Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (5): 201-211.DOI: 10.13304/j.nykjdb.2022.0740
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Yu ZHANG(), Hongbo ZHANG, Yuyu ZHANG, Lijuan CHEN, Mingfang ZHAO, Yun XIA(
)
Received:
2022-09-05
Accepted:
2022-12-15
Online:
2024-05-15
Published:
2024-05-14
Contact:
Yun XIA
张昱(), 张洪波, 张瑜瑜, 陈丽娟, 赵明方, 夏云(
)
通讯作者:
夏云
作者简介:
张昱 E-mail:zhangyu_0553@163.com;
基金资助:
CLC Number:
Yu ZHANG, Hongbo ZHANG, Yuyu ZHANG, Lijuan CHEN, Mingfang ZHAO, Yun XIA. Study on Anaerobic Digestion of Rose Straw Inoculated with Livestock Manure and Its Microbial Community[J]. Journal of Agricultural Science and Technology, 2024, 26(5): 201-211.
张昱, 张洪波, 张瑜瑜, 陈丽娟, 赵明方, 夏云. 玫瑰秸秆与牲畜粪污厌氧消化特性及微生物群落研究[J]. 中国农业科技导报, 2024, 26(5): 201-211.
参数 Parameter | 玫瑰秸秆 Rose straw | 猪粪、牛粪混合物 Pig manure and cow manure mixture |
---|---|---|
总固体含量 Total solid content/% | 30.35±1.26 | 4.66±0.32 |
挥发性固体含量 Volatile solid content/% | 97.19±0.63 | 82.40±0.51 |
碳氮比 C/N | 35.31±0.23 | 9.92±0.24 |
纤维素含量 Cellulose content/% | 31.62±1.12 | 11.37±0.73 |
半纤维素含量 Hemicellulose content/% | 29.32±1.45 | 16.34±0.87 |
木质素含量 Lignin content/% | 16.33±0.76 | 8.83±0.77 |
Table 1 Physiochemical characteristics of rose straw and inoculum
参数 Parameter | 玫瑰秸秆 Rose straw | 猪粪、牛粪混合物 Pig manure and cow manure mixture |
---|---|---|
总固体含量 Total solid content/% | 30.35±1.26 | 4.66±0.32 |
挥发性固体含量 Volatile solid content/% | 97.19±0.63 | 82.40±0.51 |
碳氮比 C/N | 35.31±0.23 | 9.92±0.24 |
纤维素含量 Cellulose content/% | 31.62±1.12 | 11.37±0.73 |
半纤维素含量 Hemicellulose content/% | 29.32±1.45 | 16.34±0.87 |
木质素含量 Lignin content/% | 16.33±0.76 | 8.83±0.77 |
处理 Treatment | 接种物 Inoculum | 玫瑰 Rose | 水 Wate | 总重 Total weight |
---|---|---|---|---|
3%TS | 155.64 | 39.54 | 504.82 | 700 |
5%TS | 311.28 | 65.90 | 322.82 | 700 |
7%TS | 466.93 | 92.26 | 140.81 | 700 |
Table 2 Anaerobic digestion test ratio
处理 Treatment | 接种物 Inoculum | 玫瑰 Rose | 水 Wate | 总重 Total weight |
---|---|---|---|---|
