Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (3): 104-111.DOI: 10.13304/j.nykjdb.2023.0640
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Lintao CHEN1,2(), Zhaoxiang LIU1, Ying LAN3, Xiangwei MOU1,2(
), Xu MA4, Rijun WANG1
Received:
2023-08-28
Accepted:
2023-11-28
Online:
2025-03-15
Published:
2025-03-14
Contact:
Xiangwei MOU
陈林涛1,2(), 刘兆祥1, 蓝莹3, 牟向伟1,2(
), 马旭4, 王日俊1
通讯作者:
牟向伟
作者简介:
陈林涛Email:clt13424050147@163.com;
基金资助:
CLC Number:
Lintao CHEN, Zhaoxiang LIU, Ying LAN, Xiangwei MOU, Xu MA, Rijun WANG. Research on Rice Variety Identification Based on Hyperspectral Technology and Principal Component Analysis[J]. Journal of Agricultural Science and Technology, 2025, 27(3): 104-111.
陈林涛, 刘兆祥, 蓝莹, 牟向伟, 马旭, 王日俊. 基于高光谱技术与主成分分析的稻种品种识别研究[J]. 中国农业科技导报, 2025, 27(3): 104-111.
Fig. 1 Rice seed outer structureNote: 1—Guard glume; 2—Vein traces; 3—Inner and outer glumes hooked together; 4—Inner glume; 5—Outer glume; 6—Lemma tip.
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution rate/% | 累积贡献率 Accumulated contribution rate/% |
---|---|---|---|
PC1 | 1 574.072 | 76.150 | 76.15 |
PC2 | 221.389 | 10.710 | 86.86 |
PC3 | 187.755 | 9.080 | 95.95 |
PC4 | 36.952 | 1.790 | 97.73 |
PC5 | 16.560 | 0.800 | 98.54 |
PC6 | 11.457 | 0.550 | 99.09 |
PC7 | 5.739 | 0.280 | 99.37 |
PC8 | 4.332 | 0.210 | 99.58 |
PC9 | 1.971 | 0.100 | 99.67 |
PC10 | 1.227 | 0.060 | 99.73 |
PC11 | 1.016 | 0.050 | 99.78 |
PC12 | 0.676 | 0.030 | 99.81 |
PC13 | 0.283 | 0.010 | 99.83 |
PC14 | 0.217 | 0.010 | 99.84 |
PC15 | 0.171 | 0.008 | 99.85 |
PC16 | 0.156 | 0.008 | 99.85 |
PC17 | 0.129 | 0.006 | 99.86 |
PC18 | 0.075 | 0.004 | 99.86 |
PC19 | 0.071 | 0.003 | 99.87 |
PC20 | 0.061 | 0.003 | 99.87 |
Table 1 Eigenvalues and cumulative contribution of the top 20 principal components
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution rate/% | 累积贡献率 Accumulated contribution rate/% |
---|---|---|---|
PC1 | 1 574.072 | 76.150 | 76.15 |
PC2 | 221.389 | 10.710 | 86.86 |
PC3 | 187.755 | 9.080 | 95.95 |
PC4 | 36.952 | 1.790 | 97.73 |
PC5 | 16.560 | 0.800 | 98.54 |
PC6 | 11.457 | 0.550 | 99.09 |
PC7 | 5.739 | 0.280 | 99.37 |
PC8 | 4.332 | 0.210 | 99.58 |
PC9 | 1.971 | 0.100 | 99.67 |
PC10 | 1.227 | 0.060 | 99.73 |
PC11 | 1.016 | 0.050 | 99.78 |
PC12 | 0.676 | 0.030 | 99.81 |
PC13 | 0.283 | 0.010 | 99.83 |
PC14 | 0.217 | 0.010 | 99.84 |
PC15 | 0.171 | 0.008 | 99.85 |
PC16 | 0.156 | 0.008 | 99.85 |
PC17 | 0.129 | 0.006 | 99.86 |
PC18 | 0.075 | 0.004 | 99.86 |
PC19 | 0.071 | 0.003 | 99.87 |
PC20 | 0.061 | 0.003 | 99.87 |
1 | 王寒梅.粳型杂交稻在辽宁地区的选育进展概况、推广优势及发展建议[J].北方水稻,2023,53(4):61-64. |
WANG H M. Progress of breeding, advantages of promotion and development suggestions of Japonica hybrid rice in Liaoning province [J]. Northern Rice, 2023,53 (4): 61-64. | |
2 | 陈林涛,薛俊祥,马旭,等.智能双充种型孔滚筒杂交稻育秧播种器改进设计与试验[J].中国农机化学报,2023,44(6):8-17, 257. |
