Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (3): 83-94.DOI: 10.13304/j.nykjdb.2023.0667
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Pengyang SHAO(), Yuzhu SHA, Xiu LIU(
), Guoshun CHEN, Caiye ZHU, Jiqing WANG, Fanxiong WANG, Xiaowei CHEN, Wenxin YANG
Received:
2023-09-06
Accepted:
2023-12-11
Online:
2025-03-15
Published:
2025-03-14
Contact:
Xiu LIU
邵鹏阳(), 沙玉柱, 刘秀(
), 陈国顺, 朱才业, 王继卿, 王翻兄, 陈小伟, 杨文鑫
通讯作者:
刘秀
作者简介:
邵鹏阳 E-mail:shaopengyang666@163.com;
基金资助:
CLC Number:
Pengyang SHAO, Yuzhu SHA, Xiu LIU, Guoshun CHEN, Caiye ZHU, Jiqing WANG, Fanxiong WANG, Xiaowei CHEN, Wenxin YANG. Effects of Astragalus Feed Additive on Growth Performance, Serum Ig, Rumen Fermentation and Microbiota of Lambs[J]. Journal of Agricultural Science and Technology, 2025, 27(3): 83-94.
邵鹏阳, 沙玉柱, 刘秀, 陈国顺, 朱才业, 王继卿, 王翻兄, 陈小伟, 杨文鑫. 黄芪饲料添加剂对羔羊生长性能、血清Ig和瘤胃发酵功能及微生物菌群特征的影响[J]. 中国农业科技导报, 2025, 27(3): 83-94.
指标Index | 处理Treatment | |
---|---|---|
CK | HQ | |
初始体质量 Initial weight | 14.50±1.46 a | 14.75±1.81 a |
终末体质量 Final weight | 29.28±3.76 a | 30.43±4.71 a |
日增重Average daily gain | 0.25±0.05 a | 0.26±0.08 a |
Table 1 Growth performance of early weaned lambs under different treatments
指标Index | 处理Treatment | |
---|---|---|
CK | HQ | |
初始体质量 Initial weight | 14.50±1.46 a | 14.75±1.81 a |
终末体质量 Final weight | 29.28±3.76 a | 30.43±4.71 a |
日增重Average daily gain | 0.25±0.05 a | 0.26±0.08 a |
指标Index | 处理Treatment | P值 P value | |
---|---|---|---|
CK | HQ | ||
IgA | 19.28±1.78 | 28.29±1.86 | 0.004 |
IgM | 6.07±1.58 | 9.11±0.60 | 0.035 |
IgG | 831.18±22.94 | 824.41±107.35 | 0.924 |
Table 2 Serum Ig levels of early weaned lambs under different treatments
指标Index | 处理Treatment | P值 P value | |
---|---|---|---|
CK | HQ | ||
IgA | 19.28±1.78 | 28.29±1.86 | 0.004 |
IgM | 6.07±1.58 | 9.11±0.60 | 0.035 |
IgG | 831.18±22.94 | 824.41±107.35 | 0.924 |
指标Index | 处理Treatment | P 值 P value | |
---|---|---|---|
CK | HQ | ||
乙酸Acetic/(mmol·L-1) | 15.61±1.33 | 18.37±0.23 | 0.002 |
丙酸Propionic/(mmol·L-1) | 5.20±0.04 | 5.22±0.01 | 0.467 |
异丁酸Isobutyric/(mmol·L-1) | 0.81±0.02 | 0.78±0.04 | 0.103 |
丁酸Butyrate/(mmol·L-1) | 2.86±0.12 | 3.69±0.40 | 0.002 |
异戊酸Isovaleric/(mmol·L-1) | 1.05±0.06 | 0.94±0.04 | 0.012 |
戊酸Valeric/(mmol·L-1) | 0.71±0.01 | 0.72±0.06 | 0.757 |
总酸Total VFAs/(mmol·L-1) | 26.25±1.21 | 29.72±0.45 | 0.000 |
氨氮NH3-N/(mg·100 mL-1) | 16.25±2.48 | 20.31±0.94 | 0.009 |
Table 3 Effect of Astragalus additive on rumen fermentation parameters of early weaned lambs
指标Index | 处理Treatment | P 值 P value | |
---|---|---|---|
CK | HQ | ||
乙酸Acetic/(mmol·L-1) | 15.61±1.33 | 18.37±0.23 | 0.002 |
丙酸Propionic/(mmol·L-1) | 5.20±0.04 | 5.22±0.01 | 0.467 |
异丁酸Isobutyric/(mmol·L-1) | 0.81±0.02 | 0.78±0.04 | 0.103 |
丁酸Butyrate/(mmol·L-1) | 2.86±0.12 | 3.69±0.40 | 0.002 |
异戊酸Isovaleric/(mmol·L-1) | 1.05±0.06 | 0.94±0.04 | 0.012 |
戊酸Valeric/(mmol·L-1) | 0.71±0.01 | 0.72±0.06 | 0.757 |
总酸Total VFAs/(mmol·L-1) | 26.25±1.21 | 29.72±0.45 | 0.000 |
氨氮NH3-N/(mg·100 mL-1) | 16.25±2.48 | 20.31±0.94 | 0.009 |
指标 Index | 处理Treatment | P 值 P value | |
---|---|---|---|
HQ | CK | ||
ACE指数ACE index | 765.88 | 763.22 | 0.648 |
Chao1指数Chao1 index | 768.90 | 766.06 | 0.648 |
Simpson指数Simpson index | 0.96 | 0.98 | 0.004 |
Shannon指数Shannon index | 7.00 | 7.26 | 0.001 |
Table 4 Alpha diversity of microorganism under different treatments
指标 Index | 处理Treatment | P 值 P value | |
---|---|---|---|
HQ | CK | ||
ACE指数ACE index | 765.88 | 763.22 | 0.648 |
Chao1指数Chao1 index | 768.90 | 766.06 | 0.648 |
