Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (3): 166-175.DOI: 10.13304/j.nykjdb.2020.0545
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Linlin DONG1(), Jinfang ZHA2, Mingxing SHEN1, Haihou WANG1, Linlin SHI1, Yueyue TAO1, Xinwei ZHOU1, Changying LU1()
Received:
2020-06-21
Accepted:
2020-09-14
Online:
2022-03-15
Published:
2022-03-14
Contact:
Changying LU
董林林1(), 查金芳2, 沈明星1, 王海候1, 施林林1, 陶玥玥1, 周新伟1, 陆长婴1()
通讯作者:
陆长婴
作者简介:
董林林E-mail:jinjindoudou2005@163.com;
基金资助:
CLC Number:
Linlin DONG, Jinfang ZHA, Mingxing SHEN, Haihou WANG, Linlin SHI, Yueyue TAO, Xinwei ZHOU, Changying LU. Effect of Long-term Straw Returning on Soil Organic Carbon Fractions Composition in Rice-Wheat Rotation Ecosystem[J]. Journal of Agricultural Science and Technology, 2022, 24(3): 166-175.
董林林, 查金芳, 沈明星, 王海候, 施林林, 陶玥玥, 周新伟, 陆长婴. 长期秸秆还田对稻麦轮作区土壤有机碳组分构成的影响[J]. 中国农业科技导报, 2022, 24(3): 166-175.
Fig. 1 Soil organic carbon content under different treatmentsNote: Different English letters indicate significant differences between 2007 and 2017 of the same treatment at P<0.05 level; different Greek letters indicate significant differences between different treatments in same year at P<0.05 level.
Fig. 2 Variation of soil organic carbon under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
处理 Treatment | LFOC /% | HFOC /% | ||
---|---|---|---|---|
2007 | 2017 | 2007 | 2017 | |
CK | 11.44±2.16 aα | 15.69±4.56 aβ | 88.56±2.16 aα | 84.31±4.56 aαβ |
W | 11.92±0.65 aα | 10.96±1.67 aαβ | 88.08±0.65 aα | 89.00±1.67 aβ |
R | 10.22±0.71 aα | 11.36±2.18 aαβ | 89.78±0.71 aα | 88.64±2.18 aαβ |
HRW | 14.25±3.54 aα | 13.70±2.88 aαβ | 85.75±3.54 aα | 86.30±2.88 aαβ |
ARW | 11.47±1.79 bα | 17.37±1.62 aα | 93.41±3.33 aα | 82.63±1.62 bα |
Table 1 Composition of soil organic carbon components under different treatments
处理 Treatment | LFOC /% | HFOC /% | ||
---|---|---|---|---|
2007 | 2017 | 2007 | 2017 | |
CK | 11.44±2.16 aα | 15.69±4.56 aβ | 88.56±2.16 aα | 84.31±4.56 aαβ |
W | 11.92±0.65 aα | 10.96±1.67 aαβ | 88.08±0.65 aα | 89.00±1.67 aβ |
R | 10.22±0.71 aα | 11.36±2.18 aαβ | 89.78±0.71 aα | 88.64±2.18 aαβ |
HRW | 14.25±3.54 aα | 13.70±2.88 aαβ | 85.75±3.54 aα | 86.30±2.88 aαβ |
ARW | 11.47±1.79 bα | 17.37±1.62 aα | 93.41±3.33 aα | 82.63±1.62 bα |
Fig. 3 LFOC and LFOM?C content under different treatmentsNote: Different English letters indicate significant differences between 2007 and 2017 of the same treatment at P<0.05 level; different Greek letters indicate significantly differences between different treatments in same year at P<0.05 level.
Fig. 4 Variation of LFOC under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 5 HFOC content under different treatmentsNote: Different English letters indicate significant differences between 2007 and 2017 of the same treatment at P<0.05 level; different Greek letters indicate significantly differences between different treatments in same year at P<0.05 level.
Fig. 6 Variation of HFOC under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig.7 Relationship between the contents of soil organic carbon and its fractionsNote:X1 and Y1represent data of 2007;X2 and Y2 represent data of 2017.