CHEN L T, XUE J X, MA X, et al.. Improved design and experiment of the intelligent double-filling hole roller hybrid rice seeder [J]. J. Chin. Agric. Mech., 2023,44 (6): 8-17, 257. | |
3 | 贾现文,宋琴,杨志远,等.杂交稻机械化精准条播育插秧关键技术及展望[J].四川农业科技,2023(4):5-7, 21. |
4 | 杨春梅,朱赞彬,李昱成,等.高光谱技术测定超薄纤维板纤维树皮含量[J].光谱学与光谱分析,2023,43(10):3266-3271. |
YANG C M, ZHU Z B, LI Y C, et al.. Bark content determination of ultra-thin fiberboard by hyperspectral technique [J]. Spectrosc. Spect. Anal., 2023,43 (10): 3266-3271. | |
5 | 姚坤杉,孙俊,陈晨,等.基于高光谱技术的三七不同部位粉末的无损鉴别[J].光谱学与光谱分析,2023,43(7):2027-2031. |
YAO K S, SUN J, CHEN C, et al.. Non-destructive identification for panax notoginseng powder of different parts based on hyperspectral imaging technique [J]. Spectrosc. Spect. Anal., 2023,43 (7): 2027-2031. | |
6 | 昝佳睿,刘翠玲,凌彩金,等.基于高光谱技术的红茶茶多酚可视化研究[J].食品安全质量检测学报,2023,14(5):37-44. |
ZAN J R, LIU C L, LING C J, et al.. Study on visualization of black tea polyphenols based on hyperspectral technology [J]. J. Food Saf. Qual., 2023,14 (5): 37-44. | |
7 | 杨欢,罗斌,张晗,等.基于高光谱成像技术和IRIV算法的玉米种子品种纯度识别[J].江苏大学学报(自然科学版),2023,44(2):159-165. |
YANG H, LUO B, ZHANG H, et al.. Recognition of maize seed variety purity based on hyperspectral imaging technology and IRIV algorithm [J]. J. Jiangsu Univ. (Nat. Sci.), 2023,44 (2): 159-165. | |
8 | 黄敏,夏超,朱启兵,等.融合高光谱图像技术与MS-3DCNN的小麦种子品种识别模型[J]. 农业工程学报, 2021, 37(18): 153-160. |
HUANG M, XIA C, ZHU Q B, et al.. Recognizing wheat seed varieties using hyperspectral imaging technology combined with multi-scale 3D convolution neural network [J]. Trans. Chin. Soc. Agric. Eng., 2021, 37 (18): 153-160. | |
9 | 段丁丁,何英彬,罗善军,等.不同高光谱特征参数区分马铃薯品种的优劣势分析[J].光谱学与光谱分析,2018,38(10):3215-3220. |
DUAN D D, HE Y B, LUO S J, et al.. Analysis on the ability of distinguishing potato varieties with different hyperspectral parameters [J]. Spectrosc. Spect. Anal., 2018,38 (10): 3215-3220. | |
10 | 胡会强,位云朋,徐华兴,等.基于高光谱成像技术和主成分分析对粉葛年限的鉴别[J].光谱学与光谱分析,2023,43(6):1953-1960. |
HU H Q, WEI Y P, XU H X, et al.. Identification of the age of Puerariae thomsonii Radix based on hyperspectral imaging and principal component analysis [J]. Spectrosc. Spect. Anal., 2023,43(6):1953-1960. | |
11 | 陈林涛,马旭,曹秀龙,等.基于主成分分析的杂交稻芽种物理特性评价研究[J].农业工程学报,2019,35(16):334-342. |
CHEN L T, MA X, CAO X L, et al.. Evaluation research of physical characteristics of hybrid rice buds based on principal component analysis [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(16): 334-342. | |
12 | 李丹,马平,杨芳,等.马铃薯产量与农艺性状的灰色关联度分析及主成分分析[J].陇东学院学报,2023,34(5):88-92. |
LI D, MA P, YANG F, et al.. Grey relational analysis and principal component analysis between agronomic characters and yields of potato varieties [J]. J. Longdong Univ., 2023,34 (5): 88-92. | |
13 | 姜喜春.数据挖掘中的距离判别分析法[J].科技资讯,2015,13(27):155-156. |
14 | 许将,徐凯磊,翟铄,等.基于无人机高光谱棉田土壤含水量反演研究[J].中国煤炭地质,2023,35(8):64-69. |
