Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (3): 174-187.DOI: 10.13304/j.nykjdb.2022.0743
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Xudong ZHOU1,2(), Tianhua HAN3, Yunxin SHEN1, Zhufeng SHI1, Biao HE3, Mingying YANG1, Weihua PEI1, Yonghong HE1, Peiwen YANG1(
)
Received:
2022-09-04
Accepted:
2022-10-31
Online:
2024-03-15
Published:
2024-03-07
Contact:
Peiwen YANG
周旭东1,2(), 韩天华3, 申云鑫1, 施竹凤1, 贺彪3, 杨明英1, 裴卫华1, 何永宏1, 杨佩文1(
)
通讯作者:
杨佩文
作者简介:
周旭东E-mail:1018595481@qq.com;
基金资助:
CLC Number:
Xudong ZHOU, Tianhua HAN, Yunxin SHEN, Zhufeng SHI, Biao HE, Mingying YANG, Weihua PEI, Yonghong HE, Peiwen YANG. Response Characteristics of Soil Microecology in Long-term Continuous Cropping Tobacco Field Under 4 Rotation Patterns[J]. Journal of Agricultural Science and Technology, 2024, 26(3): 174-187.
周旭东, 韩天华, 申云鑫, 施竹凤, 贺彪, 杨明英, 裴卫华, 何永宏, 杨佩文. 4种轮作模式下长期连作烟田土壤微生态的响应特征[J]. 中国农业科技导报, 2024, 26(3): 174-187.
Fig. 1 Soil physical properties of different rotation patternsNote: * indicates significant difference between different rotation patterns at P<0.05 level.
土壤化学指标 Soil chemical indicater | YCDM | YCDS | YCYC | YCCD | CK |
---|---|---|---|---|---|
pH | 5.29±0.74 bc | 6.02±0.13 ab | 5.69±0.59 ab | 6.25±0.26 a | 4.73±0.36 c |
电导率 Electric conductivity/(μS·cm-1) | 107.72±13.58 b | 156.93±11.09 a | 75.39±12.65 c | 120.59±8.31 b | 118.56±16.01 b |
有机质 Organic matter/(g·kg-1) | 49.91±5.86 a | 35.44±5.64 b | 33.11±7.67 b | 40.50±21.41 b | 38.34±1.41 b |
全氮 Total nitrogen/(g·kg-1) | 1.89±0.14 a | 1.87±0.26 b | 1.87±0.43 b | 1.87±0.14 b | 1.84±0.11 c |
碱解氮 Available nitrogen/(mg·kg-1) | 194.03±6.29 c | 185.26±7.83 c | 193.95±4.55 c | 231.30±6.49 a | 205.71±8.26 b |
全磷 Total phosphorus/(g·kg-1) | 1.55±0.24 a | 1.22±0.16 ab | 1.11±0.18 b | 1.31±0.30 ab | 1.22±0.15 ab |
有效磷 Available phosphorus/(mg·kg-1) | 115.73±7.25 a | 84.02±4.79 d | 105.75±4.34 b | 121.50±1.74 a | 91.49±5.64 c |
全钾 Total potassium/(g·kg-1) | 15.94±2.33 a | 15.68±1.08 a | 15.32±0.71 a | 16.29±1.19 a | 15.66±1.03 a |
速效钾 Available potassium/(mg·kg-1) | 313.04±5.21 a | 316.59±10.65 a | 128.11±7.14 d | 244.76±5.26 b | 158.12±10.28 c |
Tab 1 Soil chemical properties under different rotation patterns
土壤化学指标 Soil chemical indicater | YCDM | YCDS | YCYC | YCCD | CK |
---|---|---|---|---|---|
pH | 5.29±0.74 bc | 6.02±0.13 ab | 5.69±0.59 ab | 6.25±0.26 a | 4.73±0.36 c |
电导率 Electric conductivity/(μS·cm-1) | 107.72±13.58 b | 156.93±11.09 a | 75.39±12.65 c | 120.59±8.31 b | 118.56±16.01 b |
有机质 Organic matter/(g·kg-1) | 49.91±5.86 a | 35.44±5.64 b | 33.11±7.67 b | 40.50±21.41 b | 38.34±1.41 b |
全氮 Total nitrogen/(g·kg-1) | 1.89±0.14 a | 1.87±0.26 b | 1.87±0.43 b | 1.87±0.14 b | 1.84±0.11 c |
碱解氮 Available nitrogen/(mg·kg-1) | 194.03±6.29 c | 185.26±7.83 c | 193.95±4.55 c | 231.30±6.49 a | 205.71±8.26 b |
全磷 Total phosphorus/(g·kg-1) | 1.55±0.24 a | 1.22±0.16 ab | 1.11±0.18 b | 1.31±0.30 ab | 1.22±0.15 ab |
有效磷 Available phosphorus/(mg·kg-1) | 115.73±7.25 a | 84.02±4.79 d | 105.75±4.34 b | 121.50±1.74 a | 91.49±5.64 c |
全钾 Total potassium/(g·kg-1) | 15.94±2.33 a | 15.68±1.08 a | 15.32±0.71 a | 16.29±1.19 a | 15.66±1.03 a |
速效钾 Available potassium/(mg·kg-1) | 313.04±5.21 a | 316.59±10.65 a | 128.11±7.14 d | 244.76±5.26 b | 158.12±10.28 c |
Fig. 2 Soil enzyme activities of different rotation patternsNote: * indicates significant difference between different rotation patterns at P<0.05 level.
