Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (1): 96-106.DOI: 10.13304/j.nykjdb.2023.0379
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Zhuoran XING1(), Songshuang DING2, Kai ZHANG2, Ming MA3, Wenlong GUO4, Xudong LIU5, Xiangdong SHI1(
)
Received:
2023-05-16
Accepted:
2023-08-01
Online:
2025-01-15
Published:
2025-01-21
Contact:
Xiangdong SHI
邢卓冉1(), 丁松爽2, 张凯2, 马明3, 郭文龙4, 刘旭东5, 时向东1(
)
通讯作者:
时向东
作者简介:
邢卓冉E-mail:1024540693@qq.com;
基金资助:
CLC Number:
Zhuoran XING, Songshuang DING, Kai ZHANG, Ming MA, Wenlong GUO, Xudong LIU, Xiangdong SHI. Research Progress of Deep Learning and Computer Vision in Tobacco Leaf Production[J]. Journal of Agricultural Science and Technology, 2025, 27(1): 96-106.
邢卓冉, 丁松爽, 张凯, 马明, 郭文龙, 刘旭东, 时向东. 计算机视觉与深度学习技术在烟叶生产上的研究进展[J]. 中国农业科技导报, 2025, 27(1): 96-106.
1 | 杨振东. SAR图像舰船目标检测方法研究[D]. 西安:西安电子科技大学,2021. |
YANG Z D. Research on ship target detection in SAR images [D]. Xi’an: Xidian University, 2021. | |
2 | 刘文婷,卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用,2022,58(6):1-16. |
LIU W T, LU X M. Research progress of Transformer based on computer vision [J].Comput. Eng. Appl., 2022,58 (6):1-16. | |
3 | 仇成群,李沛润,杨锋,等. 基于卷积神经网络的前方车辆检测系统研究[J]. 重庆交通大学学报(自然科学版),2022,41(11):58-63. |
QIU C Q, LI P R, YANG F, et al.. Front vehicle detection system based on convolution neural network [J]. J. Chongqing Jiaotong Univ. (Nat. Sci.), 2022,41 (11):58-63. | |
4 | 徐涛,田崇阳,刘才华. 基于深度学习的人群异常行为检测综述[J]. 计算机科学,2021,48(9):125-134. |
XU T, TIAN C Y, LIU C H. Deep learning for abnormal crowd behavior detection: a review [J]. J. Comput. Sci., 2021,48(9):125-134. | |
5 | 彭璟,罗浩宇,赵淦森,等. 深度学习下的医学影像分割算法综述[J]. 计算机工程与应用,2021,57(3):44-57. |
PENG J, LUO H Y, ZHAO G S, et al.. Survey of medical image segmentation algorithm in deep learning [J]. Comput. Eng. Appl.,2021, 57 (3):44-57. | |
6 | 刘卫国,李秀妮,向帅,等. 一种大豆全生育期生物量无损测量方法: CN114324336B[P].2022-09-13. |
7 | 涂智潇. 基于计算机视觉的农作物病虫害检测系统[D]. 武汉:中南财经政法大学,2020. |
TU Z X. Pests diseases of crop detection system based on computer vision [D]. Wuhan:Zhongnan University of Economics and Law, 2020. | |
8 | 刘朝营,许自成,闫铁军. 机器视觉技术在烟草行业的应用状况[J]. 中国农业科技导报,2011,13(4):79-84. |
LIU C Y, XU Z C, YAN T J. Application status of machine vision technology in tobacco industry [J]. J. Agric. Sci. Technol.,2011,13(4):79-84. | |
9 | 王刚.我国烟草病虫害预测预报工作进展与展望[J]. 中国烟草科学,2004,25(1):44-46. |
WANG G. Advances and outlook for forecast work of tobacco diseases and insect pests in China [J]. Chin. Tob. Sci.,2004,25(1):44-46. | |
10 | 彭大鑫,甄彤,李智慧. 低光照图像增强研究方法综述[J]. 计算机工程与应用,2023,59(18):14-27. |
PENG D X, ZHEN T, LI Z H. A survey of research methods for low light image enhancement [J]. Comput. Eng. Appl.,2023,59(18):14-27. | |
11 | 张文静,孙秀朋,乔永亮, 等. 基于InceptionV3的烟草病害识别[J]. 中国烟草学报,2021,27(5): 61-70. |