XU J, XU K L, ZHAI S, et al.. Inversion of soil moisture in cotton fields based on UAV hyperspectral remote sensing [J].Coal Geol. China, 2023,35 (8): 64-69. | |
15 | 陈博文,史硕,龚威,等.基于空谱特征优化选择的高光谱激光雷达地物分类[J].光学学报,2023,43(12):284-296. |
CHEN B W, SHI S, GONG W, et al.. Target classification of hyperspectral lidar based on optimization selection of spatial-spectral features [J]. Acta Optica Sin., 2023,43 (12): 284-296. | |
16 | 施海娜,刘哲,梁万鹏,等.庆阳驴体尺指标的相关性、聚类和主成分分析[J].中国草食动物科学,2023,43(5):29-35. |
SHI H N, LIU Z, LIANG W P, et al.. Correlation, cluster and principal component analysis of body size of Qingyang donkeys [J]. China Herbivorous Sci., 2023,43 (5): 29-35. | |
17 | 唐义,何友勋,葛平珍,等.基于主成分分析的干籽粒豌豆适应性评价研究[J].中国种业,2023(8):53-57. |
TANG Y, HE Y X, GE P Z, et al.. Adaptability evaluation of new dry grain pea varieties based on principal component analysis [J]. China Seed Ind., 2023 (8): 53-57. | |
18 | 贾宗潮,王子鉴,李雪莹,等.主成分分析和连续投影融合的海洋沉积物粒度分类研究[J].光谱学与光谱分析,2023,43(10):3075-3080. |
JIA Z C, WANG Z J, LI X Y, et al.. Marine sediment particle size classification based on the fusion of principal component analysis and continuous projection algorithm [J]. Spectrosc. Spect. Anal., 2023,43 (10): 3075-3080. | |
19 | 刘瑶,李梓楠,吴涛,等.基于高光谱图像和邻域粗糙集理论的大豆品种识别算法及其综合性能评估[J].大豆科学,2018,37(4):596-605. |
LIU Y, LI Z N, WU T, et al.. A aoybean variety identification algorithm based on hyperspectral image and neighborhood rough set theory and its comprehensive performance evaluation [J]. Soybean Sci., 2018,37 (4): 596-605. | |
20 | 曹晓兰,邓梦洁,崔国贤.高光谱结合主成分分析的苎麻品种识别[J].光谱学与光谱分析,2019,39(6):1905-1908. |
CAO X L, DENG M J, CUI G X. Identifying ramie variety by combining the hyperspectral technology with the principal component analysis [J]. Spectrosc. Spect. Anal., 2019,39(6):1905-1908. |
[1] | Ruyue WANG, Haifang HU, Shasha LUO, Ziyi ZHEN, Yeyong XU, Xiaojing HU. Fruit Quality Analysis of Prunus domestica × armeniaca at Different Harvest Maturity Levels [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 158-169. |
[2] | Baozhen ZENG, Yongjuan CHENG, Juanbo YANG, Lili CHE, Jing LIANG, Shixiong LU, Guoping LIANG, Zonghuan MA, Juan MAO. Determination of the Best Harvesting Period for ‘Muhe White’ Grape in Minqin District, Gansu Province [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 70-79. |
[3] | Ting WANG, Jinghan DU, Guangdi ZHANG, Jianglong WANG, Yinan JIA, Yu WANG, Wenyi BAO. Study on Quality and Volatile Substances of New Excellent Cabbage Varieties in Mountainous Area of Southern Ningxia [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 165-180. |
[4] | Xueqing WANG, Bo ZHANG, Liting HAN, Zhuanzhuan LYU, Jianjun CHEN, Zhulin ZHANG, Junqiang ZHANG, Jianmei DU. Effects of High Hydrostatic Pressure Processing on Volatile Compounds in Cabernet Sauvignon [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 146-158. |
