中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (8): 25-34.DOI: 10.13304/j.nykjdb.2021.0671
翟利敏1(), 李文通2, 冯政1, 李华1, 裴杨莉1(
)
收稿日期:
2021-08-08
接受日期:
2022-01-18
出版日期:
2022-08-15
发布日期:
2022-08-22
通讯作者:
裴杨莉
作者简介:
翟利敏 E-mail: 1772726298@qq.com;
基金资助:
Limin ZHAI1(), Wentong LI2, Zheng FENG1, Hua LI1, Yangli PEI1(
)
Received:
2021-08-08
Accepted:
2022-01-18
Online:
2022-08-15
Published:
2022-08-22
Contact:
Yangli PEI
摘要:
猪是重要的农业经济动物,猪肉是人类获得蛋白质营养物质的主要途径之一。与此同时,猪在解剖学、生理学及遗传背景、疾病特征等方面与人类极为相似。因此,猪既是农业动物生产性状改良的重要对象,又是人类疾病、异种器官移植等生物医学领域的研究对象。随着基因编辑技术的飞速发展,出现了越来越多操作简单、运用广泛且安全的新型编辑技术,可以快速获得单碱基编辑、基因敲除或敲入的细胞系,并通过体细胞克隆等技术获得基因编辑猪。综述了基因编辑猪的制备及其在农业及医学领域中的研究进展,以期为猪的农业生产性状改良和医学研究提供参考。
中图分类号:
翟利敏, 李文通, 冯政, 李华, 裴杨莉. 基因编辑猪的研究现状[J]. 中国农业科技导报, 2022, 24(8): 25-34.
Limin ZHAI, Wentong LI, Zheng FENG, Hua LI, Yangli PEI. Current Status of Gene-edited Pigs[J]. Journal of Agricultural Science and Technology, 2022, 24(8): 25-34.
1 | FANG X, MOU Y, HUANG Z, et al.. The sequence and analysis of a Chinese pig genome [J/OL]. Gigascience, 2012, 1(1): 16 [2021-08-10]. . |
2 | 章德宾,罗瑶,陈文进.基因编辑技术发展现状[J].生物工程学报,2020, 36(11): 2345-2356. |
ZHANG D B, LUO Y, CHEN W J. Current development of gene editing [J]. Chin. J. Biotechnol., 2020, 36(11): 2345-2356. | |
3 | 朱向星,全守能,黄勇,等.体细胞核移植技术在猪基因修饰中的应用[J].基因组学与应用生物学,2013, 32(6):9-16. |
ZHU X X, QUAN S N, HUANG Y, et al.. Application of somatic cell nuclear transfer technology in porcine gene modification [J]. Genomics Appl. Biol., 2013, 32(6):9-16. | |
4 | GROTH C G, KORSGREN O, TIBELL A, et al.. Transplantation of porcine fetal pancreas to diabetic patients [J]. Lancet, 1994, 344(8934): 1402-1404. |
5 | PUGA Y G L, RIEBEN R, BÜHLER L, et al.. Xenotransplantation: where do we stand in 2016? [J/OL]. Swiss Med. Wkly., 2017, 147: w14403 [2021-08-13]. . |
6 | VALDES-GONZALEZ R, RODRIGUEZ-VENTURA A L, WHITE D J, et al.. Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets [J/OL]. Clin. Exp. Immunol., 2010, 162(3): 537-542 [2021-08-13]. . |
7 | MATSUMOTO S, TAN P, BAKER J, et al.. Clinical porcine islet xenotransplantation under comprehensive regulation [J]. Transplant Proc., 2014, 46(6): 1992-1995. |
8 | NIEMANN H, PETERSEN B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation [J]. Transgenic Res., 2016, 25(3): 361-374. |
9 | TANIHARA F, TAKEMOTO T, KITAGAWA E, et al.. Somatic cell reprogramming-free generation of genetically modified pigs [J/OL]. Sci. Adv., 2016, 2(9): e1600803 [2021-08-13]. . |
10 | NISHIO K, TANIHARA F, NGUYEN T V, et al.. Effects of voltage strength during electroporation on the development and quality of in vitro-produced porcine embryos [J]. Reprod. Domest. Anim., 2018, 53(2): 313-318. |
11 | FAN Z, LIU Z, XU K, et al.. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production [J]. Sci. China Life Sci., 2022,65(2): 362-375. |
12 | LIU X, LIU H, WANG M, et al.. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs [J]. Transgenic Res., 2019, 28(1): 141-150. |
13 | XIANG G, REN J, HAI T, et al.. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs [J]. Cell Mol. Life Sci., 2018, 75(24): 4619-4628. |
14 | QIAN L, TANG M, YANG J, et al.. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs [J/OL]. Sci. Rep., 2015, 5: 14435 [2021-08-13]. . |
15 | WANG K, OUYANG H, XIE Z, et al.. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system [J/OL]. Sci.Rep., 2015,5: 16623 [2021-08-13]. . |
16 | BI Y, HUA Z, LIU X, et al.. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP [J/OL]. Sci. Rep., 2016, 6:31729 [2021-08-13]. . |
17 | ZHU X X, ZHAN Q M, WEI Y Y, et al.. CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs [J]. Reprod. Domest. Anim., 2020, 55(10): 1314-1327. |
18 | REN H, XIAO W, QIN X, et al.. Myostatin regulates fatty acid desaturation and fat deposition through MEF2C/miR222/SCD5 cascade in pigs [J/OL]. Commun. Biol., 2020, 3(1): 612 [2021-08-13]. . |
19 | 彭定威,李瑞强,曾武,等.编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传,2021, 43(3): 261-270. |
PENG D W, LI R Q, ZENG W, et al.. Edit MSTN cysteine ganglion to promote muscle growth of Guangdong and Guangdong Xiaohua pigs [J]. Hereditas, 2021,43(3):261-270. | |