ZHANG W J, SUN X P, QIAO Y L, et al.. Tobacco disease identification based on InceptionV3 [J]. Acta Tab. Sin., 2021,27(5): 61-70. | |
12 | 喻勇,张云伟,王静, 等. 基于计算机视觉的烟叶病害识别研究[J]. 计算机工程与应用,2015,51(20):167-171. |
YU Y, ZHANG Y W, WANG J, et al.. Research on recognition of tobacco leaf disease based on computer vision [J]. Comput. Eng. Appl.,2015,51(20):167-171. | |
13 | 张经纬,贡亮,黄亦翔,等. 基于随机森林算法的黄瓜种子腔图像分割方法[J]. 农机化研究,2017,39(10):163-168. |
ZHANG J W, GONG L, HUANG Y X, et al.. Image segmentation of cucumber seed cavity based on the random forest algorithm [J]. J. Agric. Mech. Res., 2017,39(10):163-168. | |
14 | 王拓. 基于内容的图像检索技术研究与应用[D]. 贵阳:贵州师范大学,2017. |
WANG T. Research and application of content based image retrieval technology [D]. Guiyang: Guizhou Normal University, 2017. | |
15 | 刘建新,曾嫱,徐可, 等. 基于形态学和小波变换的烟叶病斑分割[J]. 图学学报,2018,39(5):933-938. |
LIU J X, ZENG Q, XU K, et al.. Research on the method of tobacco leaf disease spot segmentation based on morphology and wavelet transform [J]. J. Graphics, 2018,39(5): 933-938. | |
16 | 张珂,冯晓晗,郭玉荣,等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报,2021,26(10):2305-2325. |
ZHANG K, FENG X H, GUO Y R, et al.. Overview of deep convolutional neural networks for image classification [J]. J. Image Graphics, 2021,26(10):2305-2325. | |
17 | 姜丰辉,刘祥鹏,邵巍, 等. 影响因子操纵期刊识别与分类方法构建与应用[J]. 中国科技期刊研究,2023,34(2):136-143. |
JIANG F H, LIU X P, SHAO W,et al.. Identification and classification of journals of impact factor manipulation [J]. Chin. J. Sci. Technol., 2023,34(2):136-143. | |
18 | 滕娟. 赤星病烟叶图像分割研究[D]. 吉首:吉首大学,2017. |
TENG J. Image segmentation of tobacco brown spot [D]. Jishou: Jishou University,2017. | |
19 | 张红涛,朱洋,谭联, 等. 基于FA-SVM技术的烟草早期病害识别[J]. 河南农业科学,2020,49(8):156-161. |
ZHANG H T, ZHU Y, TAN L, et al.. The recognition of early tobacco disease based on FA-SVM technology [J]. J. Henan Agric. Sci., 2020,49(8):156-161. | |
20 | 张艳令. 烟草病害自动识别诊断系统的研究[D]. 泰安:山东农业大学,2015. |
ZHANG Y L. Reserch on automatic identification system of tobacco diseases [D]. Taian: Shandong Agriculture University,2015. | |
21 | AMARA J, BOUAZIZ B, ALGERGAWY A. A deep learning-based approach for banana leaf diseases classification [C]//Proceedings of Datenbanksysteme für Business, Technologie und Web (BTW). 2017:17. |
22 | 李敬. 基于卷积神经网络的烟草病害自动识别研究[D]. 泰安:山东农业大学,2016. |
LI J. Automatic identification research of tobacco diseases based on convolutional neural network [D]. Taian:Shandong Agriculture University, 2016. | |
23 | 刘延鑫,王俊峰,杜传印, 等. 基于YOLOv3的多类烟草叶部病害检测研究[J]. 中国烟草科学,2022,43(2):94-100. |
LIU Y X, WANG J F, DU C Y, et al.. Detection of various tobacco leaf diseases based on YOLOv3 [J]. Chin. Tob. Sci.,2022,43(2):94-100. | |
24 | 邵延华,张铎,楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报,2022,44(10):3697-3708. |
