0.77** | -0.28 | 0.66** | 0.57** | -0.24 | 0.28 | -0.04 | 0.60** | 0.04 | -0.05 | -0.10 | 0.56** | 0.53** | -0.06 | -0.03 | 0.70** | ||||
SK | -0.22 | 0.65** | -0.46** | 0.57** | -0.49** | 0.64** | 0.46** | 0.30* | 0.29 | 0.52** | 0.40** | 0.52** | 0.48** | 0.54** | 0.50** | 0.44** | -0.49** | 0.56** | 0.55** | 0.60** | |||
RN | -0.19 | 0.48** | -0.44** | 0.37* | -0.05 | 0.68** | 0.23 | -0.05 | 0.51** | 0.60** | 0.70** | 0.78** | 0.49** | 0.42** | 0.85** | 0.62** | -0.47** | 0.62** | 0.10 | 0.42** | 0.60** | ||
RP | -0.15 | 0.51** | -0.39** | 0.58** | -0.02 | 0.59** | 0.50** | 0.21 | 0.20 | 0.53** | 0.55** | 0.48** | 0.47** | 0.45** | 0.65** | 0.61** | -0.36* | 0.51** | 0.47** | 0.63** | 0.68** | 0.63** | |
RK | -0.51** | -0.15 | 0.07 | 0.51** | -0.09 | 0.12 | 0.78** | -0.46** | -0.03 | -0.59** | 0.06 | -0.64** | -0.70** | -0.61** | -0.01 | -0.01 | 0.53** | -0.51** | 0.79** | 0.56** | 0.15 | -0.20 | 0.10 |
1 | 刘学智. 生物炭与交替灌溉对草本作物生长、生理及水分利用效率的影响研究[D]. 杨凌: 西北农林科技大学, 2022. |
LIU X Z. The effects of biochar and alternate irrigation on herbaceous crops growth, physiology and water use efficiency [D]. Yangling: Northwest A&F University, 2022. | |
2 | GUO L, XIONG S, CHEN Y, et al.. Total organic carbon content as an early warning indicator of soil degradation [J].Sci.Bull.,2023,68(2):150-153. |
3 | 王贺东. 秸秆生物质炭对作物产量影响及其机制研究[D]. 南京: 南京农业大学, 2018. |
WANG H D. Mechnisms that controlling crop yield response to straw biochar amendment [D]. Nanjing: Nanjing Agricultural University, 2018. | |
4 | 侯萌瑶,张丽,王知文,等.中国主要农作物化肥用量估算[J].农业资源与环境学报,2017,34(4):360-367. |
HOU M Y, ZHANG L, WANG Z W, et al.. Estimation of fertilizer usage from main crops in China [J].J.Agric.Resour.Environ.,2017,34(4):360-367. | |
5 | 陈宇琳, 吴凤英, 张伟婷, 等. 不同类型生物炭对芳香樟生长及光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2024, 52(2): 70-80. |
CHEN Y L, WU F Y, ZHANG W T, et al.. Effects of different biochar on growth and photosynthetic characteristics of Cinnamomum camphor [J]. J. Northwest A&F Univ. (Nat. Sci.), 2024, 52(2): 70-80. | |
6 | ZHU H, YANG J S, YAO R J, et al.. Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil [J/OL].Catena,2020,190:104527 [2023-09-16]. . |
7 | SAQLAIN Z M, HAIDER A H, WALID S, et al.. Potential effects of biochar application for improving wheat (Triticum aestivum L.) growth and soil biochemical properties under drought stress conditions [J/OL]. Land, 2021, 10(11): 1125 [2023-09-16]. . |
8 | 徐强,刘洪光,李明思,等.生物炭不同施用方式对水盐调控及小麦苗期生长的影响[J].水土保持学报,2023,37(5):363-369. |
XU Q, LIU H G, LI M S, et al.. Effects of different application methods of biochar on water and salt regulation and wheat seedling growth [J]. J. Soil Water Conserv., 2023,37(5):363-369. | |
9 | 李文杰, 左翔之, 王建, 等. 生物炭施用土壤的固碳减排效应及机制[J]. 中国环境科学, 2023,43(11): 5913-5923. |