Simpson指数Simpson index | 0.96 | 0.98 | 0.004 |
Shannon指数Shannon index | 7.00 | 7.26 | 0.001 |
Fig. 8 Correlation analysis of rumen microbiota with VFAs and immunoglobulin in lambsNote: *, ** and *** indicate significant correlations at P<0.05, P<0.01 and P<0.001 levels, respectively.
1 | LI C, WANG W, LIU T, et al.. Effect of early weaning on the intestinal microbiota and expression of genes related to barrier function in lambs [J/OL]. Front. Microbiol., 2018, 9:1431 [2023-08-10]. . |
2 | GUO G Z, YANG W G, FAN C J, et al.. The effects of fucoidan as a dairy substitute on diarrhea rate and intestinal barrier function of the large intestine in weaned lambs [J/OL]. Front. Vet. Sci., 2022, 9:1007346 [2023-08-10]. . |
3 | MCCOARD S A, CRISTOBAL-CARBALLO O, KNOL F W, et al.. Impact of early weaning on small intestine, metabolic, immune and endocrine system development, growth and body composition in artificially reared lambs [J/OL]. J. Anim. Sci., 2020, 98(1):skz356 [2023-08-10]. . |
4 | 杜海东,娜仁花.反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报,2023,54(5):1804-1814. |
DU H D, NA R H. Study on gastrointestinal epithelial barrier function and interaction withmicroorganisms in ruminants [J]. Acta. Vet. Zootechnica. Sin., 2023, 54(5):1804-1814. | |
5 | SHEN H, XU Z H, SHEN Z M, et al.. The regulation of ruminal short-chain fatty acids on the functions of rumen barriers [J/OL]. Front. Physiol., 2019, 10:1305 [2023-08-10]. . |
6 | EDWARDS J E, MCEWAN N R, TRAVIS A J, et al.. 16S rDNA library-based analysis of ruminal bacterial diversity [J]. Antonie Van Leeuwenhoek, 2004, 86(3):263-281. |
7 | GENSOLLEN T, IYER S S, KASPER D L, et al.. How colonization by microbiota in early life shapes the immune system [J]. Science, 2016, 352(6285):539-544. |
8 | MIZRAHI I, WALLACE R J, MORAIS S. The rumen microbiome: balancing food security and environmental impacts [J]. Nat. Rev. Microbiol., 2021, 19(9):553-566. |
9 | JAMI E, WHITE B A, MIZRAHI I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency [J/OL]. PLoS One, 2014, 9(1):e85423 [2023-08-10]. . |
10 | LI C, ZHANG Q, WANG G X, et al.. The functional development of the rumen is influenced by weaning and associated with ruminal microbiota in lambs [J]. Anim. Biotechnol., 2022, 33(4):612-628. |
11 | MAO H L, ZHANG Y F, YUN Y, et al.. Weaning age affects the development of the ruminal bacterial and archaeal community in hu lambs during early life [J/OL]. Front. Microbiol., 2021, 12:636865 [2023-08-10]. . |
12 | CHENG C, YIN Y Y, BIAN G R. Effects of whole maize high-grain diet feeding on colonic fermentation and bacterial community in weaned lambs [J/OL]. Front. Microbiol., 2022, 13:1018284 [2023-08-10]. . |
13 | 杨芙蓉,张琴,孙成忠,等.蒙古黄芪潜在分布区预测的多模型比较[J].植物科学学报,2019,37(2):136-143. |
YANG F R, ZHANG Q, SUN C Z, et al.. Comparative evaluation of multiple models for predicting the potential distributionareas of Astragalus membranaceus var mongholicus [J]. Plant. Sci. J., 2019, 37(2):136-143. | |
14 | 张蔷,高文远,满淑丽.黄芪中有效成分药理活性的研究进展[J].中国中药杂志,2012,37(21):3203-3207. |
ZHANG Q, GAO W Y, MAN S L. Chemical composition and pharmacological activities of astragali radix [J]. China J. Chin. Mat. Med., 2012, 37(21):3203-3207. | |
15 | HAO X, WANG P, REN Y, et al.. Effects of Astragalus membranaceus roots supplementation on growth performance, serum antioxidant and immune response in finishing lambs [J]. Asian-Austr. J. Anim. Sci., 2020, 33(6):965-972. |
16 | YIN F G, LIU Y L, YIN Y L, et al.. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets [J]. Amino Acids, 2009, 37(2):263-270. |