SHAO Y H, ZHANG D, CHU H Y,et al.. A review of YOLO object detection based on deep learning [J]. J. Electron. Inf. Technol., 2022,44(10):3697-3708. | |
25 | 熊涛. 烟叶烘烤过程中外观形态与内在质量关系研究[D]. 北京:中国农业科学院,2021. |
XIONG T. Study on the relationship between appearance and internal quality of tobacco leaves during curing [D]. Beijing:Chinese Academy of Agriculture Sciences,2021. | |
26 | 刘军令. 烟草智能烤房系统中电子鼻关键技术研究[D]. 重庆:重庆大学,2015. |
LIU J L. Study on the key technology of electronic nose in intelligent tobacco barn systems [D]. Chongqing:Chongqing University,2015. | |
27 | 蔡杰,朱国蕾,孙晓燕, 等. 基于不同部位烟叶外观特征与内在质量分析研究[J].农业与技术,2019,39(13):27-28. |
28 | 卢瑞琳. 四川德阳产区雪茄烟叶成熟特征与调制工艺研究[D]. 郑州:河南农业大学,2022. |
LU R L. Study on maturity characteristics and modulation technology of cigar leaves in Deyang of Sichuan [D]. Zhengzhou:Henan Agricultural University, 2022 | |
29 | 陈乾锦,池国胜,吴华建, 等. 采收成熟度对K326不同部位烟叶品质的影响[J]. 贵州农业科学,2020,48(9):43-46. |
CHEN Q J, CHI G S, WU H J, et al.. Effect of harvest maturity of different positions on quality of flue-cured tobacco cultivar K326 [J]. Guizhou Agric. Sci., 2020,48(9): 43-46. | |
30 | 杨尚明,李宜健,肖云峰, 等. 特殊外观特征烟叶部位的识别判定研究[J]. 安徽农业科学,2014,42(5):1534-1535, 1560. |
31 | 赵晨,王涛,郭伟雄, 等. 基于机器视觉的烤烟烟叶部位的智能识别[J]. 湖南农业大学学报(自然科学版),2023,49(4):405-411. |
ZHAO C, WANG T, GUO W X, et al.. Intelligent recognition of flue-cured tobacco position based on machine vision [J]. J. Hunan Agric. Univ. (Nat. Sci.), 2023,49(4):405-411. | |
32 | 张军刚,王永利,吕国新,等. 烤烟成熟过程中鲜烟颜色值与色素含量变化及相关分析[J]. 中国烟草科学,2014,35(1):54-60. |
ZHANG J G, WANG Y L, LYU G X, et al.. Changes of color parameters and pigment contents in flue-cured tobacco leaves during maturing process and their correlational relationship [J]. Chin. Tob. Sci.,2014,35(1):54-60. | |
33 | 汪强,席磊,任艳娜,等. 基于计算机视觉技术的烟叶成熟度判定方法[J]. 农业工程学报,2012,28(4):175-179. |
WANG Q, XI L, REN Y N, et al.. Determination of tobacco leaf maturity degree based on computer vision technology [J]. Trans. Chin. Soc. Agric. Eng., 2012,28(4):175-179. | |
34 | 谢滨瑶,祝诗平,黄华. 基于BPNN和SVM的烟叶成熟度鉴别模型[J]. 中国烟草学报,2019,25(1):45-50. |
XIE B Y, HU S P Z, HUANG H. Model for identification of tobacco leaf maturity based on BPNN and SVM [J]. Acta Tab. Sin., 2019,25 (1):45-50. | |
35 | 沈平,童德文,陈郑盟, 等. 基于叶色偏态分布模式的鲜烟叶成熟度判定[J]. 烟草科技,2021,54(8):26-35. |
SHEN P, TONG D W, CHEN Z M, et al.. Maturity discrimination on fresh tobacco leaves based on skewed leaf color distribution patterns [J]. Tob. Sci. Technol., 2021,54 (8):26-35. | |
36 | 汪睿琪,张炳辉,顾钢, 等. 基于YOLOv5的鲜烟叶成熟度识别模型研究[J]. 中国烟草学报,2023,29(2):46-55. |
WANG R Q, ZHANG B H, GU G, et al.. Recognition model of tobacco fresh leaf maturity based on YOLOv5 [J]. Acta Tab. Sin., 2023,29(2):46-55. | |
37 | 叶惠源,丁松爽,段旺军, 等. 雪茄烟叶晾制过程中形态与水分含量的协同变化研究[J]. 中国烟草学报,2023,29(1):97-105. |
