Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (8): 122-130.DOI: 10.13304/j.nykjdb.2023.0873
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Huiping JIN1(), Haiwen MOU2, Teng LIU2, Jialin YU2, Xiaojun JIN2,3(
)
Received:
2023-11-28
Accepted:
2024-02-06
Online:
2024-08-15
Published:
2024-08-12
Contact:
Xiaojun JIN
金慧萍1(), 牟海雯2, 刘腾2, 于佳琳2, 金小俊2,3(
)
通讯作者:
金小俊
作者简介:
金慧萍 E-mail: jinhuiping713@163.com;
基金资助:
CLC Number:
Huiping JIN, Haiwen MOU, Teng LIU, Jialin YU, Xiaojun JIN. Bok Choy and Weed Identification Based on Deep Convolutional Neural Networks[J]. Journal of Agricultural Science and Technology, 2024, 26(8): 122-130.
金慧萍, 牟海雯, 刘腾, 于佳琳, 金小俊. 基于深度卷积神经网络的青菜和杂草识别[J]. 中国农业科技导报, 2024, 26(8): 122-130.
神经网络模型 Neural network | 优化器 Optimizer | 初始学习率 Base learning rate | 学习率调整策略 Learning rate policy | 批尺寸 Batch size | 训练周期 Training epochs |
---|---|---|---|---|---|
DenseNet | SGD | 0.001 0 | LambdaLR | 16 | 24 |
GoogLeNet | Adam | 0.000 3 | StepLR | 16 | 24 |
ResNet | Adam | 0.000 1 | StepLR | 16 | 24 |
Table 1 Hyper-parameters used for training the neural networks
神经网络模型 Neural network | 优化器 Optimizer | 初始学习率 Base learning rate | 学习率调整策略 Learning rate policy | 批尺寸 Batch size | 训练周期 Training epochs |
---|---|---|---|---|---|
DenseNet | SGD | 0.001 0 | LambdaLR | 16 | 24 |
GoogLeNet | Adam | 0.000 3 | StepLR | 16 | 24 |
ResNet | Adam | 0.000 1 | StepLR | 16 | 24 |
神经网络模型 Neural network | 目标 Target | 精度 Precision | 召回率 Recall | 总体准确率 Overall accuracy | F1值 F1 score |
---|---|---|---|---|---|
DenseNet | 青菜Bok choy | 0.976 | 0.968 | 0.972 | 0.972 |
杂草Weed | 0.969 | 0.977 | 0.972 | 0.973 | |
GoogLeNet | 青菜Bok choy | 0.948 | 0.967 | 0.957 | 0.957 |
杂草Weed | 0.966 | 0.947 | 0.957 | 0.956 | |
ResNet | 青菜Bok choy | 0.977 | 0.973 | 0.975 | 0.975 |
杂草Weed | 0.973 | 0.977 | 0.975 | 0.975 |
Table 2 Evaluation matrix of CNN models in validation datasets
神经网络模型 Neural network | 目标 Target | 精度 Precision | 召回率 Recall | 总体准确率 Overall accuracy | F1值 F1 score |
---|---|---|---|---|---|
DenseNet | 青菜Bok choy | 0.976 | 0.968 | 0.972 | 0.972 |
杂草Weed | 0.969 | 0.977 | 0.972 | 0.973 | |
GoogLeNet | 青菜Bok choy | 0.948 | 0.967 | 0.957 | 0.957 |
杂草Weed | 0.966 | 0.947 | 0.957 | 0.956 | |
ResNet | 青菜Bok choy | 0.977 | 0.973 | 0.975 | 0.975 |
杂草Weed | 0.973 | 0.977 | 0.975 | 0.975 |
神经网络模型 Neural network | 目标 Target | 精度 Precision | 召回率 Recall | 总体准确率 Overall accuracy | F1值 F1 score |
---|---|---|---|---|---|
DenseNet | 青菜Bok choy | 0.976 | 0.957 | 0.967 | 0.966 |
杂草Weed | 0.958 | 0.977 | 0.967 | 0.967 | |
GoogLeNet | 青菜Bok choy | 0.945 | 0.965 | 0.954 | 0.955 |
杂草Weed | 0.964 | 0.943 | 0.954 | 0.953 | |
ResNet | 青菜Bok choy | 0.978 | 0.965 | 0.972 | 0.971 |
杂草Weed | 0.965 | 0.978 | 0.972 | 0.971 |
Table 3 Evaluation matrix of CNN models in testing dataset
神经网络模型 Neural network | 目标 Target | 精度 Precision | 召回率 Recall | 总体准确率 Overall accuracy | F1值 F1 score |
---|---|---|---|---|---|
