Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (8): 115-125.DOI: 10.13304/j.nykjdb.2022.0861
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Yitong XIAO(), Shuai LIU, Chenlian HOU, Qi LIU, Fuzhong LI, Wuping ZHANG(
)
Received:
2022-10-12
Accepted:
2022-12-08
Online:
2023-08-20
Published:
2023-09-07
Contact:
Wuping ZHANG
肖奕同(), 刘帅, 侯晨连, 刘琦, 李富忠, 张吴平(
)
通讯作者:
张吴平
作者简介:
肖奕同 E-mail:xiao19834545797@163.com;
基金资助:
CLC Number:
Yitong XIAO, Shuai LIU, Chenlian HOU, Qi LIU, Fuzhong LI, Wuping ZHANG. Organ Segmentation and Phenotypic Analysis of Soybean Plants Based on Three-dimensional Point Clouds[J]. Journal of Agricultural Science and Technology, 2023, 25(8): 115-125.
肖奕同, 刘帅, 侯晨连, 刘琦, 李富忠, 张吴平. 基于三维点云的大豆植株器官分割及表型分析[J]. 中国农业科技导报, 2023, 25(8): 115-125.
Fig. 4 Stem and leaf segmentation of soybean plantA: Initial point clouds; B: Preliminary canopy point clouds;C: Preliminary stem point clouds; D: Filter the stem point clouds; E: Backfill canopy point clouds; F:Full canopy point clouds
Fig. 5 Leaves segmentation of soybean canopyA:Region growing segmentation of adherent leaves;B:Region growing segmentation of leaves with adhesions removed;C:Improved region growing segmentation
Fig. 6 Measurement of soybean phenotypic parametersA: Plant coordinate system; B: Leaf oriented bounding box; C: Extracted leaf width and leaf inclination angle; D: Extracted stem diameter; E: Leaf grids; F: Fitting of leaf midrib
植株编号 No. | 分割前点云总数N | 冠层叶片点云数量Nc | 冠层叶片点云分割率Rc/% | ||
---|---|---|---|---|---|
DoN | RANSAC | DoN | RANSAC | ||
1 | 230 775 | 195 719 | 172 714 | 84.81 | 74.84 |
2 | 146 930 | 123 517 | 115 810 | 84.07 | 78.82 |
3 | 172 506 | 144 472 | 129 035 | 83.75 | 74.80 |
4 | 198 863 | 165 371 | 162 251 | 83.16 | 81.59 |
5 | 221 826 | 189 764 | 166 273 | 85.55 | 74.96 |
6 | 215 876 | 185 681 | 170 564 | 86.01 | 79.01 |
7 | 173 328 | 143 937 | 137 762 | 83.04 | 79.48 |
8 | 166 324 | 140 344 | 134 996 | 84.38 | 81.16 |
9 | 201 988 | 168 796 | 162 237 | 83.57 | 80.32 |
10 | 185 933 | 156 402 | 145 894 | 84.12 | 78.47 |
平均 Average | 191 435 | 161 400 | 149 754 | 84.24 | 78.34 |
Table 1 Statistics of stem and leaf segmentation results of plants
植株编号 No. | 分割前点云总数N | 冠层叶片点云数量Nc | 冠层叶片点云分割率Rc/% | ||
---|---|---|---|---|---|
DoN | RANSAC | DoN | RANSAC | ||
1 | 230 775 | 195 719 | 172 714 | 84.81 | 74.84 |
2 | 146 930 | 123 517 | 115 810 | 84.07 | 78.82 |
3 | 172 506 | 144 472 | 129 035 | 83.75 | 74.80 |
4 | 198 863 | 165 371 | 162 251 | 83.16 | 81.59 |
5 | 221 826 | 189 764 | 166 273 | 85.55 | 74.96 |
6 | 215 876 | 185 681 | 170 564 | 86.01 | 79.01 |
7 | 173 328 | 143 937 | 137 762 | 83.04 | 79.48 |
8 | 166 324 | 140 344 | 134 996 | 84.38 | 81.16 |
9 | 201 988 | 168 796 | 162 237 | 83.57 | 80.32 |
10 | 185 933 | 156 402 | 145 894 | 84.12 | 78.47 |