类别 Category | 处理Treatment | 物种数目 Number of species | 丰富度指数Richness index | 多样性指数Diversity index | ||
---|---|---|---|---|---|---|
Ace指数 Ace index | Chao指数 Chao index | Shannon指数Shannon index | Simpson指数Simpson index | |||
细菌 Bacteria | YCDM | 2 617±29.61 bc | 2 630.09±25.21 b | 2 637.78±23.85 bc | 5.36±0.08 ab | 0.011 2±0.000 0 a |
YCDS | 2 689.33±91.50 b | 2 703.30±13.66 a | 2 692.47±94.15 b | 5.36±0.16 ab | 0.011 0±0.020 1 a | |
YCYC | 2 576±33.72 c | 2 587.98±18.32 bc | 2 581.78±41.67 bc | 5.29±0.06 ab | 0.015 0±0.010 1 a | |
YCCD | 2 760.33±44.28 a | 2 757.22±49.40 a | 2 791.57±76.03 a | 5.47±0.12 a | 0.008 9±0.000.0 b | |
CK | 2 545.67±64.05 c | 2 547.97±59.53 c | 2 555.88±60.62 c | 5.26±0.09 b | 0.014 7±0.011 1 a | |
真菌 Fungi | YCDM | 357.33±15.57 c | 365.73±14.86 c | 366.13±10.87 c | 3.14±1.03 a | 0.115 8±0.071 2 a |
YCDS | 379.00±26.15 c | 389.52±26.52 c | 391.63±26.11 bc | 3.32±0.19 a | 0.079 9±0.051 1 a | |
YCYC | 439.00±23.07 a | 450.15±20.14 a | 452.71±20.36 a | 4.06±0.30 a | 0.038 4±0.010 3 a | |
YCCD | 389.67±18.01 bc | 398.71±17.10 bc | 404.67±16.30 ab | 3.82±0.54 a | 0.059 0±0.041 5 a | |
CK | 421.33±14.29 ab | 428.48±16.15 ab | 429.39±16.18 ab | 3.92±0.31 a | 0.039 1±0.011 2 a |
Tab 2 Analysis of soil microbial community α diversity under different rotation patterns
类别 Category | 处理Treatment | 物种数目 Number of species | 丰富度指数Richness index | 多样性指数Diversity index | ||
---|---|---|---|---|---|---|
Ace指数 Ace index | Chao指数 Chao index | Shannon指数Shannon index | Simpson指数Simpson index | |||
细菌 Bacteria | YCDM | 2 617±29.61 bc | 2 630.09±25.21 b | 2 637.78±23.85 bc | 5.36±0.08 ab | 0.011 2±0.000 0 a |
YCDS | 2 689.33±91.50 b | 2 703.30±13.66 a | 2 692.47±94.15 b | 5.36±0.16 ab | 0.011 0±0.020 1 a | |
YCYC | 2 576±33.72 c | 2 587.98±18.32 bc | 2 581.78±41.67 bc | 5.29±0.06 ab | 0.015 0±0.010 1 a | |
YCCD | 2 760.33±44.28 a | 2 757.22±49.40 a | 2 791.57±76.03 a | 5.47±0.12 a | 0.008 9±0.000.0 b | |
CK | 2 545.67±64.05 c | 2 547.97±59.53 c | 2 555.88±60.62 c | 5.26±0.09 b | 0.014 7±0.011 1 a | |
真菌 Fungi | YCDM | 357.33±15.57 c | 365.73±14.86 c | 366.13±10.87 c | 3.14±1.03 a | 0.115 8±0.071 2 a |
YCDS | 379.00±26.15 c | 389.52±26.52 c | 391.63±26.11 bc | 3.32±0.19 a | 0.079 9±0.051 1 a | |
YCYC | 439.00±23.07 a | 450.15±20.14 a | 452.71±20.36 a | 4.06±0.30 a | 0.038 4±0.010 3 a | |
YCCD | 389.67±18.01 bc | 398.71±17.10 bc | 404.67±16.30 ab | 3.82±0.54 a | 0.059 0±0.041 5 a | |
CK | 421.33±14.29 ab | 428.48±16.15 ab | 429.39±16.18 ab | 3.92±0.31 a | 0.039 1±0.011 2 a |
Fig. 7 Correlation analysis between physical and chemical properties and dominant phyla of soil microorganismsA:Bacteria; B:Fungi. EC—Electrical conductivity; SOM—Organic matter; TN—Total nitrogen; AN—Available nitrogen; TP—Total phosphorus; AP—Available phosphorus; TK—Total potassium; AK—Available potassium; CAT—Catalase; INV—Invertin; URE—Urease; ACP—Acid phosphatase; * indicates significant correlation at P<0.05 level