3%TS | 155.64 | 39.54 | 504.82 | 700 |
5%TS | 311.28 | 65.90 | 322.82 | 700 |
7%TS | 466.93 | 92.26 | 140.81 | 700 |
探针 Probe | 目标微生物 Target | 序列 Sequence(5’-3’) | 甲酰胺含量 Formamid content/% | 参考文献 Reference |
---|---|---|---|---|
ARC915 | 古菌 Archaea | GTGCTCCCCCGCCAATTCCT | 35 | [ |
MB1174 | 甲烷杆菌目 Methanobacteriales | TACCGTCGTCCACTCCTTCCTC | 45 | [ |
MC1109 | 甲烷球菌科 Methanococcaceae | GCAACATAGGGCACGGGTCT | 45 | [ |
MX825 | 甲烷鬃毛菌属 Methanosaeta spp. | TCGCACCGTGGCCGACACCTAGC | 50 | [ |
MS1414 | 甲烷八叠球菌目 Methanosarcinales | CTCACCCATACCTCACTCGGG | 10 | [ |
HGC69A | 放线菌门 Actinobacteria | TATAGTTACCACCGCCGT | 25 | [ |
LGC354ABC | 厚壁菌门 Firmicutes | CGGAAGATTCCCTAC TGC | 35 | [ |
ALF968 | α-变形菌纲 Alphaproteobacteria | GGTAAGGTTCTGCGCGTT | 20 | [ |
BET42a | β-变形菌纲 Betaproteobacteria | GCCTTCCCACTTCGTTT | 35 | [ |
GAM42a | γ-变形菌纲 Gammaproteobacteria | GCCTTCCCACATCGTTT | 35 | [ |
SRB385 | 脱硫弧菌目 Desulfovibrionales | CGGCGTCGCTGCGTCAGG | 35 | [ |
BAC303 | 拟杆菌目 Bacteroidales | CCAATGTGGGGGACCTT | 0 | [ |
Fibr225 | 纤维杆菌属 Fibrobacter | AATCGGACGCAAGCTCATCCC | 20 | [ |
Table 3 16S rRNA targeting oligonucleotide probes used in the study
探针 Probe | 目标微生物 Target | 序列 Sequence(5’-3’) | 甲酰胺含量 Formamid content/% | 参考文献 Reference |
---|---|---|---|---|
ARC915 | 古菌 Archaea | GTGCTCCCCCGCCAATTCCT | 35 | [ |
MB1174 | 甲烷杆菌目 Methanobacteriales | TACCGTCGTCCACTCCTTCCTC | 45 | [ |
MC1109 | 甲烷球菌科 Methanococcaceae | GCAACATAGGGCACGGGTCT | 45 | [ |
MX825 | 甲烷鬃毛菌属 Methanosaeta spp. | TCGCACCGTGGCCGACACCTAGC | 50 | [ |
MS1414 | 甲烷八叠球菌目 Methanosarcinales | CTCACCCATACCTCACTCGGG | 10 | [ |
HGC69A | 放线菌门 Actinobacteria | TATAGTTACCACCGCCGT | 25 | [ |
LGC354ABC | 厚壁菌门 Firmicutes | CGGAAGATTCCCTAC TGC | 35 | [ |
ALF968 | α-变形菌纲 Alphaproteobacteria | GGTAAGGTTCTGCGCGTT | 20 | [ |
BET42a | β-变形菌纲 Betaproteobacteria | GCCTTCCCACTTCGTTT | 35 | [ |
GAM42a | γ-变形菌纲 Gammaproteobacteria | GCCTTCCCACATCGTTT | 35 | [ |
SRB385 | 脱硫弧菌目 Desulfovibrionales | CGGCGTCGCTGCGTCAGG | 35 | [ |
BAC303 | 拟杆菌目 Bacteroidales | CCAATGTGGGGGACCTT | 0 | [ |