处理Treatment | 千粒重 Thousand seed weight/g | 结实率 Seed setting rate/% | 产量 Yield/(t·hm-2) | |||
---|---|---|---|---|---|---|
2007 | 2017 | 2007 | 2017 | 2007 | 2017 | |
CK | 24.9±0.13 aα | 25.9±0.03 aα | 91.1±2.73 aα | 82.4±2.99 aα | 8.5±0.36 aα | 8.8±0.32 aαβ |
W | 25.8±0.49 aα | 26.0±0.04 aα | 93.6±2.26 aα | 84.2±4.43 aα | 8.5±0.26 aα | 8.0±0.10 bβ |
R | 25.5±0.20 aα | 26.0±0.20 aα | 95.4±1.34 aα | 79.3±3.42 aα | 8.1±0.17 aα | 8.90±0.23 aαβ |
HRW | 25.2±0.17 aα | 26.0±0.03 aα | 92.8±1.29 aα | 81.2±3.27 aα | 8.4±0.17 aα | 8.53±0.13 bαβ |
ARW | 24.8±0.56 aα | 25.7±0.20 aα | 94.6±0.31 aα | 76.7±1.82 aα | 8.1±035 aα | 9.03±0.25 aα |
Table 2 Rice yield under different treatments
处理Treatment | 千粒重 Thousand seed weight/g | 结实率 Seed setting rate/% | 产量 Yield/(t·hm-2) | |||
---|---|---|---|---|---|---|
2007 | 2017 | 2007 | 2017 | 2007 | 2017 | |
CK | 24.9±0.13 aα | 25.9±0.03 aα | 91.1±2.73 aα | 82.4±2.99 aα | 8.5±0.36 aα | 8.8±0.32 aαβ |
W | 25.8±0.49 aα | 26.0±0.04 aα | 93.6±2.26 aα | 84.2±4.43 aα | 8.5±0.26 aα | 8.0±0.10 bβ |
R | 25.5±0.20 aα | 26.0±0.20 aα | 95.4±1.34 aα | 79.3±3.42 aα | 8.1±0.17 aα | 8.90±0.23 aαβ |
HRW | 25.2±0.17 aα | 26.0±0.03 aα | 92.8±1.29 aα | 81.2±3.27 aα | 8.4±0.17 aα | 8.53±0.13 bαβ |
ARW | 24.8±0.56 aα | 25.7±0.20 aα | 94.6±0.31 aα | 76.7±1.82 aα | 8.1±035 aα | 9.03±0.25 aα |
Fig.8 Relationship between the content of soil organic carbon fractions and rice yieldNote:XL, XH and XSrepresent contents of LFOC, HFOC and SOC, YL, YH and YS represent fitting data of rice yield from LFOC, HFOC and SOC.
1 | 曹湛波,王磊,李凡,等.土壤呼吸与土壤有机碳对不同秸秆还田的响应及其机制[J].环境科学,2016,37(5):1908-1914. |
CAO Z B, WANG L, LI F, et al.. Response of soil respiration and organic carbon to returning of different agricultural straws and its mechanism [J]. Environ. Sci., 2016, 37(5):1908-1914. | |
2 | WIGHT J P, ASHWORTH A J, ALLEN F L. Organic substrate, clay type, texture, and water influence on NIR carbon measurements [J]. Geoderma, 2016, 261:36-43. |
3 | MURGE E W, VORONEY P, BEYAERT R P. Turnover of carbon in the free light fraction with and without charcoal as determined using the 13C natural abundance method [J]. Geoderma, 2007, 138(1-2):133-143. |
4 | DONG L L, ZHANG H D, WANG L Q, et al.. Irrigation with sediment-laden river water affects the soil texture and composition of organic matter fractions in arid and semi-arid areas of Northwest China [J]. Geoderma, 2018, 328:10-19. |
5 | RAFFA D W, BOGDANSKI A, TITTONELL P. How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors [J]. Biomas Bioenergy, 2015, 81:345-355. |
6 | 何振超,苏瑶,喻曼,等.秸秆碳对不同施肥水平低肥力土壤碳组分的影响[J].农业资源与环境学报,2019,36(3):304-312. |
HE Z C, SU Y, YU M, et al.. Effect of straw-derived carbon on carbon component of the low fertility soil at different nitrogen application rates [J]. J. Agric. Res. Environ., 2019, 36(3):304-312. | |
7 | LIU Z, GAO T P, LIU W T, et al.. Effects of part and whole straw returning on soil carbon sequestration in C3-C4 rotation cropland [J]. J. Plant Nutr. Soil Sci., 2019, 182(3):429-440. |
8 | 赵惠丽,董金琎,师江澜,等.秸秆还田模式对小麦-玉米轮作体系土壤有机碳固存的影响[J].土壤学报, 2021, 58(1):213-224. |
ZHAO H L, DONG J J, SHI J L, et al.. Effect of straw returning mode on soil organic carbon sequestration [J]. Acta Pedol. Sin., 2021, 58(1):213-224. | |
9 | 李昊昱,孟兆良,庞党伟,等.周年秸秆还田对农田土壤固碳及冬小麦—夏玉米产量的影响[J].作物学报,2019,45(6):893-903. |
LI H Y, MENG Z L, PANG D W, et al.. Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland [J]. Acta Agron. Sin., 2019, 45(6):893-903. | |