DenseNet | 青菜Bok choy | 0.976 | 0.957 | 0.967 | 0.966 |
杂草Weed | 0.958 | 0.977 | 0.967 | 0.967 | |
GoogLeNet | 青菜Bok choy | 0.945 | 0.965 | 0.954 | 0.955 |
杂草Weed | 0.964 | 0.943 | 0.954 | 0.953 | |
ResNet | 青菜Bok choy | 0.978 | 0.965 | 0.972 | 0.971 |
杂草Weed | 0.965 | 0.978 | 0.972 | 0.971 |
Fig. 4 Confusion matrices of the neural networks in testing datasetsA: DenseNet model confusion matrix; B: GoogLeNet model confusion matrix; C: ResNet model confusion matrix
神经网络模型 Neural network | 批尺寸 Batch size | 图像计算数量 Image calculations | 识别速度/(ms·幅-1) Recognition speed/(ms·image-1) | 帧率/(帧·s-1) Frame per second/(frames·s-1) |
---|---|---|---|---|
DenseNet | 48 | 1 200 | 19.44 | 51.43 |
GoogLeNet | 48 | 1 200 | 12.38 | 80.80 |
ResNet | 48 | 1 200 | 12.76 | 78.34 |
Table 4 Recognition speed of different models
神经网络模型 Neural network | 批尺寸 Batch size | 图像计算数量 Image calculations | 识别速度/(ms·幅-1) Recognition speed/(ms·image-1) | 帧率/(帧·s-1) Frame per second/(frames·s-1) |
---|---|---|---|---|
DenseNet | 48 | 1 200 | 19.44 | 51.43 |
GoogLeNet | 48 | 1 200 | 12.38 | 80.80 |
ResNet | 48 | 1 200 | 12.76 | 78.34 |
1 | 陆海涛,吕建强,金伟,等.我国叶类蔬菜机械化收获技术的发展现状[J]. 农机化研究, 2018,40(6):261-268. |
LU H T, LYU J Q, JIN W, et al.. The current situation of the mechanized harvesting technology development of leaf vegetable in China [J]. J. Agric. Mechan. Res., 2018,40(6):261-268. | |
2 | JIANG P H, YI H L, LI P Y, et al.. Acidification and salinization of soils with different initial pH under greenhouse vegetable cultivation [J]. J. Soil Sediments, 2014,14(10):1683-1692. |
3 | 廖禺,潘松,黄俊宝,等.蔬菜生产机械化技术的现状与发展研究[J]. 粮食科技与经济, 2018,43(10):99-101. |
LIAO Y, PAN S, HUANG J B, et al.. Research on the status and development of vegetable production mechanization technology [J]. Grain Sci. Technol. Econ., 2018,43(10):99-101. | |
4 | 王璨,武新慧,张燕青,等.基于移位窗口Transformer网络的玉米田间场景下杂草识别[J].农业工程学报, 2022,38(15):133-142. |
WANG C, WU X H, ZHANG Y Q, et al.. Recognizing weeds in maize fields using shifted window transformer network [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(15):133-142. | |
5 | DEBALINA S H, BERT M C, MANJOT K S. A review of Non-chemical weed control practices in christmas tree production [J]. Forests, 2020,11(5):554. |
6 | GAINES T A, BUSI R, KÜPPER A. Can new herbicide discovery allow weed management to outpace resistance evolution? [J]. Pest. Manage. Sci., 2021,77(7):3036-3041. |
7 | ANNE M, BENJAMIN F, MIIKA L, et al.. Risk in the circular food economy: Glyphosate-based herbicide residues in manure fertilizers decrease crop yield [J/OL]. Sci.Total Environ., 2021,750:141422 [2024-03-19]. . |
8 | 魏春生. 蔬菜田间化学除草技术及注意事项分析[J]. 农民致富之友, 2019(1):134. |
9 | GERHARDS R, ANDÚJAR S D, HAMOUZ P, et al.. Advances in site-specific weed management in agriculture-a review [J]. Weed Res., 2022,62(2):123-133. |