Fibr225 | 纤维杆菌属 Fibrobacter | AATCGGACGCAAGCTCATCCC | 20 | [ |
探针 Probe | 目标微生物群 Target | 0 d | 75 d | |||
---|---|---|---|---|---|---|
3%TS | 5%TS | 7%TS | ||||
HGC69A | 放线菌门 Actinobacteria | 4.95±1.67 | 6.94±2.69 b | 7.91±2.47 ab | 8.67±1.78 a | |
LGC354ABC | 厚壁菌门 Firmicutes | 37.73±5.12 | 40.14±2.06 a | 38.51±2.15 a | 38.68±3.15 a | |
ALF968 | α-变形菌纲 Alphaproteobacteria | 3.89±1.24 | 3.97±1.14 a | 4.15±1.81 a | 4.10±1.13 a | |
BET42a | β-变形菌纲 Betaproteobacteria | 1.17±0.58 | 1.88±0.71 c | 3.43±0.89 b | 4.80±0.94 a | |
GAM42a | γ-变形菌纲 Gammaproteobacteria | 1.27±0.25 | 1.30±0.53 b | 1.43±0.33 ab | 1.74±0.55 a | |
BAC303 | 拟杆菌目 Bacteroidales | 8.53±2.71 | 20.03±6.20 a | 19.41±5.24 a | 18.29±4.89 a | |
SRB385 | 脱硫弧菌目 Desulfovibrionales | 11.65±3.70 | 3.29±1.40 b | 10.41±1.70 a | 13.33±2.50 a | |
Fibr225 | 纤维杆菌属 Fibrobacter | 1.13±0.01 | 1.96±0.48 b | 3.71±1.17 a | 3.24±0.59 a |
Table 4 Relative abundance of bacterial communities
探针 Probe | 目标微生物群 Target | 0 d | 75 d | |||
---|---|---|---|---|---|---|
3%TS | 5%TS | 7%TS | ||||
HGC69A | 放线菌门 Actinobacteria | 4.95±1.67 | 6.94±2.69 b | 7.91±2.47 ab | 8.67±1.78 a | |
LGC354ABC | 厚壁菌门 Firmicutes | 37.73±5.12 | 40.14±2.06 a | 38.51±2.15 a | 38.68±3.15 a | |
ALF968 | α-变形菌纲 Alphaproteobacteria | 3.89±1.24 | 3.97±1.14 a | 4.15±1.81 a | 4.10±1.13 a | |
BET42a | β-变形菌纲 Betaproteobacteria | 1.17±0.58 | 1.88±0.71 c | 3.43±0.89 b | 4.80±0.94 a | |
GAM42a | γ-变形菌纲 Gammaproteobacteria | 1.27±0.25 | 1.30±0.53 b | 1.43±0.33 ab | 1.74±0.55 a | |
BAC303 | 拟杆菌目 Bacteroidales | 8.53±2.71 | 20.03±6.20 a | 19.41±5.24 a | 18.29±4.89 a | |
SRB385 | 脱硫弧菌目 Desulfovibrionales | 11.65±3.70 | 3.29±1.40 b | 10.41±1.70 a | 13.33±2.50 a | |
Fibr225 | 纤维杆菌属 Fibrobacter | 1.13±0.01 | 1.96±0.48 b | 3.71±1.17 a | 3.24±0.59 a |
Fig. 6 RDA of correlations between physicochemical properties and key microbial taxaNote: The blue line represents different physical and chemical indices, the red line represents different microbial taxa.
