Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (7): 93-102.DOI: 10.13304/j.nykjdb.2023.0925
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Xiaofei XIONG1,2(), Wenqian WU2, Hongyan HUO2, Xin ZHANG3, Yan YU4, Dong AN5, Tong ZHANG6(
), Jianwei WU1,2(
)
Received:
2023-12-16
Accepted:
2024-01-19
Online:
2024-07-15
Published:
2024-07-12
Contact:
Tong ZHANG,Jianwei WU
熊晓菲1,2(), 吴文茜2, 霍洪彦2, 张馨3, 于艳4, 安冬5, 张同6(
), 吴建伟1,2(
)
通讯作者:
张同,吴建伟
作者简介:
熊晓菲 E-mail:xiongxf@pdwy.com.cn
基金资助:
CLC Number:
Xiaofei XIONG, Wenqian WU, Hongyan HUO, Xin ZHANG, Yan YU, Dong AN, Tong ZHANG, Jianwei WU. Research on Sensor-based Agricultural Greenhouse Data Direct Reporting System and Intelligent Control[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 93-102.
熊晓菲, 吴文茜, 霍洪彦, 张馨, 于艳, 安冬, 张同, 吴建伟. 基于传感器的农业温室数据直报系统与智能调控研究[J]. 中国农业科技导报, 2024, 26(7): 93-102.
作物 Crop | 物候期 Phenological period | 空气温度 Air temperature/℃ | 空气湿度 Air humidity/% | 光照强度 Illumination/lx | 二氧化碳含量 Carbon dioxide content/(mg·m-3) | 土壤温度 Soil temperature/℃ | 土壤湿度 Soil moisture/% |
---|---|---|---|---|---|---|---|
茄子 Eggplant | 发芽期 Germination stage | 15~30 | 55~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~85 |
幼苗期 Seedling stage | 15~33 | 60~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~80 | |
开花结果期 Flowering and fruiting stage | 12~34 | 60~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~80 | |
黄瓜 Cucumber | 发芽期 Germination stage | 10~33 | 65~85 | 8 000~20 000 | 898~3 592 | 20~25 | 70~90 |
幼苗期 Seedling stage | 10~33 | 65~90 | 8 000~20 000 | 898~3 592 | 20~25 | 70~80 | |
开花结果期 Flowering and fruiting stage | 10~33 | 65~85 | 8 000~20 000 | 898~3 592 | 20~25 | 80~90 | |
豇豆 Cowpea | 发芽期 Germination stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 |
幼苗期 Seedling stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 | |
开花结果期 Flowering and fruiting stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 | |
菠菜 Spinach | 播种期 Seeding stage | 7~26 | 80~90 | 8 000~20 000 | 898~3 592 | 8~20 | 70~80 |
营养生长期 Vegetative stage | 7~26 | 80~90 | 8 000~20 000 | 898~3 592 | 8~20 | 70~80 | |
草莓 Strawberry | 萌芽期 Germination stage | 7~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 |
现蕾期 Budding stage | 7~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 | |
开花期 Flowering stage | 7~28 | ≤60 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 | |
果实膨大期 Fruit formation stage | 6~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 60~80 | |
收获期 Harvesting stage | 5~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 60~80 |
Table 1 Environmental information threshold for greenhouse horticulture
作物 Crop | 物候期 Phenological period | 空气温度 Air temperature/℃ | 空气湿度 Air humidity/% | 光照强度 Illumination/lx | 二氧化碳含量 Carbon dioxide content/(mg·m-3) | 土壤温度 Soil temperature/℃ | 土壤湿度 Soil moisture/% |
---|---|---|---|---|---|---|---|
茄子 Eggplant | 发芽期 Germination stage | 15~30 | 55~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~85 |
幼苗期 Seedling stage | 15~33 | 60~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~80 | |
开花结果期 Flowering and fruiting stage | 12~34 | 60~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~80 | |