17 | 李艺蔓.黄芪多糖和发酵麸皮多糖对肉羊生长性能、营养物质消化率及血液指标的影响[D].呼和浩特:内蒙古农业大学,2022. |
LI Y M. Effects of Astragalus polysaccharides and fermentedwheat branpolysaccharides on production performance, nutrient digestibilityand blood indexs of mutton sheep [D]. Hohhot: Inner Mongolia Agricultural University, 2022. | |
18 | ZHONG R Z, YU M, LIU H W, et al.. Effects of dietary Astragalus polysaccharide and Astragalus membranaceus root supplementation on growth performance, rumen fermentation, immune responses, and antioxidant status of lambs [J]. Anim. Feed. Sci. Technol., 2012, 174(1-2):60-67. |
19 | CHE D S, ADAMS S, WEI C, et al.. Effects of Astragalus membranaceus fiber on growth performance, digestibilitynutrient, compositionmicrobial, productionVFA, pHgut, and immunity of weaned pigs [J/OL]. Microbiologyopen, 2019, 8(5):e712 [2023-08-10]. . |
20 | 李娜,程贺平,柳调过,等.黄芪和板蓝根对湖寒杂交F1代育肥羊生产性能和免疫指标的影响[J].中国饲料,2021(21):48-52. |
LI N, CHENG H P, LIU D G, et al.. Effects of Astragalus membranaceus and Radix isatidis on performance and immune indexes of Huhan hybrid F1 sheep [J]. China Feed, 2021, 689(21):48-52. | |
21 | LIU X, SHA Y Z, DINGKAO R, et al.. Interactions between rumen microbes, vfas, and host genes regulate nutrient absorption and epithelial barrier function during cold season nutritional stress in Tibetan sheep [J/OL]. Front. Microbiol., 2020, 11:593062 [2023-08-10]. . |
22 | 冯宗慈,高民.通过比色测定瘤胃液氨氮含量方法的改进[J].畜牧与饲料科学,2010,31():37. |
23 | BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al.. Quality-filtering vastly improves diversity estimates from illumina amplicon sequencing [J]. Nat. Methods, 2013, 10(1):57-59. |
24 | WANG X J, DING L M, WEI H Y, et al.. Astragalus membranaceus root supplementation improves average daily gain, rumen fermentation, serum immunity and antioxidant indices of Tibetan sheep [J/OL]. Animal, 2021, 15(1):100061 [2023-08-10]. . |
25 | ASCHENBACH J R, PENNER G B, STUMPFF F, et al.. Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH [J]. J. Anim. Sci., 2011, 89(4):1092-1107. |
26 | BERGMAN E N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species [J]. Physiol. Rev., 1990, 70(2):567-590. |
27 | GABEL G, ASCHENBACH J R, MULLER F. Transfer of energy substrates across the ruminal epithelium: implications and limitations [J]. Anim. Health. Res. Rev., 2002, 3(1):15-30. |
28 | REYNOLDS C K, KRISTENSEN N B. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis [J]. J. Anim. Sci., 2008, 86(S14):293-305. |
29 | CANNON J P, DISHAW L J, HAIRE R N, et al.. Recognition of additional roles for immunoglobulin domains in immune function [J]. Semin. Immunol., 2010, 22(1):17-24. |
30 | SONG C J, GAN S Q, SHEN X Y. Effects of nano-copper poisoning on immune and antioxidant function in the Wumeng semi-fine wool sheep [J]. Biol. Trace. Elem. Res., 2020, 198(2):515-520. |
31 | KEYT B A, BALIGA R, SINCLAIR A M, et al.. Structure, function, and therapeutic use of igm antibodies [J/OL]. Antibodies (Basel), 2020, 9(4):53 [2023-08-10]. . |
32 | WANG Q Y, ZENG Y T, ZENG X L, et al.. Effects of dietary energy levels on rumen fermentation, gastrointestinal tract histology, and bacterial community diversity in fattening male hu lambs [J/OL]. Front. Microbiol., 2021, 12:695445 [2023-08-10]. |
33 | NAAS A E, MACKENZIE A K, MRAVEC J, et al.. Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? [J]. mBio, 2014, 5(4):1401-1414. |
34 | RANSOM-JONES E, JONES D L, MCCARTHY A J, et al.. The Fibrobacteres: an important phylum of cellulose-degrading bacteria [J]. Microb. Ecol., 2012, 63(2):267-281. |