YE H Y, DING S S, DUAN W J, et al.. Study on the synergistic changes of morphological parameters and moisture content during the drying process of cigar tobaccoleaves [J]. Acta Tab. Sin., 2023,29(1):97-105. | |
38 | 孙计平,李雪君,贾保顺, 等. 不同品种烤烟调制前后化学成分变化及与感官质量的关系[J]. 中国农学通报,2012,28(18):251-255. |
SUN J P, LI X J, JIA B S, et al.. Relationship between sensory quality and chemicalcharacteristics of different flue-cured tobacco varieties and its changes before and after flue-curing [J]. Chin. Agric. Sci. Bull., 2012,28(18):251-255. | |
39 | 张帆. 烤烟烘烤过程中主要酶活性变化规律及其与化学成分关系的研究[D]. 贵阳:贵州大学,2009. |
ZHANG F. Study on the tobacco of the changing regulation of the activity of primary enzyme during curing process [D]. Guiyang: Guizhou University,2009. | |
40 | 李艳,李峥,张永辉, 等. 基于CIE色度空间的烟叶烘烤过程中色素含量预测研究[J]. 昆明学院学报,2019,41(3):20-25. |
LI Y, LI Z, ZHANG Y H, et al.. Predictive study of pigment content during tobacco curing based on CIE chromaticity space [J]. J. Kunming Univ., 2019,41(3):20-25. | |
41 | 李生栋,谭方利,黎妍妍, 等. 不同素质烟叶烘烤过程中颜色值与色素含量的关系[J]. 南方农业学报,2016,47(9):1570-1575. |
LI S D, TAN F L, LI Y Y,et al.. Relationship between color parameters and pigment contents during flue-curing process of different-quality tobacco leaves [J]. J. South. Agric.,2016,47(9):1570-1575. | |
42 | 段史江. 图像处理技术在烤烟烘烤过程中的应用研究[D]. 郑州:河南农业大学,2012. |
DUAN S J. Research on application of image processing technology during curing process of flue-cured tobacco [D]. Zhengzhou:Henan Agricultural University,2012. | |
43 | 杜海娜,孟令峰,王松峰, 等. 基于机器学习的密集烘烤过程烟叶失水率预测模型对比[J]. 烟草科技,2022,55(9):81-88. |
DU H N, MENG L F, WANG S F, et al.. Machine learning-based models for predicting dehydration rate of tobacco leaf during bulk curing and comparisons thereof [J]. Tob. Sci. Technol.,2022,55(9): 81-88. | |
44 | 何军,王奎武,朱列书, 等. 烤烟不同烘烤方法的研究进展[J]. 作物研究,2007,21(5):729-732. |
45 | 贺帆,王涛,武圣江,等. 密集烘烤烤烟不同品种烟叶质地和颜色变化[J]. 核农学报,2014,28(9):1647-1655. |
HE F, WANG T, WU S J, et al.. Study on the change of texture and color of different flue-cured tobacco varieties during the bulk-curing [J]. Acta Agric. Nucl. Sin., 2014,28(9):1647-1655. | |
46 | 李增盛,孟令峰,王松峰,等. 基于图像处理的烟叶烘烤阶段判别模型优选[J]. 中国烟草学报,2022,28(2):65-76. |
LI Z S, MENG L F, WANG S F, et al.. Selection of optimum discriminant model in tobacco curing stage based on image processing [J]. Acta Tab. Sin., 2022,28(2):65-76. | |
47 | 王暑. 烟叶烘烤智能控制系统研究[D]. 昆明:昆明理工大学,2008. |
WANG S. Research on intelligent control system for tobacco baking room [D]. Kunming:Kunming University of Science and Technology, 2008. | |
48 | 杨海清,刘永辉. 深度学习的烟叶烘干状态识别算法[J]. 浙江工业大学学报,2021,49(1):30-33, 87. |
YANG H Q, LIU Y H. Tobacco leaf drying state recognition algorithm based on deep learning [J]. J. Zhejiang Univ. Technol., 2021,49 (1):30-33, 87. | |