10 | REKHA R, THUY T N, DAVID C S, et al.. Real-time robotic weed knife control system for tomato and lettuce based on geometric appearance of plant labels [J]. Biosyst. Eng., 2020,194:152-164. |
11 | MARTIN V B, CHRISTIAN M, FABIENNE V B, et al.. Thermal weed control technologies for conservation agriculture—a review [J]. Weed Res., 2020,60(4):241-250. |
12 | 兰天,李端玲,张忠海,等.智能农业除草机器人研究现状与趋势分析[J]. 计算机测量与控制, 2021,29(5):1-7. |
LAN T, LI D L, ZHANG Z H, et al.. Analysis on research status and trend of intelligent agricultural weeding robot [J]. Comput. Meas. Control, 2021,29(5):1-7. | |
13 | 孙艳霞,陈勇,金小俊,等.除草机器人减震悬架越障性能分析[J]. 农业机械学报, 2013,44(S1):264-268. |
SUN Y X, CHEN Y, JIN X J, et al.. Structure design and simulation analysis of weeding robot. [J]. Trans. Chin. Soc. Agric. Mach., 2013,44(S1):264-268. | |
14 | 金小俊,陈勇,孙艳霞.农田杂草识别方法研究进展[J]. 农机化研究, 2011,33(7):23-27, 33. |
JIN X J, CHEN Y, SUN Y X. Research advances of weed identification in agricultural fields [J]. J. Agric. Mechan. Res., 2011, 33(7):23-27, 33. | |
15 | 毛文华,张银桥,王辉,等.杂草信息实时获取技术与设备研究进展[J]. 农业机械学报, 2013,44(1):190-195. |
MAO W H, ZHANG Y Q, WANG H, et al.. Advance techniques and equipments for real-time weed detection [J]. Trans. Chin. Soc. Agric. Mach., 2013, 44(1):190-195. | |
16 | PEDRO J H, JOSÉ D, ÁNGELA R. A novel approach for weed type classification based on shape descriptors and a fuzzy decision-making method [J]. Sensors, 2014,14(8): 15304-15324. |
17 | TANG L, TIAN L, STEWARD B L. Color image segmentation with genetic algorithm for in-field weed sensing [J]. Trans. Am. Soc. Agric. Eng., 2000,43(4):1019-1027. |
18 | ADEL B, ABDOLABBAS J, SEYED M N, et al.. Weed segmentation using texture features extracted from wavelet sub-images [J]. Biosyst. Eng., 2017,157:1-12. |
19 | 程玉柱,陈勇,车军,等.基于Bayes与SVM的玉米彩色图像分割新算法[J]. 江苏农业科学, 2012,40(7):355-358. |
20 | MARCHANT J A, ONYANGO C M. Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination [J]. Comput. Electron. Agric., 2003,39(1):3-22. |
21 | 毛文华,曹晶晶,姜红花,等.基于多特征的田间杂草识别方法[J]. 农业工程学报, 2007(11):206-209. |
MAO W H, CAO J J, JIANG H H, et al.. In-field weed detection method based on multi-features [J]. Trans. Chin. Soc. Agric. Eng., 2007(11):206-209. | |
22 | 何东健,乔永亮,李攀,等.基于SVM-DS多特征融合的杂草识别[J]. 农业机械学报, 2013,44(2):182-187. |
HE D J, QIAO Y L, LI P, et al.. Weed recognition based on SVM-DS multi-feature fusion [J] Trans. Chin. Soc. Agric. Mach., 2013,44(2):182-187. | |
23 | KONSTANTINOS G L, PATRIZIA B, DIMITRIOS M, et al.. Machine learning in agriculture: a review [J/OL]. Sensors, 2018,18(8):2674 [2024-03-19]. . |
24 | 仇裕淇,黄振楠,阮昭,等.机器视觉技术在农业生产智能化中的应用综述[J].机械研究与应用, 2019,32(2):202-206. |
QIU Y Q, HUANG Z N, RUAN Z, et al.. Review on application of machine vision in intelligent agricultural production [J]. Mech. Res. Appl., 2019,32(2):202-206. | |
25 | 陈自宏,邓干然,崔振德,等.基于深度学习的农作物检测识别研究现状及展望[J].现代农业装备, 2022,43(2):2-7. |
CHEN Z H, DENG G R, CUI Z D, et al.. Research status and prospect of crop detection and identification based on deep learning [J]. Mod. Agric. Equip., 2022,43(2):2-7. | |