LI W J, ZUO X Z, WANG J, et al.. Effect and mechanism of biochar application on soil carbon sequestration and mitigation [J]. China Environ. Sci., 2023, 43(11): 5913-5923. | |
10 | 宁川川, 陈悦桂, 柳瑞, 等. 减氮配施秸秆生物炭对双季稻产量和硅、氮营养的影响[J]. 应用生态学报, 2023, 34(4): 993-1001. |
NING C C, CHEN Y G, LIU R, et al.. Effectts of N fertilizer reduction combined with straw biochar application on the yield, Si, and N nutrition of double-cropping rice [J]. Chin. J. Appl. Ecol., 2023, 34(4): 993-1001. | |
11 | 冉继伟, 齐昕, 武栋, 等. 施用生物炭对土壤养分有效性和离子交换性能影响的整合分析[J]. 中国生态农业学报, 2023, 31(9): 1449-1459. |
RAN J W, QI X, WU D, et al.. Impacts of biochar application on soil nutrient availability and exchangeable based cations: a meta-analysis [J]. Chin. J. Eco-Agric., 2023, 31(9): 1449-1459. | |
12 | 谭焱, 文玉姣, 高叶敏, 等. 不同生物炭用量对玉米苗期生长特性的影响[J/OL]. 分子植物育种, 2023:1-10 [2023-09-16]. . |
TAN Y, WEN Y J, GAO Y M, et al.. Effects of different amounts of biochar on growth characteristics of maize at seedling stage [J/OL]. Mol. Plant Breed., 2023:1-10 [2023-09-16]. . | |
13 | 武春成,王彩云,曹霞,等.不同用量生物炭对连作土壤改良及黄瓜生长的影响[J].北方园艺,2017(19):150-154. |
WU C C, WANG C Y, CAO X, et al.. Effects of different biochar application rate on improvement of continuous cropping soil and cucumber growth [J]. Northern Hortic., 2017(19):150-154. | |
14 | 黄馨怡, 陆建增, 周丽颜, 等. 添加生物炭对连作黄瓜生长及营养吸收的影响[J]. 福建农业学报, 2023, 38(6): 707-713. |
HUANG X Y, LU J Z, ZHOU L Y, et al.. Effects of biochar addition in soil on growth and nutrient-uptake of monocropped cucumber plants [J]. Fujian J. Agric. Sci., 2023, 38(6): 707-713. | |
15 | APING C, HUA Q, ZHENG B G. Analysis of agricultural non-point source pollution in Henan province (China) from the perspective of time and space [J]. Nat. Environ. Pollut. Technol., 2022, 21(1): 269-274. |
16 | 杨传文, 邢帆, 朱建春, 等. 中国秸秆资源的时空分布、利用现状与碳减排潜力[J]. 环境科学, 2023, 44(2): 1149-1162. |
YANG C W, XING F, ZHU J C, et al.. Temporal and Spatial distribution, utilizationstatus, and carton emission reduction potential of straw resources in China [J]. Environ. Sci., 2023, 44(2): 1149-1162. | |
17 | 蒋斌,陈多宏,张涛,等.华南水稻秸秆焚烧期碳质气溶胶组分特征及源贡献评估[J].生态环境学报,2022,31(12):2358-2366. |
JIANG B, CHEN D H, ZHANG T,et al..Characteristics and sources of carbonaceous aerosols during the crop straw burning seasons in Southern China [J]. Ecol. Environ. Sci.,2022,31(12):2358-2366. | |
18 | 周颖,张钰蓥,邢晓帆,等.河北秸秆露天焚烧排放及其对京津冀地区空气质量影响[J].北京工业大学学报,2022,48(10):1056-1068. |
ZHOU Y, ZHANG Y Y, XING X F, et al.. Impacts of emissions from crop residue open burning in Hebei on the air quality of the Beijing-Tianjin-Hebei region [J]. J. Beijing Univ. Technol.,2022,48(10):1056-1068. | |
19 | 宋大利,侯胜鹏,王秀斌,等.中国秸秆养分资源数量及替代化肥潜力[J].植物营养与肥料学报,2018,24(1):1-21. |