49 | 赵镭,刘文. 感官分析技术应用指南[M].北京:中国轻工业出版社,2011:1-199. |
50 | 王戈,丁冉,徐玮杰,等. 计算机视觉和智能识别技术在烤烟烟叶分级中的应用[J]. 计算机与应用化学,2019,36(,5):548-553. |
WANG G, DING R, XU W J, et al.. Application of computer vision and intelligent identification technology in grading of flue-cured tobacco [J]. Comput. Appl. Chem.,2019,36(5):548-553. | |
51 | 毛鹏军,贺智涛,杜东亮,等. 烤烟烟叶视觉检测分级系统的研究现状与发展趋势[J]. 农业机械,2006(16):43. |
52 | 梁锦秀. 低光照条件下的图像增强和识别关键技术研究[D]. 广州:华南理工大学,2021. |
LIANG J X. Research on key technologies of image enhancement and recognition in low-light conditions [D]. Guangzhou:South China University of Technology, 2021. | |
53 | 秦芝乾. 不同波段光源和光照强度对烟叶分级的影响研究[D]. 贵阳:贵州大学,2020. |
QIN Z Q. Study on the effects of different band light sources and light intensity on tobacco leaf grading [D]. Guiyang: Guizhou University, 2020. | |
54 | 刘新宇,郝同盟,张红涛,等. 基于改进YOLOv3网络的烟梗识别定位方法[J]. 食品与机械,2022,38(3):103-109. |
LIU X Y, HAO T M, ZHANG H T,et al.. Cigarette stem identification and location method based on improved YOLOv3 network [J]. Food Mach., 2022,38(3):103-109. | |
55 | 张声超. 基于特征融合的肺结节检测关键技术研究[D]. 广州:华南理工大学,2018. |
ZHANG S C. Research on key techniques of pulmonary nodule detection based on feature fusion [D]. Guangzhou:South China University of Technology, 2018. | |
56 | 何艳,王海军,庄珍珍, 等. 基于机器视觉技术的烟叶分级特征提取[J]. 南方农机,2020,51(15):29-30. |
57 | 庄珍珍,祝诗平,孙雪剑, 等. 基于机器视觉的烟叶自动分组方法[J]. 西南师范大学学报(自然科学版),2016,41(4):122-129. |
ZHUANG Z Z, ZHU S P, SUN X J, et al.. On method of tobacco automatic groping based on machine vision [J]. J. Southwest China Norm. Univ. (Nat. Sci.), 2016,41(4):122-129. | |
58 | HARJOKO A, PRAHARA A, SUPARDI T W, et al.. Image processing approach for grading tobacco leaf based on color and quality [J]. Int. J. Smart Sens. Intell. Syst., 2019, 12(1):1-10. |
59 | 郭强. 基于图像处理与神经网络的烟叶分级研究[D]. 长沙:中南大学,2013. |
GUO Q. The research of tobacco grading based on image processing and neural network [D]. Changsha:Central South University, 2013. | |
60 | 杨述斌,董春林,王锋, 等. 基于PCA-SSA-BP神经网络的烟叶分级方法[J]. 自动化与仪表,2023,38(2):70-75. |
YANG S B, DONG C L, WANG F, et al.. Tobacco leaf grading method based on PCA-SSA-BP neural network [J]. Autom. Instrument., 2023,38(2):70-75. | |
61 | 张恒,徐文韬,张子颖, 等. 不同生态区影响烤烟上部烟叶感官品质的关键外观指标[J]. 烟草科技,2023,56(1):24-32. |
ZHANG H, XU W T, ZHANG Z Y, et al.. Key appearance indexes affecting sensory quality of upper flue-cured tobacco leaves from different ecological regions [J]. Tob. Sci. Technol.,2023,56(1): 24-32. | |
62 | 郝贤伟,李奇,毕一鸣, 等. 不同颜色上部烤烟主要品质指标的差异分析[J]. 河南农业科学,2023,52(3):173-180. |
HAO X W, LI Q, BI Y M, et al.. Difference analysis of main quality indicators of upper leaves of flue-cured tobacco with different colors [J]. Henan Agric. Sci., 2023,52(3):173-180. | |