10 | 徐蒋来,胡乃娟,张政文,等.连续秸秆还田对稻麦轮作农田土壤养分及碳库的影响[J].土壤,2016,48(1):71-75. |
XU J L, HU N J, ZHANG Z W, et al.. Effect of continuous straw returning on soil nutrients and carbon pool in rice-wheat rotation system [J]. Soils, 2016, 48(1):71-75. | |
11 | CHEN S, XU C M, YAN J X, et al.. The influence of the type of crop residue on soil organic carbon fractions: an 11-year field study of rice-based cropping systems in southeast China [J]. Agric. Ecosyst. Environ., 2016, 223:261-269. |
12 | 王虎,王旭东,田宵鸿.秸秆还田对土壤有机碳不同活性组分储量及分配的影响[J].应用生态学报,2014,25(12):3491-3498. |
WANG H, WANG X D, TIAN X H. Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon [J]. Chin. J. Appl. Ecol., 2014, 25(12):3491-3498. | |
13 | PINHEIRO E F M, CAMPOS D V B D, BALIEIRO F D C, et al.. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter [J]. Agric. Syst., 2015, 132:35-39. |
14 | 傅敏,郝敏敏,胡恒宇,等.土壤有机碳与微生物群落结构对多年不同耕作方式与秸秆还田的响应[J].应用生态学报,2019,30(9):3183-3194. |
FU M, HAO M M, HU H Y, et al.. Response of soil organic carbon and microbial community structure to different tillage patterns and straw returning after many years [J]. Chin. J. Appl. Ecol., 2019, 30(9):3183-3194. | |
15 | 周延辉,朱新开,郭文善,等.中国地区小麦产量及产量要素对秸秆还田响应的整合分析[J].核农学报,2019,33(1):129-137. |
ZHOU Y H, ZHU X K, GUO W S, et al.. Meta-analysis of the response of wheat yield and yield components to straw returning in China [J]. J. Nucl. Agric. Sci., 2019, 33(1):129-137. | |
16 | 郑继成,张刚,王德建,等.稻麦轮作下秸秆还田对稻麦产量和稻田可溶性有机碳含量的影响[J].中国生态农业学报,2019,27(3):431-440. |
ZHENG J C, ZHANG G, WANG D J, et al.. Effects of straw incorporation on crop yield and dissolved organic carbon concentration at rice growing season in rice-wheat rotation cropping system [J]. Chin. J. Eco-Agric., 2019, 27(3):431-440. | |
17 | 张雅洁,陈晨,陈曦,等.小麦-水稻秸秆还田对土壤有机质组成及不同形态氮含量的影响[J].农业环境科学学报,2015,34(11):2155-2161. |
ZHANG Y J, CHEN C, CHEN X, et al.. Effects of wheat and rice straw returning on soil organic matter composition and content of different nitrogen forms in soil [J]. J. Agro-Environ. Sci., 2015, 34(11):2155-2161. | |
18 | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:85-96. |
19 | KÄTTERER T, BOLINDER M A, ANDRÉN O, et al.. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment [J]. Agric. Ecosyst. Environ., 2011, 141(1-2):184-192. |
20 | SYAM K D, WANG J J, DELAUNE R D. Characterization of labile organic carbon in coastal wetland soils of the Mississippi River deltaic plain: Relationships to carbon functionalities [J]. Sci. Total Environ., 2012, 435-436:151-158. |
21 | 汤宏,沈健林,张杨珠,等.秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响[J].水土保持学报,2013,27(1):240-246. |
TANG H, SHEN J L, ZHANG Y Z, et al.. Effect of rice straw incorporation and water management on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in a rice paddy field [J]. J. Soil Water Conserv., 2013, 27(1):240-246. | |
22 | SALAZAR O, BALLOA L, PERALTA K, et al.. Effect of cover crops on leaching of dissolved organic nitrogen and carbon in a maize-cover crop rotation in Mediterranean Central Chile [J]. Agric. Water Manage., 2019, 212:399-406. |
23 | 王海候,金梅娟,陆长婴,等.秸秆还田模式对农田土壤碳库特性及产量的影响[J].自然资源学报,2017,32(5):755-764. |
WANG H H, JIN M J, LU C Y, et al.. Effects of patterns of returning straw to field on soil carbon pool and yield in rice-wheat double cropping systems [J]. J. Nat. Resour., 2017, 32(5):755-764. | |
24 | 陈鲜妮,岳西杰,葛玺祖,等.长期秸秆还田对塿土耕层土壤有机碳库的影响[J].自然资源学报,2012,27(1):25-32. |
CHEN X N, YUE X J, GE X Z, et al.. Effect of long-term residue return on soil organic carbon storage [J]. J. Nat. Resour., 2012, 27(1):25-32. | |