26 | WANG A C, ZHANG W, WEI X H. A review on weed detection using ground-based machine vision and image processing techniques [J]. Comput. Electron. Agric., 2019,158:226-240. |
27 | ADEL B, ABDOLABBAS J. Evaluation of support vector machine and artificial neural networks in weed detection using shape features [J]. Comput. Electron. Agric., 2018,145:153-160. |
28 | 金小俊,陈勇,侯学贵,等.基于机器视觉的除草机器人杂草识别[J]. 山东科技大学学报(自然科学版), 2012,31(2):104-108. |
JIN X J, CHEN Y, HOU X G, et al.. Weed recognition of the machine vision based weeding robot [J]. J. Shandong Univ. Sci. Technol. ( Nat. Sci.), 2012,31(2):104-108. | |
29 | OSORIO K, PUERTO A, PEDRAZA C, et al.. A deep learning approach for weed detection in lettuce crops using multispectral images [J]. AgriEngineering, 2020,2(3):471-488. |
30 | 孙哲,张春龙,葛鲁镇,等.基于Faster R-CNN的田间西兰花幼苗图像检测方法[J].农业机械学报, 2019,50(7):216-221. |
SUN Z, ZHANG C L, GE L Z, et al.. Image detection method for broccoli seedlings in field based on faster R-CNN [J]. Trans. Chin. Soc. Agric. Mach., 2019,50(7):216-221. | |
31 | 东辉,陈鑫凯,孙浩,等. 基于改进YOLOv4和图像处理的蔬菜田杂草检测[J]. 图学学报, 2022,43(4):559-569. |
DONG H, CHEN X K, SUN H, et al.. Weed detection in vegetable field based on improved YOLOv4 and image processing [J]. J. Graph., 2022,43(4):559-569. | |
32 | MORID M A, BORJALI A, DEL F G. A scoping review of transfer learning research on medical image analysis using ImageNet [J/OL]. Comput. Biol. Med., 2021,128:104115 [2024-01-13]. . |
33 | JIN X J, CHE J, CHEN Y. Weed identification using deep learning and image processing in vegetable plantation [J]. IEEE Access., 2021,9:10940-10950. |
34 | SIMON K, DORIT M. DELIMIT PyTorch - an extension for deep learning in diffusion imaging [EB/OL]. (2018-08-04) [2024-03-19]. . |
35 | 李梦洁,董峦. 基于PyTorch的机器翻译算法的实现[J]. 计算机技术与发展, 2018,28(10):160-163, 167. |
LI M J, DONG L. Implementation of machine translation algorithm based on PyTorch [J]. Comput. Tech. Dev., 2018,28(10):160-163, 167. | |
36 | 贺丹.基于PyTorch的图像修复技术研究[J].电脑知识与技术, 2022,18(9):75-77. |
37 | 孙艳霞,陈燕飞,金小俊,等.基于人工智能的青菜幼苗与杂草识别方法[J].福建农业学报, 2021,36(12):1484-1490. |
SUN Y X, CHEN Y F, JIN X J, et al.. AI differentiation of bok choy seedlings from weeds [J]. Fujian J. Agric. Sci., 2021,36(12):1484-1490. | |
38 | ZHANG B, GENG Z Y, ZHANG H W, et al.. Densely connected convolutional networks with attention long short-term memory for estimating PM2.5 values from images [J/OL]. J. Clean. Prod., 2022,333(20):130101 [2024-03-19]. . |
39 | CHRISTIAN S, WEI L, YANG Q J, et al.. Going deeper with convolutions [EB/OL]. (2014-09-17) [2024-03-19]. . |
40 | HE K M, ZHANG X Y, REN S, et al.. Deep residual learning for image recognition [EB/OL]. (2015-12-10) [2024-03-19]. . |
[1] | Guo ZHENG, Yusong JIANG. Diagnosis of Crop Disease Based on Multi-task Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 89-98. |