[5] | Xianyin SUN, Qiuhuan MU, Yong MI, Guangde LYU, Xiaolei QI, Yingying SUN, Xundong YIN, Ruixia WANG, Ke WU, Zhaoguo QIAN, Yan ZHAO, Minggang GAO. Classification and Evaluation of New Wheat Lines Based on GT Biplot [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 14-24. |
[6] | Yutao SHI, Huizhen XIE, Shulin ZHENG, Guanhua YU, Feiquan WANG, Li LI, Bo ZHANG, Yuanhua LI, Shengcai LUO. Analysis of Biochemical Characteristics and Superoxide Anion Radical Scavenging Activity of Tea Polysaccharides of Local Tea Germplasms in Wuyishan [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 65-76. |
[7] | Yue PAN, Baoqing WANG, Jijiao WANG, Yong MA, Yalan LI. CO2 Response Model Fitting and Evaluation of Vitis amurensis [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 58-66. |
[8] | Tingting CAO, Chun LIU, Youwei FAN, Li MA, Zhiyu REN, Suxia YUAN, Junyun ZHANG, Zunyao QIAN, Guangzhao YANG. Effects of Different Nitrogen Supply Level on Plant Growth and Development in Miniature Potted Rose [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 67-79. |
[9] | Panpan MENG, Haiyan HE, Yuxin CAO, Lixin ZHANG, Qinghao LYU, Ruilin QI, Hongrui ZHANG. Comprehensive Evaluation of 5 Cultivation Types of Medicinal Chrysanthemum morifolium Ramat. at Branching Stage [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 90-99. |
[10] | Shengmei LI, Bo PANG, Shiwei GENG, Wu SONG, Hongmei LI, Maosen MA, Ru ZHANG, Xinyan WANG, Wenwei GAO. Photosynthetic and Physiological Characteristics of Gossypium hirsutum L. × Gossypium barbadense L. Backross Populations in Full Boll Stage [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 40-51. |
[11] | Qianqian LU, Abuduwaili Abulimiti, Yixing HOU, Zhihui LI, Shuang WANG, Long ZHOU. Research of the Photosynthetic Characteristics of 7 Table Grape Varieties Under Compound Salt-alkali Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 63-76. |
[12] | Shuang WANG, Yixing HOU, Linjiao FENG, Qianqian LU, Long ZHOU. Effect of Drought Stress on Anatomical Structure of Leaves in Table Grape Varieties [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 40-49. |
[13] | Wei ZHAO, Rui MA, Jia WANG, Hongjie GUO, Jinpu XU. Classification and Identification of Corn Varieties Based on Ear Image [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 97-106. |
[14] | Shulin ZHENG, Yutao SHI, Feiquan WANG, Bangqiang WU, Yuanhua LI, Bo ZHANG, Naixing YE. Analysis and Comprehensive Evaluation of Content of Mineral Elements in Flowers of Different Tea Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 178-188. |
[15] | Shengwei GUO, Siwen BIAN, Jianwen DING, Xiaochen ZHANG, Xing YANG, Jin DU, Chunyang XIANG. Comprehensive Evaluation of Low Temperature Tolerance of Waxy Maize Varieties at Germination Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 38-47. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||