1 | 赵霞. 以玫瑰秸秆为原料厌氧发酵影响因素的研究[D]. 上海: 东华大学, 2018. |
ZHAO X. Study on the influencing factors of anaerobic fermentation by using rose stalk as substrate [D]. Shanghai: Donghua University, 2018. | |
2 | 舒晓婷. 搭乘RCEP快车 “云花”迎来发展新机遇[N]. 21世纪经济报道, 2022-03-10(012). |
3 | 中国园林网. 云南首个循环农业项目签约 花卉垃圾有望变废为宝还田[EB/OL]. (2019-11-20)[2022-09-01]. . |
4 | RAHMAN A, FARROK O, HAQUE M M. Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic [J/OL]. Renewable Sustain. Energy Rev., 2022, 161: 112279 [2022-09-02]. . |
5 | SIKSNELYTE-BUTKIENE I, ZAVADSKAS E K, STREIMIKIENE D. Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: a review [J/OL]. Energies, 2020, 13(5): 1164 [2022-09-02]. . |
6 | YU Z, MA H, DEN BOER E, et al.. Effect of microwave/hydrothermal combined ionic liquid pretreatment on straw: rumen anaerobic fermentation and enzyme hydrolysis [J/OL]. Environ. Res., 2022, 205: 112453 [2022-09-02]. . |
7 | ZHU Q, LI X, LI G, et al.. Enhanced bioenergy production in rural areas: synthetic urine as a pre-treatment for dry anaerobic fermentation of wheat straw [J/OL]. J. Cleaner Production, 2020, 260: 121164 [2022-09-02]. . |
8 | 司祥. 氢氧化钠预处理对玫瑰秸秆厌氧发酵特性的影响[D]. 合肥: 安徽农业大学, 2017. |
SI X. Effect of sodium hydroxide pretreatment on process performance of anaerobic digestion of rose straw [D]. Hefei: Anhui Agricultural University, 2017. | |
9 | 李梦洁. 玫瑰秸秆厌氧发酵产沼气特性试验研究[D]. 上海: 东华大学, 2017. |
LI M J. Research on biogas anaerobic fermentation by using rose straw [D]. Shanghai: Donghua University, 2017. | |
10 | 刘士清, 张无敌, 尹芳. 沼气发酵实验教程[M]. 北京: 化学工业出版社, 2013: 9-12. |
11 | VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition [J]. J. Dairy Sci., 1991, 74(10): 3583-3597. |
12 | 贺延龄. 废水的厌氧生物处理[M]. 北京: 中国轻工业出版社, 1998: 509-510. |
13 | 骆有斌, 戴剑波, 张乐, 等. 水质 氨氮的测定 纳氏试剂分光光度法(HJ 535—2009)中滤纸的预处理方法的研究[J]. 浙江化工, 2019, 50 (6): 52-54. |
LUO Y B, DAI J B, ZHANG L, et al.. The research on pretreatment method for filter paper in water quality determination of ammonia nitrogen determination by nessler's reagent dectrophotometry (HJ 535—2009) [J]. Zhejiang Chem. Ind., 2019, 50(6): 52-54 | |
14 | 李雪梅, 朱燕. 快速消解分光光度法测定污水化学需氧量[J]. 化学分析计量, 2018, 27 (3): 36-39. |
LI X M, ZHU Y. Determination of chemical oxygen demand in sewage by fast digestion-spectrophotometry [J]. Chem. Anal. Meterage, 2018, 27(3): 36-39. | |
15 | XIA Y, MASSÉ D I, MCALLISTER T A, et al.. In situ identification of keratin-hydrolyzing organisms in swine manure inoculated anaerobic digesters [J]. FEMS Microbiol. Ecol., 2011, 78(3): 451-462. |
16 | KONG Y H, XIA Y, SEVIOUR R, et al.. In situ identification of carboxymethyl cellulose-digesting bacteria in the rumen of cattle fed alfalfa or triticale [J]. FEMS Microbiol. Ecol., 2012, 80 (1): 159-167. |
17 | GREUTER D, LOY A, HORN M, et al.. ProbeBase—an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016 [J]. Nucl. Acids Res., 2016, 44 (D1): D586-D589. |
18 | TUNCAY S, AKCAKAYA M, ICGEN B. Ozonation of sewage sludge prior to anaerobic digestion led to Methanosaeta dominated biomethanation [J/OL]. Fuel, 2022, 313: 122690 [2022-09-02]. . |
19 | LI J, HAO X, VAN LOOSDRECHT M C, et al.. Effect of humic acids on batch anaerobic digestion of excess sludge [J]. Water Res., 2019, 155: 431-443. |
20 | TEIXEIRA M R, GUARDA E C, FREITAS E B, et al.. Valorization of raw brewers’ spent grain through the production of volatile fatty acids [J]. New Biotechnol., 2020, 57: 4-10. |