63 | 李悦,符云鹏,甄焕菊, 等. 烤后烟叶表面颜色特征参数及其与外观质量指标的关系[J]. 河南农业大学学报,2017,51(1):1-7. |
LI Y, FU Y P, ZHEN H J, et al.. The relationship between the characteristic parameters of surface color and the index of appearance quality of flue-cured tobacco [J]. J. Henan Univ. Agric., 2017,51(1):1-7. | |
64 | 陈文兵,车文刚. 内外特征结合的烟叶自动分级方法[J]. 陕西理工大学学报(自然科学版),2022,38(6):28-37. |
CHEN W B, CHE W G. Automatic grading method of tobacco leaves based on combination of internal and external features [J]. J. Shaanxi Technol. Univ. (Nat. Sci.), 2022,38(6):28-37. | |
65 | 王士鑫. 基于卷积神经网络(CNN)的烤烟烟叶质量分级研究[D]. 昆明:云南师范大学,2020. |
WANG S X. Quality classification of flue-cured tobacco leaf based on convolutional neural network (CNN) [D]. Kunming:Yunnan Normal University, 2020. | |
66 | 焦方圆,申金媛,郝同盟. 一种基于卷积神经网络的烟叶等级识别方法[J]. 食品与机械,2022,38(2):222-227. |
JIAO F Y, SHEN J Y, HAO T M. A method of tobacco leaf grade recognition based on convolution neural network [J]. Food Mach., 2022,38(2):222-227. | |
67 | 陈人杰. 基于机器视觉的烤烟自动分级方法研究[D]. 成都:电子科技大学,2022. |
CHEN R J. Research on automatic classification method of flue-cured tobacco based on machine vision [D]. Chengdu:University of Electronic Science and Technology, 2022. | |
68 | 鲁梦瑶,周强,姜舒文,等. 基于深度学习与多尺度特征融合的烤烟烟叶分级方法[J]. 中国农机化学报,2022,43(1):158-166. |
LU M Y, ZHOU Q, JIANG S W, et al.. Flue-cured tobacco leaf grading method based on deep learning and multi-scale feature fusion [J]. J. Chin. Agric. Mach., 2022,43(1):158-166. | |
69 | 庄福振,罗平,何清, 等. 迁移学习研究进展[J]. 软件学报,2015,26(1):26-39. |
ZHUANG F Z, LUO P, HE Q, et al.. Survey on transfer learning research [J]. J. Softw., 2015,26(1):26-39. | |
70 | BARRE P, STOVER B C, MULLER K F, et al.. LeafNet: a computer vision system for automatic plant species identification [J]. Ecol. Inform., 2017,40: 50-56. |
71 | WU S G, BAO F S, XU E Y, et al.. A leaf recognition algorithm for plant classification using probabilistic neural network [C]//Proceddings of IEEE International Symposium on Signal Processing and Information Technology. 2007:11-16. |
72 | HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics [J/OL]. Comput. Sci.,2015, 11: 8060 [2023-04-16]. . |
73 | VASWANI A, SHAZEER N, PARMAR N,et al.. Attention is all you need [C]//Advances in neural information processing systems.2017:5998-6008. |
74 | 吴书陪. 基于视觉Transformer的番茄病害程度识别研究[D]. 合肥:中国科学技术大学,2022. |
WU S P. Recognition of tomato disease degree based on visual transformer [D]. Hefei: University of Science and Technology of China, 2022. | |
75 | 安小松,宋竹平,梁千月, 等. 基于CNN-Transformer的视觉缺陷柑橘分选方法[J]. 华中农业大学学报,2022,41(4):158-169. |
AN X S, SONG Z P, LIANG Q Y, et al.. A CNN-transformer-based method for sorting citrus with visual defects [J]. J. Huazhong Agric. Univ., 2022,41(4):158-169. | |