25 | 张志毅,熊桂云,吴茂前,等.有机培肥与耕作方式对稻麦轮作土壤团聚体和有机碳组分的影响[J].中国生态农业学报,2020,28(3):405-412. |
ZHANG Z Y, XIONG G Y, WU M Q, et al.. Effects of organic fertilization and tillage method on soil aggregates and organic carbon fractions in a wheat-rice system [J]. Chin. J. Eco-Agric., 2020, 28(3):405-412. | |
26 | LIAO P, HUANG S, GESTEL N C V, et al.. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system [J]. Field Crops Res., 2018, 216:217-224. |
27 | 胡乃娟,韩新忠,杨敏芳,等.秸秆还田对稻麦轮作农田土壤活性有机碳组分含量、酶活性及产量的短期效应[J].植物营养与肥料学报,2015,21(2):371-377. |
HU N J, HAN X Z, YANG M F, et al.. Short-term influence of straw return on the content of soil organic carbon fractions, enzyme activities and crop yields in rice-wheat rotation farmland [J]. Plant Nutr. Fert. Sci., 2015, 21(2):371-377. | |
28 | 董林林,王海候,陆长婴,等.秸秆还田量和类型对土壤氮及氮组分构成的影响[J].应用生态学报,2019,30(4):1143-1150. |
DONG L L, WANG H H, LU C Y, et al.. Effect of straw returning amount and type on soil nitrogen and its composition [J]. Chin. J. Appl. Ecol., 2019, 30(4):1143-1150. | |
29 | NIE J, ZHOU J M, WANG H Y, et al.. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen [J]. Pedosphere, 2007, 17(3):295-302. |
30 | 张翰林,郑宪清,何七勇,等.不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响[J].水土保持学报,2016,30(4):216-220. |
ZHANG H L, ZHENG X Q, HE Q Y, et al.. Effect of years of straw returning on soil aggregates and organic carbon in rice-wheat rotation systems [J]. J. Soil Water Conserv., 2016, 30(4):216-220. | |
31 | XU Y H, CHEN Z M, FONTAINE S, et al.. Dominant effect of organic carbon chemistry on decomposition dynamics of crop residues in a Mollisol [J]. Soil Biol. Biochem., 2017, 115:221-232. |
32 | CHEN Z M, WANG H Y, LIU X W, et al.. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system [J]. Soil Tillage Res., 2017,165:121-127. |
33 | 周运来,张振华,范如芹,等.秸秆还田方式对水稻田土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,32(4):786-790. |
ZHOU Y L, ZHANG Z H, FAN R Q, et al.. Effects of straw-returning modes on paddy soil properties and rice yield [J]. Jiangsu J. Agric. Sci., 2016, 32(4):786-790. | |
34 | 李新华,郭洪海,朱振林,等. 不同秸秆还田模式对土壤有机碳及其活性组分的影响[J].农业工程学报,2016,32(9):130-135. |
LI X H, GUO H H, ZHU Z L, et al.. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(9):130-135. | |
35 | LIANG C, AMELUNG W, LEHMANN J, et al.. Quantitative assessment of microbial necromass contribution to soil organic matter [J]. Global Change Biol., 2019, 25(11):3578-3590. |
36 | 赵蒙蒙,姜曼,周祚万.几种农作物秸秆的成分分析[J].材料导报,2011,25(8):122-125 |
ZHAO M M, JIANG M, ZHOU Z W. The components analysis of several kinds of agricultural residues [J]. Mater. Rev., 2011, 25(8):122-125. | |
37 | 单玉华,蔡祖聪,韩勇,等.淹水土壤有机酸积累与秸秆碳氮比及氮供应的关系[J].土壤学报,2006,43(6):941-947. |
SHAN Y H, CAI Z C, HAN Y, et al.. Accumulation of organic acids in relation to C:N ratios of straws and N application in flooded soil [J]. Acta Pedol. Sin., 2006, 43(6):941-947. |
[1] | Tianming QI, Zhijian LI, Peiyou QIN, Guixing REN, Bangwei ZHOU. Research and Application Prospect of Quinoa Cultivation Technology [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 157-165. |
[2] | Xin XU, Zhaowu MA, Shuping XIONG, Xinming MA, Tao CHENG, Haiyang LI, Jinpeng ZHAO. Wheat Yield Forecast in Henan Province Based on Climate Year Type [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 136-144. |