平均 Average | 191 435 | 161 400 | 149 754 | 84.24 | 78.34 |
Fig. 8 Results of leaf segmentation under different parametersA:Region growth segmentation;B:Region growth segmentation with small parameters;C:Improved region growth segmentation with small parameters
植株编号 No. | 分割前点云总数Nc | 叶片聚类点云总数 Nl | 单叶点云分割率Rl/% |
---|---|---|---|
1 | 189 764 | 183 691 | 96.80 |
2 | 165 371 | 160 138 | 96.84 |
3 | 144 472 | 138 853 | 96.11 |
4 | 195 719 | 186 988 | 95.54 |
5 | 123 517 | 120 173 | 97.29 |
6 | 185 681 | 181 085 | 97.52 |
7 | 143 937 | 138 100 | 95.94 |
8 | 140 344 | 135 017 | 96.20 |
9 | 168 796 | 160 844 | 95.29 |
10 | 156 402 | 150 702 | 96.36 |
平均 Average | 161 400 | 155 559 | 96.39 |
Table 2 Statistics of leaf segmentation results of plants
植株编号 No. | 分割前点云总数Nc | 叶片聚类点云总数 Nl | 单叶点云分割率Rl/% |
---|---|---|---|
1 | 189 764 | 183 691 | 96.80 |
2 | 165 371 | 160 138 | 96.84 |
3 | 144 472 | 138 853 | 96.11 |
4 | 195 719 | 186 988 | 95.54 |
5 | 123 517 | 120 173 | 97.29 |
6 | 185 681 | 181 085 | 97.52 |
7 | 143 937 | 138 100 | 95.94 |
8 | 140 344 | 135 017 | 96.20 |
9 | 168 796 | 160 844 | 95.29 |
10 | 156 402 | 150 702 | 96.36 |
平均 Average | 161 400 | 155 559 | 96.39 |
测量方法 Measurement methods | 平均相对误差 MRE/% | 决定系数 R2 | 均方根误差 RMSE/cm2 |
---|---|---|---|
投影法 Projection | 6.14 | 0.978 7 | 1.251 1 |
贪婪投影三角化法GPT | 3.95 | 0.979 1 | 0.763 3 |
LDT | 2.71 | 0.987 9 | 0.541 7 |
Table 3 Result evaluation of leaf area by different methods
测量方法 Measurement methods | 平均相对误差 MRE/% | 决定系数 R2 | 均方根误差 RMSE/cm2 |
---|---|---|---|
投影法 Projection | 6.14 | 0.978 7 | 1.251 1 |
贪婪投影三角化法GPT | 3.95 | 0.979 1 | 0.763 3 |
LDT | 2.71 | 0.987 9 | 0.541 7 |
表型参数 Phenotypic parameter | 平均相对误差 MRE/% | 决定系数 R2 | 均方根误差 RMSE |
---|---|---|---|
叶宽 Leaf width | 2.68 | 0.961 3 | 0.141 2 cm |
叶长 Leaf length | 2.87 | 0.962 6 | 0.175 5 cm |
茎粗 Stem diameter | 3.99 | 0.963 4 | 0.047 5 cm |
叶倾角 Leaf inclination angle | 7.22 | 0.931 1 | 3.279 6 ° |
Table 4 Result evaluation of leaf width, leaf length and stem diameter
表型参数 Phenotypic parameter | 平均相对误差 MRE/% | 决定系数 R2 | 均方根误差 RMSE |
---|---|---|---|
叶宽 Leaf width | 2.68 | 0.961 3 | 0.141 2 cm |
叶长 Leaf length | 2.87 | 0.962 6 | 0.175 5 cm |
茎粗 Stem diameter | 3.99 | 0.963 4 | 0.047 5 cm |
叶倾角 Leaf inclination angle | 7.22 | 0.931 1 | 3.279 6 ° |
Fig. 10 Comparison of soybean phenotypic parameters extracted with actual valuesA:Leaf width; B:Leaf length; C:Stem diameter; D: Leaf inclination angle
处理阶段 Processing stage | 点云重建 Point clouds reconstruction/min | 滤波 Filtering/s | 器官分割 Organ segmentation/s | 表型参数提取 Phenotypic parameter extraction/s | |
---|---|---|---|---|---|
茎叶分割 Stem and leaf segmentation | 单叶分割 Single leaf segmentation | ||||
最小处理时间 Minimum processing time | 19.73 | 7.11 | 13.79 | 6.53 | 34.65 |