Fig. 8 Redundancy analysis of dominant phyla and physicochemical properties of soil microorganismsA: Bacteria; B: Fungi. EC—Electrical conductivity; SOM—Soil organic matter; TN—Total nitrogen; AN—Available nitrogen; TP—Total phosphorus; AP—Available phosphorus; TK—Total potassium; AK—Available potassium; CAT—Catalase; INV—Invertin; URE—Urease; ACP—Acid phosphatase
1 | 芶久兰,顾小凤,张萌,等.不同烤烟种植模式对贵州土壤养分、酶活性及细菌群落结构的影响[J].核农学报,2022,36(7):475-484. |
GOU J L, GU X F, ZHANG M, et al.. Effects of different flue-cured tobacco planting patterns on nutrients, enzyme activities and bacterial community structure in soil of Guizhou province [J]. J. Nucl. Agric. Sci., 2022, 36(7):475-484. | |
2 | 鲁韦坤,逄涛,余凌翔,等.市场经济对云南规划烟区耕地资源的影响分析[J].中国农学通报,2021,37(5):137-142. |
LU W K, PANG T, YU L X, et al.. The influence of market economy on cultivated land resources in planned tobacco area of Yunnan [J]. Chin. Agric. Sci. Bull., 2021, 37(5):137-142. | |
3 | 陈华,赵文军,王正旭,等.不同轮作模式下氮素调控对烤烟产质量及氮肥利用的影响[J].河南农业科学,2021,50(9):87-95. |
CHEN H, ZHAO W J, WANG Z X, et al.. Effects of nitrogen management on yield,quality and nitrogen utilization of flue-cured tobacco under different rotation patterns [J]. J. Henan Agric. Sci., 2021, 50(9):87-95. | |
4 | CHEN S, QI G, LUO T, et al.. Continuous‐cropping tobacco caused variance of chemical properties and structure of bacterial network in soils [J]. Land Degrad. Dev., 2018, 29(11):4106-4120. |
5 | 陈浩,魏立本,王亚麒,等.烤烟不同种植施肥模式对土壤养分、酶活性及细菌多样性的影响[J].南方农业学报,2019,50(5):982-989. |
CHEN H, WEI L B, WANG Y Q, et al.. Effects of different planting and fertilizing modes on soil nutrient,enzyme activity and bacterial diversity of tobacco [J]. J. Southern Agric., 2019, 50(5):982-989. | |
6 | 朱维伟.不同轮作模式对黄瓜幼苗生长及土壤环境的影响[D].哈尔滨:东北农业大学,2020. |
ZHU W W. Effects of Different rotation sysetems on growth and soil environment of cucumber seedling [D]. Harbin: Northeast Agricultural University, 2020. | |
7 | 赵庆雷,信彩云,王瑜,等.不同轮作模式对花生病虫害及产量的影响[J].植物保护学报,2018,45(6):1321-1327. |
ZHAO Q L, XIN C Y, WANG Y, et al.. Effects of different rotation patterns on peanut diseases, pests and yield [J]. J. Plant Prot., 2018, 45(6):1321-1327. | |
8 | 徐新雯,林正全,拓阳阳,等.烟蒜轮作对烟株根际土壤细菌群落结构的影响[J].西南农业学报,2020,33(9):1917-1924, 2137. |
XU X W, LIN Z Q, TUO Y Y, et al.. Effects of tobacco garlic crop rotation on bacterial community structure of tobacco rhizosphere soil [J]. Southwest China J. Agric. Sci., 2020, 33(9):1917-1924, 2137. | |
9 | 阳显斌,李廷轩,张锡洲,等.烟蒜轮作与套作对土壤微生物类群数量的影响[J].土壤,2016,48(4):698-704. |
YANG X B, LI T X, ZHANG X Z, et al.. Effects of tobacco garlic crop rotation and tobacco garlic crop intercropping on soil microbial groups in tobacco fields [J]. Soils, 2016, 48(4):698-704. | |
10 | 苏燕,李婕,曹雪颖,等.水旱轮作模式下马铃薯根际土壤细菌群落多样性分析[J].南方农业学报,2020,51(10):2374-2382. |
SU Y, LI J, CAO X Y, et al.. Diversity analysis of bacterial community in potato rhizosphere soil under the mode of paddy-upland rotation [J]. J. Southern Agric., 2020, 51(10):2374-2382. | |
11 | 姚小东,李孝刚,丁昌峰,等.连作和轮作模式下花生土壤微生物群落不同微域分布特征[J].土壤学报,2019,56(4):975-985. |