[3] | Baoshi LI, Wenke LIU, Qi WANG, Mingjie SHAO. Effect of Soil-ridged Substrate-embedded Cultivation on Root Zone Temperature, Growth and Yield of Cucumber in Chinese Solar Greenhouse in Summer [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 177-183. |
[4] | Xuan ZHOU, Pinling YANG, Jianwei PENG, Huiqing CHAI, Xuemei ZHONG, Xingrong KANG, Junyou LONG, Huiru ZHANG. Effects of Function Microbial Compound Fertilizer on Yield, Quality and Economic Benefit of Head Cabbage [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 184-192. |
[5] | Changjie CHEN, Lin MA, Yuhuan MIAO, Lanping GUO, Dahui LIU. Effects of Potassium Application on Growth, Yield and Quality of Artemisia argyi [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 201-209. |
[6] | Jian WANG, Ailing XU, Xiaodong WEI, Jilong XI, Na YANG, Ke WANG, Tianyuan XI, Jiancheng ZHANG. Risk Assessment of Spring Freezing Injury of Wheat at Different Sowing Dates in Yuncheng Basin [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 137-147. |
[7] | Zhidan WANG, Jili LIU, Na WU. Effects of Fenlong Tillage on Photosynthetic Physiological Characteristics and Yield of Sweet Sorghum [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 148-156. |
[8] | HUANG Yulan§, LONG Shengfeng§, YE Xingzhi, LI Yanying, SHEN Zhangyou, ZHOU Jia, ZHOU Lingzhi, LAO Chengying, WEI Benhui. Study on the Agronomic Characters, Yield and Quality of Cassava in Enshi of Hubei Province [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 46-55. |
[9] | SUN Mengyao, XU Lanjun, LI Xiaolong, LI Chuanyou, CHEN Hua, ZHANG Chuanshuai, LIU Xingtao. Influences of Different Water-saving Methods on Water Utilization, Distribution and Yield of Rape [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 138-143. |
[10] | LI Shengmei, ZHANG Dawei, DILIBAIER Dilimaimaiti, WEI Xin, RUI Cun, YANG Tao, GENG Shiwei, GAO Wenwei. Influence of Reduced Irrigation on Agronomic Traits, Yield and Fiber Quality of Transgenic ScALDH21 Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 152-159. |
[11] | LIU Yuqian, LU Faguang, GU Lifeng, REN Zhen, SHI Yu, LU Haitong, XU Zhenran, ZHOU Guisheng, WANG Xiaoshan, ZHANG Wangding, REN Zhiqiang, ZHU Guanglong, . Study on High Yield Production Technology of Oat in Saline Soils of Coastal beach and Its Associated Physiological Basis [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 160-172. |
[12] | LI Chengchen, SUO Haicui, LUO Huanming, AN Kang, LIU Jitao, WANG Li, SHAN Jianwei, YANG Shaohai, LI Xiaobo. Effects of Reduced Fertilizer Application and Fertilization Methods on Potato Yield and Tuber Nitrogen Accumulation [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 173-182. |
[13] | LI Shuang, ZHANG Wei, WANG Li, LI Xiaojun, CUI Juntao. Effect of Straw Returning on Fertility and Stem Rot of Black Soil with Different Land Fertility [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 80-90. |
[14] | WU Zishuai, LI Hu, HUANG Qiuyao, CHEN Chuanhua, LUO Qunchang, ZHOU Xinmin, WU Jiaju, LIU Guanglin. Influences of Nitrogen Fertilizer Application Rate and Planting Density on the Yield and Rice Quality of Guiyu 11 [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 154-162. |
[15] | WENG Wenan, CHENG Shuang, LI Shaoping, TIAN Jinyu, TAO Yu, HU Qun, HU Yajie, GUO Baowei, WEI Haiyan, XING Zhipeng, ZHANG Hongcheng. Effects of One-off Nitrogen Basal Fertilization on Yield of Direct Seeding Conventional Japonica Rice Under Different Panicle Formation Types [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 163-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||