21 | GAGLIANO M, BRAGUGLIA C, GIANICO A, et al.. Thermophilic anaerobic digestion of thermal pretreated sludge: role of microbial community structure and correlation with process performances [J]. Water Res., 2015, 68: 498-509. |
22 | WANG T, ZHANG D, DAI L, et al.. Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge [J]. Sci. Rep., 2016, 6(1): 1-10. |
23 | KHAN M A, ASHAR N N, GANESH A G, et al.. Bacterial community structure in anaerobic digesters of a full scale municipal wastewater treatment plant-case study of Dubai, United Arab Emirates [J]. J. Sustain. Dev. Energy Water Environ. Syst., 2019, 7(3): 385-398. |
24 | MADDEN P, AL-RAEI A M, ENRIGHT A M, et al.. Effect of sulfate on low-temperature anaerobic digestion [J/OL]. Front. Microbiol., 2014, 5: 376 [2022-09-02]. . |
25 | RAMM J, LUPU A, HADAS O, et al.. A CARD-FISH protocol for the identification and enumeration of cyanobacterial akinetes in lake sediments [J]. FEMS Microbiol. Ecol., 2012, 82 (1): 23-36. |
26 | 任海伟, 姚兴泉, 李金平, 等. TS对青贮玉米秸秆与牛粪混合消化产气特性影响[J]. 太阳能学报, 2019, 40(4): 1085-1092. |
REN H W, YAO X Q, LI J P, et al.. Effect of total solid concentration on biogas production performance during anaerobic co-digestion of maize silages and cattle manure [J]. Acta Energiae Solaris Sin., 2019, 40(4): 1085-1092. | |
27 | WANG H, LI J, ZHAO Y, et al.. Establishing practical strategies to run high loading corn stover anaerobic digestion: methane production performance and microbial responses [J/OL]. Bioresour. Technol., 2020, 310: 123364 [2022-09-02]. . |
28 | ABBASSI-GUENDOUZ A, BROCKMANN D, TRABLY E, et al.. Total solids content drives high solid anaerobic digestion via mass transfer limitation [J]. Bioresour. Technol., 2012, 111: 55-61. |
29 | DENG Y, LI W, RUAN W, et al.. Applying EEM-PARAFAC analysis with quantitative real-time pcr to monitor methanogenic activity of high-solid anaerobic digestion of rice straw [J/OL]. Front. Microbiol., 2021, 12: 600126 [2022-09-02]. . |
30 | KONG D, ZHANG K, LIANG J, et al.. Methanogenic community during the anaerobic digestion of different substrates and organic loading rates [J/OL]. Microbiol. Open, 2019, 8(5): e00709 [2022-09-02]. . |
31 | FITZGERALD J A, WALL D M, JACKSON S A, et al.. Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage [J]. Renew. Energy, 2019, 138: 980-986. |
32 | NGUYEN L N, NGUYEN A Q, JOHIR M H, et al.. Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass [J]. Chemosphere, 2019, 228: 702-708. |
33 | AHMED W, RODRÍGUEZ J. Modelling sulfate reduction in anaerobic digestion: complexity evaluation and parameter calibration [J]. Water Res., 2018, 130: 255-262. |
34 | HUANG H, BISWAL B K, CHEN G H, et al.. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: evaluation on reactor performance and dynamics of microbial community [J/OL]. Bioresour. Technol., 2020, 297: 122396 [2022-09-02]. . |
[1] | Xudong ZHOU, Tianhua HAN, Yunxin SHEN, Zhufeng SHI, Biao HE, Mingying YANG, Weihua PEI, Yonghong HE, Peiwen YANG. Response Characteristics of Soil Microecology in Long-term Continuous Cropping Tobacco Field Under 4 Rotation Patterns [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 174-187. |