最大处理时间 Maximum processing time | 26.58 | 8.91 | 18.44 | 10.90 | 53.17 |
平均处理时间 Average processing time | 24.17 | 7.35 | 14.63 | 8.42 | 46.72 |
Table 5 Results of processing time analysis
处理阶段 Processing stage | 点云重建 Point clouds reconstruction/min | 滤波 Filtering/s | 器官分割 Organ segmentation/s | 表型参数提取 Phenotypic parameter extraction/s | |
---|---|---|---|---|---|
茎叶分割 Stem and leaf segmentation | 单叶分割 Single leaf segmentation | ||||
最小处理时间 Minimum processing time | 19.73 | 7.11 | 13.79 | 6.53 | 34.65 |
最大处理时间 Maximum processing time | 26.58 | 8.91 | 18.44 | 10.90 | 53.17 |
平均处理时间 Average processing time | 24.17 | 7.35 | 14.63 | 8.42 | 46.72 |
1 | 翁杨,曾睿,吴陈铭,等.基于深度学习的农业植物表型研究综述[J].中国科学:生命科学, 2019, 49(6):698-716. |
WENG Y, ZENG R, WU C M,et al.. A survery on deep-learning-based plant phenotype research in agriculture [J]. Sci. Sin. Vitae, 2019, 49(6):698-716. | |
2 | 潘映红.论植物表型组和植物表型组学的概念与范畴[J].作物学报, 2015, 41(2):175-186. |
PAN Y H. Analysis of concepts and categories of plant phenome and phenomics [J]. Acta Agron. Sin., 2015, 41(2):175-186. | |
3 | YANG W N, FENG H, ZHANG X H,et al..Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives [J]. Mol. Plant, 2020, 13(2):187-214. |
4 | MEYER G E, NETO J C, JONES D D, et al.. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images [J]. Comp. Electron. Agric., 2004, 42(3):161-180. |
5 | 李晓斌,王玉顺,付丽红. 用K-means图像法和主成分分析法监测生菜生长势[J].农业工程学报, 2016, 32(12):179-186. |
LI X B, WANG Y S, FU L H. Monitoring lettuce growth using K-means color image segmentation and principal component analysis method [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(12):179-186. | |
6 | 周静静,郭新宇,吴升,等. 基于多视角图像的植物三维重建研究进展[J].中国农业科技导报, 2019, 21(2):9-18. |
ZHOU J J, GUO X Y, WU S, et al.. Research progress on plant three-dimensional reconstruction based on multi-view images [J]. J. Agric. Sci. Technol., 2019, 21(2):9-18. | |
7 | LI L, ZHANG Q, HANG D F. A review of imaging techniques for plant phenotyping [J]. Sensors, 2014, 14:20078-20111. |
8 | 史蒲娟,翟瑞芳,常婷婷,等.基于单目视觉和激光扫描技术的油菜植株模型重建及株型参数测量[J].华中农业大学学报, 2017, 36(3):63-68. |
SHI P J, ZHAI R F, CHANG T T, et al.. 3D model generation and phenotypic measurement of rapeseed plant based on monocular visio and laser scanning technology [J]. J. Huazhong Agric. Univ., 2017, 36(3):63-68. | |
9 | 李杨先,张慧春,杨旸.一种基于图像处理技术的植物形态表型参数获取方法[J].林业工程学报, 2020, 5(6):128-136. |
LI Y X, ZHANG H C, YANG Y. A method for obtaining plant morphological phenotypic parameters using image processing technology [J]. J. Forestry Eng., 2020, 5(6):128-136. | |
10 | 高宇,高军萍,李寒,等.植物表型监测技术研究进展及发展对策[J].江苏农业科学, 2017, 45(11):5-10. |
11 | WU S, WEN W L, XIAO B X, et al.. An accurate skeleton extraction approach from 3D point clouds of maize plants [J]. Front. Plant Sci., 2019, 10:248-262. |