YAO X D, LI X G, DING C F, et al.. Microzone distribution characteristics of soil microbial community with peanut cropping system, monocropping or rotation [J]. Acta Pedol. Sin., 2019, 56(4):975-985. | |
12 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:1-495. |
13 | 李润根,曾慧兰,李兴杰,等.连作龙牙百合与铁炮百合根际土壤真菌群落结构的差异分析[J].生态科学,2022,41(4):189-195. |
LI R G, ZENG H L, LI X J, et al.. Differences of rhizosphere soil fungi between Lilium brownii var and Lilium longifllorum in continuous cropping [J]. Acta Ecol. Sci., 2022, 41(4):189-195. | |
14 | 李林蓉,冯建路,刘苗苗,等.作物种植模式对土壤微生物和农田有害生物的影响[J].中国农学通报,2021,37(29):99-106. |
LI L R, FENG J L, LIU M M, et al.. Effect of crop planting Patterns on soil microorganisms and crop pests in farm [J]. Chin. Agric. Sci. Bull., 2021, 37(29):99-106. | |
15 | 于春雷,高嵩,孙文松,等.连作对辽细辛土壤理化性质和根际微生物群落特征的影响[J].江苏农业科学,2022,50(14):250-258. |
16 | 刘会芳,韩宏伟,王强,等.不同蔬菜与番茄轮作对设施土壤微生物多样性、酶活性及土壤理化性质的影响[J].微生物学报,2021,61(1):167-182. |
LIU H F, HAN H W, WANG Q, et al.. Effect of vegetables-tomato rotation on soil microbial diversity, enzyme activity and physicochemical properties of vegetables in greenhouse [J]. Acta Microbiol. Sin., 2021, 61(1):167-182. | |
17 | SHI G, FANG J, WEI S, et al.. Characteristics of rhizosphere fungal community in spring wheat under different rotation fallow modes [J/OL]. E3S Web Conf, 2021, 292:03093. [2023-07-12]. . |
18 | SU Y, ZI H, WEI X, et al.. Application of manure rather than plant-origin organic fertilizers alters the fungal community in continuous cropping tobacco soil [J/OL]. Front Microbiol., 2022:1158 [2022-08-23]. . |
19 | 谢涛.不同栽培模式下稻麦轮作土壤速效养分供应特征[D].扬州:扬州大学,2022. |
XIE T. Characteristics of soil available nutrient supply in rice-wheat rotation under different cultivation modes [D]. Yangzhou: Yangzhou University, 2022. | |
20 | 张成君,师尚礼,康文娟,等.不同轮作模式土壤酶活性特征及与化学性质的关系[J].中国草地学报,2020,42(5):92-102. |
ZHANG C J, SHI S L, KANG W J, et al.. Characteristics of soil enzyme activities and its relationship with chemical properties under different rotation patterns [J]. Chin. J. Grass., 2020, 42(5):92-102. | |
21 | 魏全全,芶久兰,赵欢,等.黄壤区烤烟轮作与连作根系形态、产量及养分吸收的变化[J].西南农业学报,2018,31(11):2294-2299. |
WEI Q Q, GOU J L, ZHAO H, et al.. Changes in root morphology, yield and nutrient uptake of flue-cured tobacco under rotation and continuous cropping in yellow soil [J]. Southwest China J. Agric. Sci., 2018, 31(11):2294-2299. | |
22 | 樊俊,谭军,王瑞,等.秸秆还田和腐熟有机肥对植烟土壤养分、酶活性及微生物多样性的影响[J].烟草科技,2019,52(2):12-18, 61. |
FAN J, TAN J, WANG R, et al.. Effects of straw Returning and decomposed organic manure on soil nutrients, enzyme activities and microbial diversity for tobacco-planting [J]. Tob. Sci. Tech., 2019, 52(2):12-18, 61. | |
23 | 罗影,王立光,陈军,等.不同种植模式对甘肃中部高寒区胡麻田土壤酶活性及土壤养分的影响[J].核农学报,2017,31(6):1185-1191. |
LUO Y, WANG L G, CHEN J, et al.. Effects of different flex cropping modes on soil enzyme activities and soil nutrients in the cold area of middle part of Gansu [J]. J. Nucl. Agric. Sci., 2017, 31(6):1185-1191. | |