[2] | Erhao ZHANG, Panpan LIU, Ping HE, Yue JIAN, Yuting XU, Chengxin CHEN, Yazhou LU, Xiaozhong LAN, Sangmu SUOLANG. Physiochemical Properties and Microbial Community Structure in Rhizosphere Soil of Dracocephalum tanguticum [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 201-213. |
[3] | Wei LIU, Yuanyuan ZHAO, Xiaolong CHEN, Hongzhi SHI. Effects of Soil Moisture Content on Microbial Community Diversity and Abundance of Nitrogen Cycling Genes in Central Henan Tobacco-growing Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 214-225. |
[4] | Huijun LI, Weijian ZHANG, Weijian WU, Gaoyang LI, Yijie CHEN, Fengcheng HUANG, Yongxiang HUANG, Zhong LIN, Zhen ZHEN. Effects of Sea Rice on Soil Chemical Properties and Microbial Community Structure in Coastal Solonchaks [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 147-156. |
[5] | Feng LI, Congpei YIN, Ran YIN, Fan WANG, Yongliang HAN, Zhimin YANG, Jiancheng LIU. Response of Rhizosphere Soil Bacterial Community Diversity to Salt Stress in Oat (Avena sativa L.) [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 153-165. |
[6] | Yan MENG, Wei WANG, Quancai XI, Yi LI, Laisheng CHEN, Zhongping DU, Rui HAN. Effect of Biogas Slurry Pretreatment on Anaerobic Digestion of Vegetable Straws [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 188-196. |
[7] | Lili WANG, Congpei YIN, Feng LI, Zhimin YANG, Fangming LIU, Baisong LIN, Xiaojing LIU, Haijun LIU, Jing SUN, Dongdong SHAN, Jianghui CUI, Zhenqing ZHANG. Microbial Community Structure of Potato Rhizosphere Soil and Its Response to Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 58-69. |
[8] | Liangxiang DAI, Guanchu ZHANG, Hong DING, Yang XU, Zhimeng ZHANG. Effects of Organic Fertilizer and Calcium Fertilizer on Peanut Rhizosphere Bacterial Community Structure in Saline-alkali Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 189-201. |
[9] | Chenchen SUN, Lan MA, Yonghong WU, Yuanchun YU. Effects and Mechanism of Indoleacetic Acid on the Removal of Nitrogen and Phosphorus from Water by Peripheral Organisms [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 204-209. |
[10] | GAO Lin1, WANG Xinwei1, SHEN Guoming1, TIAN Feng2, CHEN Qianfeng2, ZHANG Mingfa2, ZHANG Chengsheng1*. Differences of Bacteria and Fungi Community Structure in Tobacco-planting Soil of Different Continuous Cropping Years [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 147-152. |
[11] | WANG Yang. Bibliometrics Evaluation on Anaerobic Digestion Technology of Straw [J]. Journal of Agricultural Science and Technology, 2017, 19(4): 1-9. |
[12] | YIN Fu-bin1, JI Chao2, DONG Hong-min1*, TAO Xiu-ping1, CHEN Yong-xing1. Research Progress on Effect of Antibiotic on Anaerobic Digestion Treatment in Animal Manure [J]. Journal of Agricultural Science and Technology, 2016, 18(5): 171-177. |
[13] | ZHANG Ming\|yan1, ZHANG Ji\|guang1*, SHEN Guo\|ming1, ZHANG Zhong\|feng1, CAI Xi. Present Research Status and Prospects of Microbial Communities Structure and Functional Microorganisms in Tobacco\|Planting Soil [J]. , 2014, 16(5): 115-122. |
[14] | MENG Yao1, GU Wan\|rong2, LI Jing2, WEI Shi2*, YANG De\|guang2. Effect of Bt Transgenic Corn Straw Fermentation on SFC\|2 Microbial Community [J]. , 2014, 16(4): 87-94. |
[15] | LI Xin-xin1, LI Xiao-hui1, LI Liang1, PING Shu-zhen1, CHEN Ming1, ZHANG Wei1, . Impacts of Transgenic Crops on Soil Microbes [J]. , 2010, 12(6): 24-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||