35 | HUANG C, GE F, YAO X X, et al.. Microbiome and metabolomics reveal the effects of different feeding systems on the growth and ruminal development of yaks [J/OL]. Front. Microbiol., 2021, 12:682989 [2023-08-10]. . |
36 | HOLMAN D B, GZYL K E. A meta-analysis of the bovine gastrointestinal tract microbiota [J/OL]. FEMS Microbiol. Ecol., 2019, 95(6): fiz072 [2023-08-10]. . |
37 | VAN GYLSWYK N O. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism [J/OL]. Int. J. Syst. Bacteriol., 1995, 45(2):297 [2023-08-10]. . |
38 | AUFFRET M D, STEWART R D, DEWHURST R J, et al.. Identification of microbial genetic capacities and potential mechanisms within the rumen microbiome explaining differences in beef cattle feed efficiency [J/OL]. Front. Microbiol., 2020, 11:1229 [2023-08-10]. . |
39 | DAGHIO M, CIUCCI F, BUCCIONI A, et al.. Correlation of breed, growth performance, and rumen microbiota in two rustic cattle breeds reared under different conditions [J/OL]. Front. Microbiol., 2021, 12:652031 [2023-08-10]. . |
40 | WATERS J L, LEY R E. The human gut bacteria christensenellaceae are widespread, heritable, and associated with health [J/OL]. BMC Biol., 2019, 17(1):83 [2023-08-10]. . |
41 | MA J, ZHU Y Y, WANG Z S, et al.. Comparing the bacterial community in the gastrointestinal tracts between growth-retarded and normal yaks on the Qinghai-Tibetan plateau [J/OL]. Front. Microbiol., 2020, 11:600516 [2023-08-10]. . |
42 | 王文娟,孙冬岩,孙笑非.猪肠道微生物菌群及其与营养代谢的相互作用[J].饲料研究,2023,46(15):124-127. |
WANG W J, SUN D Y, SUN X F. Swine gut microbiota and its interaction with nutrient metabolism [J]. Feed Res., 2023, 46(15):124-127. | |
43 | WANG X J, HU C S, DING L M, et al.. Astragalus membranaceus alters rumen bacteria to enhance fiber digestion, improves antioxidant capacity and immunity indices of small intestinal mucosa, and enhances liver metabolites for energy synthesis in tibetan sheep [J/OL]. Animals (Basel), 2021, 11(11):3236 [2023-08-10]. . |
44 | LEE-SARWAR K A, LASKY-SU J, KELLY R S, et al.. Metabolome-microbiome crosstalk and human disease [J/OL]. Metabolites, 2020, 10(5):181 [2023-08-10]. . |
45 | ZHOU F, LIU B D, LIU X, et al.. The impact of microbiome and microbiota-derived sodium butyrate on Drosophila transcriptome and metabolome revealed by multi-omics analysis [J/OL]. Metabolites, 2021, 11(5):298 [2023-08-10]. . |
46 | REN Z, YAO R, LIU Q, et al.. Effects of antibacterial peptides on rumen fermentation function and rumen microorganisms in goats [J/OL]. PLoS One, 2019, 14(8):e221815 [2023-08-10]. . |
47 | VITAL M, HOWE A C, TIEDJE J M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data [J/OL]. mBio, 2014, 5(2):e889 [2023-08-10]. . |
48 | TAKEUCHI T, MIYAUCHI E, KANAYA T, et al.. Acetate differentially regulates IgA reactivity to commensal bacteria [J]. Nature, 2021, 595(7868):560-564. |
49 | DONALDSON G P, LADINSKY M S, YU K B, et al.. Gut microbiota utilize immunoglobulin A for mucosal colonization [J]. Science, 2018, 360(6390):795-800. |
50 | SUN J, QI C, ZHU H L, et al.. IgA-targeted lactobacillus jensenii modulated gut barrier and microbiota in high-fat diet-fed mice [J/OL]. Front. Microbiol., 2019, 10:1179 [2023-08-10]. . |
[1] | Erhao ZHANG, Panpan LIU, Ping HE, Yue JIAN, Yuting XU, Chengxin CHEN, Yazhou LU, Xiaozhong LAN, Sangmu SUOLANG. Physiochemical Properties and Microbial Community Structure in Rhizosphere Soil of Dracocephalum tanguticum [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 201-213. |