12 | BOOGAARD F P, HENTEN E V, KOOTSTRA G. Boosting plant-part segmentation of cucumber plants by enriching incomplete 3D point clouds with spectral data [J]. Biosyst. Eng., 2021, 211:167-182. |
13 | 彭程,李帅,苗艳龙,等.基于三维点云的番茄植株茎叶分割与表型特征提取[J].农业工程学报, 2022, 38(9):187-194. |
PENG C, LI S, MIAO Y L, et al.. Stem-leaf segmentation and phenotypic trait extraction of tomatoes using three-dimensional poind cloud [J]. Trans. Chin. Soc. Agric. Eng., 2022, 38(9):187-194. | |
14 | 朱超,苗腾,许童羽,等.基于骨架和最优传输距离的玉米点云茎叶分割和表型提取[J].农业工程学报, 2021, 37(4):188-198. |
ZHU C, MIAO T, XU T Y, et al.. Segmentation and phenotypic trait extraction of maize point cloud stem-leaf based on skeleton and optimal transportation distances [J]. Trans. Chin. Soc. Agric. Eng., 2021, 37(4):188-198. | |
15 | 阳旭,胡松涛,王应华,等.利用多时序激光点云数据提取棉花表型参数方法[J].智慧农业, 2021, 3(1):51-62. |
YANG X, HU S T, WANG Y H, et al..Cotton phenotypic trait extraction using multi-temporal laser point clouds [J]. Smart Agric., 2021, 3(1):51-62. | |
16 | LI D W, CAO Y, SHI G L, et al.. An overlapping-free leaf segmentation method for plant point clouds [J]. IEEE Access, 2019,7( 9): 129054-129070. |
17 | 赖亦斌,陆声链,钱婷婷,等.植物三维点云分割[J].应用科学学报, 2021, 39(4):660-671. |
LAI Y B, LU S L, QIAN T T, et al.. Three-dimensional point cloud segmentation for plants [J]. J. Appl. Sci., 2021, 39(4):660-671. | |
18 | RUSU R B, COUSINS S. 3D is here: point cloud library (PCL)[C]// 2011 IEEE International Conference on Robotics & Automation. USA: NewYork, IEEE, 2011:1-4. |
19 | IOANNOU Y, TAATI B, HARRAP R, et al.. Difference of normals as a multi-scale operator in unorganized point clouds [C]// 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission. Zurich. Switzerland:IEEE, 2012:501-508. |
20 | 孟祥丽,刘一鸣,刘瑶,等.基于摄影测量技术的植物叶面积精确测量方法研究[J].西北林学院学报, 2019, 34(2):222-226. |
MENG X L, LIU Y M, LIU Y, et al.. Precise measurement of plant leaf area based on photogrammetry technology [J]. J. Northwest For. Univ., 2019, 34(2):222-226. | |
21 | 彭宝江,钟若飞,孙海丽,等.面向 DEM 构建的点云四叉树和R树混合索引研究[J].应用科学学报, 2018, 36(4):644-654. |
PENG B J, ZHONG R F, SUN H L, et al.. Hybrid index method based on quad tree and R-tree for DEM reconstruction of airborne point cloud [J]. J. Appl. Sci., 2018, 36(4):644-654. | |
22 | 孙智慧,陆声链,郭新宇,等.基于点云数据的植物叶片曲面重构方法[J].农业工程学报, 2012, 28(3):184-190. |
SUN Z H, LU S L, GUO X Y, et al.. Surfaces reconstruction of plant leaves based on point cloud data [J]. Trans. Chin. Soc.Agric. Eng., 2012, 28(3):184-190. |
[1] | Yaqian SUN, Shiliang CHEN, Jiahao CHU, Xihuan LI, Caiying ZHANG. Mining of QTLs and Candidate Genes for Pod and Seed Traits via Combining BSA-seq and Linkage Mapping in Soybean [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 29-42. |