黄瓜 Cucumber | 发芽期 Germination stage | 10~33 | 65~85 | 8 000~20 000 | 898~3 592 | 20~25 | 70~90 |
幼苗期 Seedling stage | 10~33 | 65~90 | 8 000~20 000 | 898~3 592 | 20~25 | 70~80 | |
开花结果期 Flowering and fruiting stage | 10~33 | 65~85 | 8 000~20 000 | 898~3 592 | 20~25 | 80~90 | |
豇豆 Cowpea | 发芽期 Germination stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 |
幼苗期 Seedling stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 | |
开花结果期 Flowering and fruiting stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 | |
菠菜 Spinach | 播种期 Seeding stage | 7~26 | 80~90 | 8 000~20 000 | 898~3 592 | 8~20 | 70~80 |
营养生长期 Vegetative stage | 7~26 | 80~90 | 8 000~20 000 | 898~3 592 | 8~20 | 70~80 | |
草莓 Strawberry | 萌芽期 Germination stage | 7~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 |
现蕾期 Budding stage | 7~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 | |
开花期 Flowering stage | 7~28 | ≤60 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 | |
果实膨大期 Fruit formation stage | 6~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 60~80 | |
收获期 Harvesting stage | 5~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 60~80 |
1 | 陆利明,陈建,陈燕,等.关于浦东新区农业生产信息直报系统的应用与分析[J].上海农业科技,2023,(1):39-42. |
2 | 束仁冬,孟令启,李进,等.基于模糊解耦控制的玻璃温室大棚的环境监控[J].江汉大学学报(自然科学版), 2021, 49 (6): 87-96. |
SHU R D, MENG L Q, LI J, et al.. Environment monitoring of glass greenhouse based on fuzzy decoupling control [J]. J. Jianghan Univ. (Nat. Sci.), 2021, 49 (6): 87-96. | |
3 | 宋坤,李雨婷,张钰颖,等.基于改进多传感器数据融合算法的温室环境检测研究[J].现代电子技术,2023,46(20):178-182. |
SONG K, LI Y T, ZHANG Y Y, et al.. Research on greenhouse environment detection based on improved multi-sensor data fusion algorithm [J]. Mod. Electron. Tech., 2023,46(20):178-182. | |
4 | 许德立,皇甫森森,李澍源.基于多数据融合+BP神经网络的农业温室大棚环境监控系统的研究[J].湖北农业科学,2023,62(1):167-171, 176. |
XU D L, HUANGFU S S, LI S Y. Research on environment monitoring system of agricultural greenhouse based on Multi-data fusion+BP neural network [J]. Hubei Agric. Sci., 2023,62(1):167-171, 176. | |
5 | HODGKINSON J, SAFFELL J, LUFF J, et al.. Gas sensors Ⅰ. the basic technologies and applications [J].Nanotechnol. Perceptions, 2009, 5(1): 71-82. |
6 | MITSULOV N, TSONEY T. Multichannel measuring system for profile monitoring of CO2 concentration in cultivation equipment [J]. Int. Agrophys., 2002, 16(3): 203-208. |
7 | VASILEIOS T, DIONYSIOS B, KYRIAKOS-NIKOS P, et al.. Development of an integrated IoT-based greenhouse control three-device robotic system [J]. Agronomy, 2021, 11(2): 405-405. 10.3390/agronomy11020405 . |
8 | ABHISHEK K, VIKRANT S, SAURABH K, et al.. IoT enabled system to monitor and control greenhouse [J]. Mater. Today Proc., 2022, 49(8): 3137-3141. |
9 | 高翔,刘鹏,卢潭城,等.一种土壤湿度测定方法在Zig Bee无线传感器网络中的应用[J].传感器与微系统,2015,34(1):151-153. |
GAO X, LIU P, LU T C, et al.. Application of a method of soil moisture measurement in Zig Bee WSNs [J]. Transducer Microsyst. Technol., 2015,34(1):151-153. | |
10 | 钟亚飞.基于单片机的温室二氧化碳测控系统的设计[D].青岛:山东科技大学, 2011. |
ZHONG Y F. Design of carbon dioxide measurement and control system based on the SCM in the greenhouse [D]. Qingdao: Shandong University of Science and Technology, 2011. | |