SONG D L, HOU S P, WANG X B,et al..Nutrient resource quantity of crop straw and its potential of substituting [J].J.Plant Nutr. Fert., 2018,24(1):1-21. | |
20 | 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000: 25-114. |
21 | WANG X X, LI H B, CHU Q, et al.. Mycorrhizal impacts on root trait plasticity of six maize varieties along a phosphorus supply gradient [J]. Plant Soil, 2020,448(1):71-86. |
22 | WANG X X, ZHANG J Q, WANG H, et al.. Plasticity and co-variation of root traits govern differential phosphorus acquisition among 20 wheat genotypes [J/OL]. Oikos, 2021,2023(1):08606 [2023-09-16]. . |
23 | AGEGNEHU G, GHIZAW A, SINEBO W. Yield potential and land-use efficiency of wheat and faba bean mixed intercropping [J].Agron. Sustain. Dev.,2008,28(2):257-263. |
24 | WU D, ZHANG W M, XIU L Q, et al.. Soybean yield response of biochar-regulated soil properties and root growth strategy [J/OL]. Agronomy-Basel, 2022, 12(6): 1412 [2023-09-16]. . |
25 | 牟舒敏, 关月明, 高晶霞, 等. 添加生物炭对连作辣椒生长及根系生理代谢和产量的影响 [J]. 西北农业学报, 2023,32(6):1-14. |
MU S M, GUAN Y M, GAO J X, et al.. Effects of biochar application on growth, root physiological metabolism and yield of continuous cropping pepper [J]. Acta Agric. Bor-Occid. Sin., 2023, 32(6):1-14. | |
26 | 张立芸, 黎力, 张海东, 等. 玉米秸秆及其生物炭复配基质对玉米根系构型的影响[J]. 华南农业大学学报, 2024, 45(2): 207-217. |
ZHANG L Y, LI L, ZHANG H D, et al.. Effects of maize straw and its biochar composite substrates on the architecture of maize roots [J]. J. South China Agric. Univ., 2024, 45(2): 207-217. | |
27 | 路文杰,吴聪,齐晋云,等.生物炭和接种剂配施对紫花苜蓿生物量和土壤特征的影响[J].草地学报,2023,31(5):1578-1587. |
LU W J, WU C, QI J Y,et al..Effects of the co-application of biochar and inoculants on the alfalfa biomass and soil characteristics [J]. Acta Agrestia Sin.,2023,31(5):1578-1587. | |
28 | WANG Z, WANG Z, LUO Y,et al..Biochar increases 15N fertilizer retention and indigenous soil N uptake in a cotton-barley rotation system [J/OL].Geoderma,2020,357:113944[2023-09-16]. . |
29 | HANSEN V, HAUGGAARD-NIELSEN H, PETERSEN C T, et al.. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types [J]. Soil Till. Res., 2016, 161: 1-9. |
30 | 郑云珠,孙树臣.秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J].中国农业科技导报,2023,25(2):152-162. |
ZHENG Y Z, SUN S C. Effects of straw biochar and straw on soil nutrients and crop yield in wheat-maize rotation system [J].J. Agric. Sci. Technol., 2023,25(2):152-162. | |
31 | AMOAKWAH E, ARTHUR E, FRIMPONG K A, et al.. Biochar amendment influences tropical soil carbon and nitrogen lability [J].J. Soil Sci. Plant Nutr.,2021,21(4):3567-3579. |
32 | 庞津雯, 王钰皓, 陶宏扬, 等. 生物炭不同添加量对旱作覆膜农田土壤团聚体特性及有机碳含量的影响[J]. 中国农业科学, 2023, 56(9): 1729-1743. |