24 | RAMONEDA J, LE ROUX J, STADELMANN S, et al.. Soil microbial community coalescence and fertilization interact to drive the functioning of the legume-rhizobium symbiosis [J]. J. Appl. Ecol., 2021, 58(11):2590-2602. |
25 | 索炎炎,张翔,司贤宗,等.AM真菌和根瘤菌对连作花生养分吸收及土壤微生物特性的影响[J/OL].中国土壤与肥料,2023(2):106-112. |
SUO Y Y, ZHANG X, SI X Z, et al.. Effects of Arbuscular mycorrhizal fungi and rhizobia on nutrient uptake and soil microbial characteristics of continuous cropping peanut [J/OL]. Soil Fert. Sci. China, 2023(2):106-112. | |
26 | 饶德安,刘潘洋,邹路易,等.长期连作及强还原土壤灭菌处理对烤烟根际土壤真菌群落的影响[J].中国土壤与肥料,2022(4):47-56. |
RAO D A, LIU P Y, ZOU L Y, et al.. Effects of long-term continuous cropping and reductive soil disinfestation on fungal community in flue-cured tobacco rhizosphere [J]. Soil Fert. Sci. China, 2022(4):47-56. | |
27 | 段玉琪,晋艳,陈泽斌,等.烤烟轮作与连作土壤细菌群落多样性比较[J].中国烟草学报,2012,18(6):53-59. |
DUAN Y Q, JIN Y, CHEN Z B, et al. Comparison of bacteria diversity between tobacco plantation soils of rotational cropping and continuous cropping [J]. Acta Tab. Sin., 2012, 18(6):53-59. | |
28 | 苏贝贝,张英,道日娜.4种豆科植物根际土壤真菌群落特征与土壤理化因子间相关性分析[J].草地学报,2021,29(12):2670-2677. |
SU B B, ZHAN Y, DAO R N. Correlation analysis between fungal community characteristics and soil physicochemical factors in the rhizosphere of four legumes [J]. Acta Agrestia Sin., 2021, 29(12):2670-2677. | |
29 | 温美娟,杨思存,王成宝,等.深松和秸秆还田对灌耕灰钙土土壤细菌多样性和群落结构的影响[J].农业资源与环境学报,2023,40(2):423-433. |
WEN M J, YANG S C, WANG C B, et al.. Effects of subsoiling and the return of straw on soil bacterial diversity and community structure in an irrigated sierozem farmland [J]. J. Agric. Resour. Environ., 2023, 40(2):423-433. | |
30 | 叶嘉,张浩,郭海燕,等.蚓粪对大蒜中蒜氨酸和大蒜素含量及大蒜精油抗菌活性的影响[J].中国瓜菜,2021,34(10):98-103. |
YE J, ZHANG H, GUO H Y, et al.. Effects of vermicompost on alliin and allicin contents and antibacterial activity of garlic oil in garlic [J]. China Cucurbits Veget., 2021, 34(10):98-103. |
[1] | Tongyu ZHANG, Ying GOU, Qi LI, Li YANG. Effects of Ginseng Rust Rot on Ginseng Quality and Soil Related Factors [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 124-133. |
[2] | Wei LIU, Yuanyuan ZHAO, Xiaolong CHEN, Hongzhi SHI. Effects of Soil Moisture Content on Microbial Community Diversity and Abundance of Nitrogen Cycling Genes in Central Henan Tobacco-growing Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 214-225. |
[3] | Huijun LI, Weijian ZHANG, Weijian WU, Gaoyang LI, Yijie CHEN, Fengcheng HUANG, Yongxiang HUANG, Zhong LIN, Zhen ZHEN. Effects of Sea Rice on Soil Chemical Properties and Microbial Community Structure in Coastal Solonchaks [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 147-156. |
[4] | Xingsheng YIN, Lingfeng BAO, Yongyu PU, Jiali SUN, Qing ZHANG, Haiping LI, Mingying YANG, Yueping LIN, Huaixin WANG, Yonghong HE, Peiwen YANG. Effects of Chemical Fertilizer Reduction Combined with Bio-organic Fertilization on Tobacco Soil Characteristics and Tobacco Bacterial Wilt Control [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 122-131. |