11 | 叶一舟.高性能硅基MEMS热式风速传感器的研究[D].南京:东南大学,2019. |
YE Y Z. Investigation on the high-performance silicon-based mems thermal wind sensors [D]. Nanjing: Southeast University, 2019. | |
12 | 张馨,郭瑞,李文龙,等.可装配式土壤温度传感器设计与试验[J].农业工程学报,2015,31(S1):205-211. |
ZHANG X, GUO R, LI W L, et al.. Design and experiment of assembled soil temperature sensor [J]. Trans. Chin. Soc. Agric. Eng., 2015,31(S1):205-211. | |
13 | 周艳青,薛河儒,姜新华,等.基于改进的卡尔曼滤波算法的气象数据融合[J].计算机系统应用,2018,27(4):184-189. |
ZHOU Y Q, XUE H R, JIANG X H, et al.. Meteorological data fusion based on proposed kalman filter method [J]. Comput. Syst. Appl., 2018,27(4):184-189. | |
14 | 杨帆,孟翔飞,孙建红.数据融合技术在温室环境监控系统中的应用[J].农机化研究,2012,34(4):177-180. |
YANG F, MENG X F, SUN J H. Applying of data fusion technology in greenhouse environment monitoring and control system [J]. J. Agric. Mech. Res., 2012,34(4):177-180. | |
15 | 郝子源,杨玮,李浩,等.基于多源信息和深度学习的多作物叶面积指数预测模型研究[J].光谱学与光谱分析,2023,43(12):3862-3870. |
HAO Z Y, YANG W, LI H, et al.. Study on prediction models for leaf area index of multiple crops based on multi-source information and deep learning [J]. Spectrosc. Spect. Anal., 2023,43(12):3862-3870. | |
16 | 李其操,董自健.基于GA-BP神经网络的温室温度预测研究[J].智能计算机与应用, 2023,13(9):168-171. |
LI Q C, DONG Z J. Greenhouse temperature prediction based on GA-BP neural network [J]. Intell. Comput. Appl., 2023,13(9):168-171. | |
17 | 张云鹤,林森,沈剑波,等.基于LSTM的连栋温室能耗预测模型[J].天津农业科学,2023,29(6):74-79. |
ZHANG Y H, LIN S, SHEN J B, et al.. Prediction model of energy consumption of multi-span greenhouse based on LSTM neural network [J]. Tianjin Agric. Sci., 2023,29(6):74-79. | |
18 | 石征锦,王博伦,谢峰,等.一种面向无线传感器网络的多数据融合模型设计[J].沈阳理工大学学报,2021,40(3):35-40. |
SHI Z J, WANG B L, XIE F, et al.. Design of A multi-data fusion model for wireless sensor network [J]. J. Shenyang Ligong Univ., 2021,40(3):35-40. | |
19 | 李双斌,王平,吕志华,等.基于Jetson Nano深度学习的新型农业系统[J].南方农机,2022,53(20):13-15. |
LI S B, WANG P, LYU Z H, et al.. A new agricultural system based on Jetson Nano deep learning [J] China South Agric. Mach., 2022,53(20):13-15. | |
20 | 黄天艺,吴华瑞,朱华吉.基于多模态数据驱动的黄瓜温室湿度预测方法[J].电子测量技术,2023,46(16):97-104. |
HUANG T Y, WU H R, ZHU H J. Research on humidity prediction method of cucumber greenhouse based on multimode data driving [J]. Electron. Meas. Technol., 2023,46(16):97-104. | |
21 | 杨承磊,兰玉彬,王庆雨,等.神经网络在温室小气候预测中的应用[J].中国农机化学报,2023,44(5):89-99. |
YANG C L, LAN Y B, WANG Q Y, et al.. Application of neural network in greenhouse microclimate prediction [J]. J. Chin. Agric. Mech., 2023, 44(5): 89-99. | |
22 | 丁力行,邓玉艳.设施农业人工环境[M].北京:中国建筑工业出版社,2017:20-56. |
23 | 李天来.设施蔬菜栽培学[M].北京:中国农业出版社,2011: 44. |
24 | 史少寒,周晓彦,李大鹏.基于ARIMA算法特征补齐的语音情感识别[J].电子器件, 2023, 46(5): 1333-1338. |
SHI S H, ZHOU X Y, LI D P. Speech emotion recognition based on feature complement by ARIMA [J].Chin. J. Electron. Devices, 2023, 46(5): 1333-1338. | |
25 | 张涛,张健,祁欣月,等.交通缺失数据插补方法研究综述[J].现代交通与冶金材料,2023,3(4):69-81. |
ZHANF T, ZHANG J, QI X Y, et al.. A review of interpolation methods for missing traffic data [J]. Mod. Trans. Metall. Mater., 2023,3(4):69-81. | |
26 | 赵春江.农业知识智能服务技术综述[J].智慧农业,2023,5(2):126-148. |
ZHAO C J. Agricultural knowledge intelligent service technology: a review [J]. Smart Agric., 2023,5(2):126-148. |