PANG J W, WANG Y H, TAO H Y, et al.. Effects of different biochar application rates on soil aggregate characteristics and organic carbon contents for film-mulching field in semiarid areas [J]. Sci. Agric. Sin., 2023, 56(9): 1729-1743. | |
33 | 丁苏雅, 马姜明, 覃云斌, 等. 生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响[J]. 广西师范大学学报(自然科学版), 2024,42(1):180-190. |
DING S Y, MA J M, QIN Y B, et al.. Effects of biochar on soil organic carbon composition and carbon pool management index of moso bamboo forests [J]. J. Guangxi Norm. Univ. (Nat. Sci.), 2024,42(1):180-190. | |
34 | 林小兵,王馨悦,黄尚书,等.生物炭连续施用对油菜产量及旱地红壤溶解性有机碳光谱特征的影响[J].土壤通报,2023,54(1):30-38. |
LIN X B, WANG X Y, HUANG S S, et al.. Effects of continuous biochar application on rapeseed yield and spectral characteristics of dissolved organic carbon in upland red soil [J]. Chin. J. Soil Sci., 2023,54(1):30-38. | |
35 | REVERCHON F, FLICKER R C, YANG H, et al.. Changes in delta 15N in a soil-plant system under different biochar feedstocks and application rates [J]. Biol. Fert. Soils: Coop. J. Int. Soc. Soil Sci., 2014, 50(2): 275-283. |
36 | TIAN X P, WANG L, HOU Y H,et al..Responses of soil microbial community structure and activity to incorporation of straws and straw biochars and their effects on soil respiration and soil organic carbon turnover [J]. Pedosphere,2019,29(4):492-503. |
37 | 何甜甜,王静,符云鹏,等.等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响[J].环境科学,2021,42(1):450-458. |
HE T T, WANG J, FU Y P, et al.. Effects of adding straw and biochar with equal carbon content on soil respiration and microbial biomass carbon and nitrogen [J]. Environ. Sci., 2021,42(1):450-458. | |
38 | 刘平奇,张梦璇,王立刚,等.深松秸秆还田措施对东北黑土土壤呼吸及有机碳平衡的影响[J].农业环境科学学报,2020,39(5):1150-1160. |
LIU P Q, ZHANG M X, WANG L G, et al.. Effects of subsoiling and straw return on soil respiration and soil organic carbon balance in black soil of Northeast China [J]. J. Agro-Environ. Sci., 2020,39(5):1150-1160. | |
39 | 赵宇航, 殷浩凯, 胡雪纯, 等. 长期秸秆还田褐土有机碳矿化特征及其驱动力[J]. 环境科学, 2024, 45(4): 2353-2362. |
ZHAO Y H, YIN H K, HU X C, et al.. Characteristics and driving forces of organic carbon mineralization in brown soil with long-term straw returning [J]. Environ. Sci., 2024, 45(4): 2353-2362. | |
40 | 李雨诺. 不同秸秆还田模式对小麦-玉米轮作体系土壤碳固持及作物生长的影响[D]. 杨凌: 西北农林科技大学, 2021. |
LI Y N. Soil carbon sequestration and crop growth affected by straw return modes under a wheat-maize rotation system in the Guanzhong Plain, Northwest China [D]. Yangling: Northwest A&F University, 2021. | |
41 | 郭儆瑜, 金文, 刘志涛, 等. 秸秆与生物炭对棉田碱性土壤NH3挥发与N2O排放的影响[J]. 农业环境科学学报, 2024,43(2): 442-451. |
GUO J Y, JIN W, LIU Z T, et al.. Effects of straw and biochar on NH3 volatilization and N2O emission from alkaline soils planted with cotton [J]. J. Agro-Environ. Sci., 2024,43(2): 442-451. | |
42 | 胡天怡, 车佳玥, 胡煜杰, 等. 秸秆还田和添加生物炭对热带地区稻菜轮作体系中淹水后土壤温室气体排放的影响[J]. 环境科学, 2024, 45(3): 1692-1701. |