[2] | Jian HU, Gang CHE, Lin WAN, Huiru ZHOU, Guang LI. Study of Soybean Row Line Extraction Method Under High Light Conditions [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 106-111. |
[3] | Zhenxiang TIAN, Wei DING, Zhuo CHENG, Hangyu DAI. Isolation of Endophytic Bacteria in Soybean and Its Action Effect [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 47-57. |
[4] | Kuiyuan CHEN, Hui LIU, Wei DING. Effect of Glyphosate on Soil Nutrient and the Functional Enzyme Activities in Soybean Fields [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 180-188. |
[5] | Ning QIN, Junru LI, Rui TIAN, Zhenqi SHAO, Xihuan LI, Caiying ZHANG. Mining of Genetic Loci and Screening of Candidate Genes for Seed Tocopherol Content in Soybean [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 48-56. |
[6] | Xinzhu XING, Zhanwu YANG, Youbin KONG, Wenlong LI, Hui DU, Xihuan LI, Caiying ZHANG. Functional Analysis of Carotenoid Cleavage Dioxygenases GmCCD8 in Soybean Nodulation [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 46-53. |
[7] | CHEN Shiliang, SUN Yaqian, SHAO Zhenqi, LI Wenlong, KONG Youbin, DU Hui, LI Xihuan, ZHANG Caiying. Analysis of Epistasis QTL and Its Interaction Effects on Controlling Fresh Pod and Seed Related Traits in Soybean [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 25-36. |
[8] | LIU Yuan1, LI Xi-huan1, WANG Rui-xia2, ZHANG Cai-ying1,3*. Screen Indexes for Soybean Tolerance to Phosphorus Deficiency and Identification of Low Phosphorus Tolerant Soybean Cultivars [J]. , 2015, 17(4): 30-41. |
[9] | WANG Chunyan1, PANG Yanmei2, LI Maosong1*, WANG Xiufen1. Effects of Drought Stress on Soybean Stomatal Characteristics and Photosynthetic Parameter [J]. , 2013, 15(1): 109-115. |
[10] | Wang Ke-jing, Li Fu-shan . General Situation of Wild Soybean(G.soja)Germplasm Resources and Its Utilization of In!rogression Into Cultivated Soybean in China [J]. , 0, (): 69-72. |
[11] | XU Yu-hua, LI Sheng, SHAN Li-min. Present Situation and Prospects of Soybean Breeding of Huajiang Institute [J]. , 2009, 11(S2): 18-20. |
[12] | WANG Ying-nan1, WANG Yang1, YANG Guang-yu1, MA Jin-bao2, CHAN Chang-xue2, YANG W. The Status of Soybean Production in Jilin Province and Analysis of its Development Potential [J]. , 2009, 11(S2): 21-24. |
[13] | CAO Jin-feng1, CHEN Gui-lin2, LU Si-hui1, HU Tie-huan1, GAO Guang-ju1, WANG Ru-f. Technology Demand and Development Strategy of Soybean Industry In Cangzhou City [J]. , 2009, 11(S2): 25-27. |
[14] | JIANG Cheng-xi. Breeding Reports of New Variety of Soybean-Suinong 25 with High Yield and Disease Resistance [J]. , 2009, 11(S2): 127-129. |
[15] | ZHANG Wan-hai, SUN Bing-cheng, HU Xing-guo, ZHANG Qi, CHAI Shen. Breeding Reports of New Soybean Variety Mengdou 30 [J]. , 2009, 11(S2): 133-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||