[1] | Jun TIE, Jie ZHAO, Lu ZHENG, Lifeng WU, Bowen HONG. Application of Improved YOLOv5 Model in Citrus Recognition in Natural Environment [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 111-120. |
[2] | Dongyu LIU-XU, Xiaoxiao GUO, Chenqing FU, Rui HAN, Guohui LI, Xiuping WANG. Prediction of Anthocyanin Content in Perilla frutescens Leaves Based on RGB and CIELab [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 103-110. |
[3] | Lifang SONG, Guiping LIAO, Min CHEN, Yuyang HE-LUO. Hyperspectral Estimation of Rape Leaf Water Content Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 110-119. |
[4] | Yahui DING, Cheng CHEN, Xiaojun QIAO, Jianbo SHEN, Sen LIN, Yunhe ZHANG, Sisi FENG. Development and Application of Green Pest Control System Based on IoT Technology [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 77-86. |
[5] | Hui WANG, Hongyu FU, Yunkai YUE, Guoxian CUI, Wei SHE. Ramie Yield SSA-BP Prediction Model Based on Climate Variables [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 110-118. |
[6] | Guo ZHENG, Yusong JIANG. Diagnosis of Crop Disease Based on Multi-task Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 89-98. |
[7] | Zitao MA, Zhihao ZHAO, Wei QUAN, Fanggang SHI, Chen GAO, Mingliang WU. Calibration of Discrete Element Parameter of Rice Stubble Straw Based on EDEM [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 103-113. |
[8] | Yantong ZHANG, Qianmin SU. Image Recognition of Corn Disease Based on Transfer Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 119-125. |
[9] | Xiaoding FENG, Cheng WANG, Xiaotong JIN, Hongtu DONG, Bin LUO, Xiaodong WANG. Study on Multi-parameter Detection System of Plant Nutrient Uptake Under Hydroponic Environment [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 106-114. |
[10] | Kaiyan LIN, Fei MEI, Junhui WU, Wengang GUO, Jie CHEN, Huiping SI. Design and Research of Crop Disease Monitoring Service Platform Based on Computer Vision [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 89-96. |
[11] | Wenhao ZHAO, Jiangtao JI, Hao MA, Xin JIN, Xue LI, Haigang MA. Extraction of Winter Wheat Coverage Based on Improved K-means Algorithm [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 83-91. |
[12] | Xin LU, Guiping LIAO, Fan LIU. Inversion Model of Oleic Acid Content in Rape Seeds Based on Hyperspectral Imaging Technology [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 92-99. |
[13] | Jing ZHANG, Simeng GUO, Yingchun HAN, Yaping LEI, Fangfang XING, Wenli DU, Yabing LI, Lu FENG. Estimation of Cotton Yield Based on Unmanned Aerial Vehicle RGB Images [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 112-120. |
[14] | Hao HUANG, Shengqiao XIE, Du CHEN, Heng WANG. Application and Research Advances on Deep Learning in Apple’s Industry Chain [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 79-89. |
[15] | Chuang LU, Haitang HU, Yuan QIN, Heju HUAI, Cunjun LI. Delineating Management Zones in Spring Maize Field Based on UAV Multispectral Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 106-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||