[2] | Zheng QIAN, Sunzhe YANG, Guoqing ZHANG, Ziwei GUO, Linpeng ZHANG, Jiaxing WAN, Hongyun YANG. Rice Nitrogen Nutrition Diagnosis Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 113-121. |
[3] | Kaiyan LIN, Fei MEI, Junhui WU, Wengang GUO, Jie CHEN, Huiping SI. Design and Research of Crop Disease Monitoring Service Platform Based on Computer Vision [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 89-96. |
[4] | Chao YANG, Haibin HAN, Bo WEI, Heng ZHANG, Chen SHANG, Bing SU, Siyuan LIU, Peiwei JIANG, Delong XIANG. Construction of Method for Age Identification of Sardinops sagax in the North Pacific Ocean [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 225-233. |
[5] | Yue ZHAO, Yong WEI, Huiyong SHAN, Zhimin MU, ZHANGJianxin, Haiyun WU, Hui ZHAO, Jianlong HU. Wheat Ear Detection Method Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 96-105. |
[6] | Haitao LIU, Xin HAN, Yubin LAN, Lili YI, Baoju WANG, Lihua CUI. Precise Recognition Method of Cotton Top Buds Based on YOLOv4 Network [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 99-108. |
[7] | Kui FANG, Cheng LI, Xiao HE, Yineng CHEN. Research on Multi-angle Identification of Grape Leaf Disease Based on 3D Reconstruction [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 86-96. |
[8] | Jianwei WU, Jie HUANG, Xiaofei XIONG, Han GAO, Xiangyang QIN. Research and Application of Intelligent Recognition Method of Peach Tree Diseases Based on AI [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 111-118. |
[9] | Yinyan GAO, Yi SUN, Baochun LI. Estimating of Wheat Ears Number in Field Based on RGB Images Using Unmanned Aerial Vehicle [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 103-110. |
[10] | Hao HUANG, Shengqiao XIE, Du CHEN, Heng WANG. Application and Research Advances on Deep Learning in Apple’s Industry Chain [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 79-89. |
[11] | ZHOU Huiru, WU Boming. Advances in Research on Deep Learning for Crop Disease Image Recognition [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 61-68. |
[12] | LYU Chunyang, LIU Shengping, GUO Xiuming, XIAO Shunfu, LIU Dazhong, YANG Feifei, LI Luhua. Detection of Honeybee Based on SSD Model [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 98-107. |
[13] | XU Beibei1, WANG Wensheng1,2*, GUO Leifeng1, CHEN Guipeng3. A Review and Future Prospects on Cattle Recognition Based on Non-contact Identification [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 79-89. |
[14] | DONG Wei1, QIAN Rong1, ZHANG Jie 2*, ZHANG Liping1, CHEN Hongbo2, ZHANG Meng1, ZHU Jingbo1, BU Yingqiao3. Vegetable Lepidopteran Pest Auto Recognition and Detection Counting Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2019, 21(12): 76-84. |
[15] | LIU Jinrong, LIN Jianhui*, LI Tingting. Identification of Leaf Disease Grade Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 55-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||