[5] | Hongyuan LIU, Zhihua ZHOU, Guangxin ZHAO, Qinrui SHEN. Effects of Long-term Biochar Application on Greenhouse Gas Emission and Its Temporal Effect in Huang-Huai-Hai Plain [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 178-186. |
[6] | PANG Zhe, WANG Qilong, LI Juan. Effects of Different Soil Amendments on Soil Physical and Chemical Properties, Rice Yield and Economic Benefits in Low-lying Saline Alkali Land in Northern Shaanxi [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 174-180. |
[7] | Juxian GUO, Bishan OUYANG, Guihua LI, Mei FU, Wenlong LUO, Shanwei LUO, Meilian LU. Effect of Bio-organic Fertilizers on Quality and Soil of Continuous Crop Chinese Flowering Cabbage [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 182-191. |
[8] | Yan KUAI, Xinyue SU, Jinfeng WANG, Zhiyong FAN, Jianhua LI, Nan SUN, Jiuquan ZHANG, Minggang XU. Temporal and Spatial Evolution of Soil Organic Matter and Total Nitrogen in Typical Tobacco-planting Areas of Dali [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 177-185. |
[9] | Feng LI, Congpei YIN, Ran YIN, Fan WANG, Yongliang HAN, Zhimin YANG, Jiancheng LIU. Response of Rhizosphere Soil Bacterial Community Diversity to Salt Stress in Oat (Avena sativa L.) [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 153-165. |
[10] | Lili WANG, Congpei YIN, Feng LI, Zhimin YANG, Fangming LIU, Baisong LIN, Xiaojing LIU, Haijun LIU, Jing SUN, Dongdong SHAN, Jianghui CUI, Zhenqing ZHANG. Microbial Community Structure of Potato Rhizosphere Soil and Its Response to Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 58-69. |
[11] | Liangxiang DAI, Guanchu ZHANG, Hong DING, Yang XU, Zhimeng ZHANG. Effects of Organic Fertilizer and Calcium Fertilizer on Peanut Rhizosphere Bacterial Community Structure in Saline-alkali Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 189-201. |
[12] | Yanchen WEI, Jixiang CHEN, Yonggang WANG, Tongtong MENG, Yalong HAN, Mei LI. Analysis of Bacterial Diversity in the Rhizosphere Soil of Salsolapasserina and Its Correlation with the Soil Physical and Chemical Properties [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 209-217. |
[13] | Chenchen SUN, Lan MA, Yonghong WU, Yuanchun YU. Effects and Mechanism of Indoleacetic Acid on the Removal of Nitrogen and Phosphorus from Water by Peripheral Organisms [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 204-209. |
[14] | FAN Na, PENG Zhidong, BAI Wenbin*, ZHAO Jianwu. Influences of Microbial Agents on Soil Enzyme Activity and Sorghum Growth [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 185-192. |
[15] | WANG Liguang§, YE Chunlei§, CHEN Jun, LI Jinjing, LUO Junjie. Effects of Intercropping and Rotation Between Oil Flax and Wheat on Soil Physicochemical Properties and Growth of Oil Flax [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 161-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||