[2] | Zhonghua MA, Juan CHEN, Na WU, Benju MAN, Xiaogang WANG, Yongqing ZHE, Jili LIU. Effects of Salt Stress and Phosphorus Supply on Photosynthetic Characteristics and Total Biomass of Switchgrass at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 190-200. |
[3] | Zhixiong HOU, Changqing JING, Gongxin WANG, Wenzhang GUO, Weikang ZHAO. Temporal and Spatial Variation of Natural Grassland Vegetation Coverage and Its Relationship with Meteorological Factors in Northern Xinjiang from 1998 to 2018 [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 140-151. |
[4] | Xin LUO, Yuekai WU, Niannian ZHANG, Jie XU, Zaihua YANG. Composition and Diversity of Fungal Community in Rhizosphere Soil of Camellia Oleifera [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 199-210. |
[5] | ZHENG Jinjin1,2, LIU Shuai1, CHEN Yan1*, ZHANG Xin1,2, YANG Hui1, LIU Xiangxiang1, WANG Fuhua1,2*. Quality Evaluation and Analysis of Main Cultivated Litchi in Lingnan Region [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 128-136. |
[6] | WANG Jiayuan1, QIN Fucang1*, YANG Zhenqi2, REN Xiaotong1, FANG Fei3, ZHANG Ying4. Characteristics of Soil Animal Communities Under Different Land Use in Gully Area of Loess Plateau [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 156-165. |
[7] | YU Yang, ZHANG Jue, TIAN Haiqing, WANG Di, WANG Ke, ZHANG Hongqi. Detection Method for Tenderness of Chilled Fresh Lamb Based on Hyperspectral Imaging Technology [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 101-108. |
[8] | GUO Jiahui, BAI Xionghui, WANG Aidong, LI Ruijie, SHI Xiaoxin, SHI Yongfeng, LI Ailian, WANG Xicheng, WANG Hongfu, GUO Jie. Identification and Evaluation Cold Resistance of the National Regional Test Winter Wheat Varieties in the Northern Part of Huang-Huai Winter Wheat Region [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 25-34. |
[9] | ZHANG Yongfang, GAO Zhihui, SHI Pengqing, HAN Zhiping*. Adaptability Analysis of Different Soybean Varieties Based on Agronomic and Quality Traits [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 25-32. |
[10] | ZHANG Xingwei, CHEN Chao*, TIAN Shan, FU Lin. Prediction of Apple Initial Flowering Period Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 93-100. |
[11] | DING Suqin, YAN Zi, LI Xi, TANG Dongqin*. Study on the Change of Endogenous Hormones During Bulb Development in Freesia hybrida [J]. Journal of Agricultural Science and Technology, 2019, 21(9): 51-57. |
[12] | ZHU Xi1, LIN Jie2*, ZHANG Yang1. Research on Soil Erosion Characteristics Based on 137Cs Tracer Method After Economic Forest Construction [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 135-142. |
[13] | XU Feng1, SUO Liangxi1, MENG Hailong2, LI Guihong1, CHENG Kai2, ZHANG Jiale2, . Yield Comparisons and Phenotypic Evaluations of Varieties for Foxtail Millet [Setaria italica (L.) P. Beauv.] with Different Sources [J]. Journal of Agricultural Science and Technology, 2018, 20(5): 100-110. |
[14] | WANG Shufen1, WANG Wei2*. Multidimentional Soil Data Analysis Based on Self-organizing Map Artificial Neural Network [J]. Journal of Agricultural Science and Technology, 2018, 20(4): 61-71. |
[15] | SUN Ling, SHAN Jie, QIU Lin, WANG Zhiming, MAO Liangjun, HUANG Xiaojun. Monitoring of Wheat Spatial Distribution Dynamic Change in Jiangsu Province [J]. Journal of Agricultural Science and Technology, 2018, 20(10): 55-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||