HU T Y, CHE J Y, HU Y J, et al.. Effects of straw returning and biochar addition on greenhouse gas emissions such as N2O from high nitrate nitrogen soil after flooding in rice-vegetable rotation system in tropical China [J]. Environ. Sci., 2024, 45(3): 1692-1701. | |
43 | 郭童鑫,姚晓华,吴昆仑,等.青稞和豌豆根系形态和养分效率对种植模式和施肥水平的响应 [J].植物营养与肥料学报,2023,29(6):1048-1059. |
GUO T X, YAO X H, WU K L,et al..Root morphology and nutrient efficiency of Tibetan barley and peas in response to planting patterns and fertilization levels [J]. J. Plant Nutr. Fert., 2023,29(6):1048-1059. | |
44 | 王典.生物炭对不同土壤上油/棉作物生长及养分效率的影响[D].武汉:华中农业大学,2014. |
WANG D. Effect of biochar on rape and cotton growth and nutrient efficiency on different soils [D]. Wuhan: Huazhong Agricultural University, 2014. | |
45 | 王雪涵. 三种作物秸秆对大白菜幼苗生长及土壤化学性质的影响[D]. 哈尔滨: 东北农业大学, 2019. |
WANG X H. Effects of three crop stalks on seedling growth and soil chemical properties of continuous cropping Chinese cabbage [D]. Harbin: Northeast Agricultural University, 2019. | |
46 | 赵倩雯,孟军,陈温福.生物炭对大白菜幼苗生长的影响[J].农业环境科学学报,2015,34(12):2394-2401. |
ZHAO Q W, MENG J, CHEN W F. Effect of biochar on growth of Brassica campestris L.ssp.pekinesis (Lour) Olsson [J].J.Agro-Environ. Sci., 2015,34(12):2394-2401. |
[1] | 张如艳, 李绅昊, 朱奇鹏, 冯太纲, 李红波, 邢泽炳, 羡瑜. 生物炭含量对园林绿化废弃物/聚乳酸复合材料物理力学性能影响[J]. 中国农业科技导报, 2025, 27(2): 192-200. |
[2] | 吕志伟, 李冬梅, 金梅娟, 张燕辉, 陶玥玥, 周新伟, 王海候. 热解温度及时间对生物炭理化性质及吸附性能的影响[J]. 中国农业科技导报, 2025, 27(2): 211-217. |
[3] | 徐雪雯, 王兴鹏, 王洪博, 曹振玺. 鼠李糖脂对盐胁迫下棉花幼苗根系生长的调控作用[J]. 中国农业科技导报, 2025, 27(1): 72-79. |
[4] | 史丹一, 邱禹, 黄成真, 王娟. 酸改性生物炭对滨海盐渍土壤水分入渗特性的影响[J]. 中国农业科技导报, 2024, 26(9): 183-192. |
[5] | 周喜新, 袁世林, 杨柳, 夏滔, 张毅, 范伟. 连作烟草根系分泌物鉴定及潜在化感物质的筛选研究[J]. 中国农业科技导报, 2024, 26(7): 136-146. |
[6] | 蒲子天, 王红, 赵斌, 王鑫鑫. 不同土壤改良物料对连作黄芩生长及土壤酶活性的影响[J]. 中国农业科技导报, 2024, 26(7): 189-198. |
[7] | 马力, 曹婷婷, 范又维, 任志雨, 刘春, 袁素霞. 不同生根试剂对微型盆栽月季扦插生根的影响[J]. 中国农业科技导报, 2024, 26(7): 50-60. |
[8] | 付彦博, 冷冰冰, 扁青永, 董志多, 刘国宏, 李海峰, 温云梦, 郭文博, 张万旭. 生物炭和油菜幼苗对土壤重金属镉污染的钝化效应[J]. 中国农业科技导报, 2024, 26(6): 183-190. |
[9] | 赵娅红, 胡骞予, 夏融, 王志江, 谢永辉, 叶贤文, 余磊, 齐颖, 羊绍武, 薛至勤, 吴治兴, 黄飞燕, 韩天华. 生物炭肥对易感根结线虫病烤烟根际菌群和理化性质的影响[J]. 中国农业科技导报, 2024, 26(4): 206-214. |
[10] | 赵亚凤, 王孟雪, 王德帅, 王冬冬, 李园, 胡峻峰. 基于CP-DeepLabv3+的玉米根系图像分割[J]. 中国农业科技导报, 2024, 26(3): 110-116. |
[11] | 张景云, 关峰, 石博, 万新建. 小麦根系分泌物对苦瓜幼苗生长及土壤生物学环境的影响[J]. 中国农业科技导报, 2024, 26(2): 181-190. |
[12] | 高静, 徐明岗, 李然, 蔡泽江, 孙楠, 张强, 郑磊. 整合分析生物炭施用对土壤pH的影响[J]. 中国农业科技导报, 2023, 25(9): 186-196. |
[13] | 吴香, 李娟, 曹艳, 程艳荣, 闫旭宇, 李玲. 植物根系分泌物响应镉胁迫的研究进展[J]. 中国农业科技导报, 2023, 25(7): 12-20. |
[14] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
[15] | 王旭东, 任雪冰, 汤舒, 郭琴, 薛梦瑶, 金鹏, 张云华. 污泥生物炭在土壤改良中的应用研究[J]. 中国农业科技导报, 2023, 25(6): 165-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||