76 | CHEN L C, PAPANDREOU G, SCHROFF F, et al.. Rethinking atrous convolution for semantic image segmentation [J/OL]. Comput. Sci., 2017,6: 5587 [2023-04-16] .. |
77 | 毛万菁,阮炬全,刘朔. 基于注意力机制的改进UNet草莓病害语义分割[J]. 计算机系统应用,2023,32(6):251-259. |
MAO W J, RUAN J Q, LIU S. Improved UNet based on attention mechanism in semantic segmentation of strawberry diseases [J]. Comput. Syst. Appl., 2023,32(6):251-259. | |
78 | 陈鹏,马子涵,章军,等. 融合注意力机制的小麦赤霉病语义分割网络[J]. 中国农机化学报,2023,44(4):145-152. |
CHEN P, MA Z H, ZHANG J, et al.. Semantic segmentation network based on attention mechanism wheat FHB [J]. J. Chin. Agric. Mechan., 2023,44(4):145-152. | |
79 | AKALYA D C, DHANARAJ K R, KIRUBA R. Affective model based speech emotion recognition using deep learning techniques [J/OL]. Indian J. Comput. Sci., 2020,5(4-5):154783[2023-04-16]. . |
80 | 刘建伟,王园方,罗雄麟. 深度记忆网络研究进展[J]. 计算机学报,2021,44(8):1549-1589. |
LIU J W, WANG Y F, LUO X L. Research and development on deep memory network [J]. J. Chin. Comput., 2021,44(8):1549-1589. | |
81 | BHIMAVARPU U, BATTINENI G, CHINTALAPUDI N. Improved optimization algorithm in LSTM to predict crop yield [J/OL]. Computers, 2023, 12(1): 10 [2023-04-16]. . |
82 | DUPUIS A, DADOUCHI C, AGARD B. Methodology for multi-temporal prediction of crop rotations using recurrent neural networks [J/OL]. Smar. Agric. Technol., 2023,4:100152 [2023-04-16]. . |
[1] | Chunjiao MI, Hongren SUN, Jiping ZHANG, Yucai LYU, Yandi ZHANG. Abundance-deficiency Index of Soil Available Phosphorus and Recommended Phosphorus Fertilizer Application Rates for Tomato in China [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 222-232. |
[2] | Chengliang XIONG, Qingfu ZHANG, Weiyuan YAO, Tao XIA, Qingping XU, Xixin ZHOU, Yi ZHANG, Lijuan CHEN, Liu YANG. Effects of Different Types of Rice Straw Addition on Soil Microbial Communities Under Continuous Tobacco Cropping [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 233-240. |
[3] | Guoyu HU, Yalan DONG, Gulbahar Tohti, Guang LIU, Jianping ZHOU. Research on Grapevine Structure Segmentation Method Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 105-111. |
[4] | Xiaofei XIONG, Xiuqin WANG, Cuizhen ZHUANG, Jiaxian GUO, Xinrui XIE, Jianwei WU, Qifeng LI. Research on Diagnostic Method of Citrus Anthracnose Based on Image ROI Fusion Feature [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 83-92. |
[5] | Huiping JIN, Haiwen MOU, Teng LIU, Jialin YU, Xiaojun JIN. Bok Choy and Weed Identification Based on Deep Convolutional Neural Networks [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 122-130. |
[6] | Xixin ZHOU, Shilin YUAN, Liu YANG, Tao XIA, Yi ZHANG, Wei FAN. Identification of Continuous Cropping Tobacco Root Exudates and Screening of Potential Allelopathic Substances [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 136-146. |
[7] | Xiaofei XIONG, Wenqian WU, Hongyan HUO, Xin ZHANG, Yan YU, Dong AN, Tong ZHANG, Jianwei WU. Research on Sensor-based Agricultural Greenhouse Data Direct Reporting System and Intelligent Control [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 93-102. |
[8] | Yue HUANG, Yanfen XIE, Xuanquan ZHU, Meng JIA, Ge WANG, Yuxiang BAI, Yu DU, Peng ZHOU, Yuting ZHAO, Hongqiong ZHU, Fan YANG, Zhiwen XIAO, Wenbo WANG, Zhipeng FANG, Jiabao HAN, Na WANG. Risk Assessment and Influencing Factors Analysis of Chlorine Content in Tobacco Leaves in Tobacco Planting Areas [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 206-213. |
[9] | Yahong ZHAO, Qianyu HU, Rong XIA, Zhijiang WANG, Yonghui XIE, Xianwen YE, Lei YU, Ying QI, Shaowu YANG, Zhiqin XUE, Zhixing WU, Feiyan HUANG, Tianhua HAN. Effects of Biochar Fertilizer on Rhizosphere Flora and Physicochemical Properties of Flue-cured Tobacco Susceptible to Root Knot Nematode [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 206-214. |
[10] | Xudong ZHOU, Tianhua HAN, Yunxin SHEN, Zhufeng SHI, Biao HE, Mingying YANG, Weihua PEI, Yonghong HE, Peiwen YANG. Response Characteristics of Soil Microecology in Long-term Continuous Cropping Tobacco Field Under 4 Rotation Patterns [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 174-187. |
[11] | Fengfeng LIU, Ming WU, Yinghui ZHOU, Yong WU, Jiashu TIAN, Jiayang XU, Zicheng XU, Jiewang HE. Effects of Combined Application of Auxin and Molybdenum on Physiological Metabolism and Quality of Upper Leaves of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 208-215. |
[12] | Hao GUO, Ronglei TAN, Jinpeng YANG, Jun YU, Wenchang HUANG, Jiuhong YANG, Baoming QIAO, Ruiwei YANG, Fangsen XU, Chunlei YANG, Guangda DING. Effects of Shading Cultivation on Leaf Uniformity of Cigar-wrapper Tobacco (Nicotiana tabacum) [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 216-225. |
[13] | Yongjin LIANG, Ruixuan ZHU, Beilei WEI, Xiaomai YUAN, Wuyang CHENG, Bo PENG, Ziting WANG, Jianyu WEI. Effect of Combined Application of Organic Fertilizer on Tobacco Leaf Quality in China: a Meta-analysis [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 164-175. |
[14] | Shaohao LU, Yongheng XIE, Liping XU, Chongsheng LIU, Zhaoming WU, Lina ZHANG, Gaoyan XU, Zhenjie ZHAO, Yang GAO. Differential Analysis of Aroma Components of Cigar Tobacco Leaves Based on OPLS-DA Model [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 176-186. |
[15] | Hang XU, Hao SONG, Gaocheng FAN, Shujian HUANG, Yuzi LUO, Huaji QIU. Research Advances of Monoclonal Antibody Production Technologies [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 210-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||