20 | SHAHIDI F, AMBIGAIPALAN P. Omega-3 polyunsaturated fatty acids and their health benefits [J]. Annu. Rev. Food Sci. Technol., 2018, 9: 345-381. |
21 | LAI L, KANG J X, LI R, et al.. Generation of cloned transgenic pigs rich in omega-3 fatty acids [J]. Nat. Biotechnol., 2006, 24(4): 435-436. |
22 | RICHARDS M P, KATHIRVEL P, GONG Y, et al.. Long chain omega-3 fatty acid levels in loin muscle from transgenic (fat-1 gene) pigs and effects on lipid oxidation during storage [J]. Food Biotechnol., 2011, 25(2): 103-114. |
23 | ZHANG P, ZHANG Y, DOU H, et al.. Handmade cloned transgenic piglets expressing the nematode fat-1 gene [J]. Cell Reprogram, 2012, 14(3): 258-266. |
24 | LI M, OUYANG H, YUAN H, et al.. Site-specific fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs [J]. G3 (Bethesda, Md.), 2018, 8(5): 1747-1754. |
25 | TANG F, YANG X, LIU D, et al.. Co-expression of fat1 and fat2 in transgenic pigs promotes synthesis of polyunsaturated fatty acids [J]. Transgenic Res., 2019, 28(3-4): 369-379. |
26 | COLLINS J E, BENFIELD D A, CHRISTIANSON W T, et al.. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs [J]. J. Vet. Diagn Invest., 1992, 4(2): 117-126. |
27 | WHITWORTH K M, ROWLAND R R, EWEN C L, et al.. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus [J]. Nat. Biotechnol., 2016, 34(1): 20-22. |
28 | WELLS K D, BARDOT R, WHITWORTH K M, et al.. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus [J/OL]. J. Virol., 2017, 91(2) : e01521-16 [2021-08-13]. . |
29 | YANG H, ZHANG J, ZHANG X, et al.. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus [J]. Antiviral Res., 2018, 151: 63-70. |
30 | XU K, ZHOU Y, MU Y, et al.. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance [J/OL]. eLife, 2020, 9: 57132 [2021-08-13]. . |
31 | KARALYAN Z, ZAKARYAN H, ARAKELOVA E, et al.. Evidence of hemolysis in pigs infected with highly virulent African swine fever virus [J]. Vet. World, 2016, 9(12): 1413-1419. |
32 | LILLICO S G, PROUDFOOT C, KING T J, et al.. Mammalian interspecies substitution of immune modulatory alleles by genome editing [J/OL]. Sci.Rep., 2016, 6: 21645 [2021-08-13]. . |
33 | MCCLEARY S, STRONG R, MCCARTHY R R, et al.. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fevervirus [J/OL].Sci.Rep.,2020,10(1):8951 [2021-08-13]. . |
34 | XIE Z, JIAO H, XIAO H, et al.. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology [J/OL]. Antiviral Res., 2020, 174: 104696 [2021-08-13]. . |
35 | HUANG J, WANG A, HUANG C, et al.. Generation of marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems [J/OL]. Genes,2020,11(8):951 [2021-08-13]. . |
36 | SACHS D H. The pig as a potential xenograft donor [J]. Vet. Immunol. Immunopathol., 1994, 43(1-3): 185-191. |
37 | GROENEN M A M, ARCHIBALD A L, UENISHI H, et al.. Analyses of pig genomes provide insight into porcine demography and evolution [J]. Nature, 2012, 491(7424): 393-398. |
38 | TANABE T, WATANABE H, SHAH J A, et al.. Role of intrinsic (graft) versus extrinsic (host) factors in the growth of transplanted organs following allogeneic and xenogeneic transplantation [J]. Am. J. Transplant., 2017, 17(7): 1778-1790. |
39 | SYKES M, SACHS D H. Transplanting organs from pigs to humans [J/OL]. Sci. Immunol., 2019, 4(41): eaau6298 [2021-08-10]. . |
40 | SOEDE N M, LANGENDIJK P, KEMP B. Reproductive cycles in pigs [J]. Anim. Reprod. Sci., 2011, 124(3-4): 251-258. |
41 | SIPPEL K C, DESTEFANO J D, BERSON E L, et al.. Evaluation of the human arrestin gene in patients with retinitis pigmentosa and stationary night blindness [J]. Invest. Ophth. Vis. Sci., 1998, 39(3): 665-670. |
42 | HAI T, TENG F, GUO R, et al.. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system [J]. Cell Res., 2014, 24(3): 372-375. |
43 | PABST R. The pig as a model for immunology research [J]. Cell Tiss. Res., 2020, 380(2): 287-304. |
44 | IQBAL M A, HONG K, KIM J H, et al.. Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines [J]. BMB Rep., 2019, 52(11): 625-634. |
45 | ZHOU X, XIN J, FAN N, et al.. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer [J]. Cell. Mol. Life Sci., 2015, 72(6): 1175-1184. |
46 | STOWER H. A pig model of Huntington’s disease [J/OL]. Nat. Med., 2018, 24(7): 898 [2021-08-13]. . |
47 | OSUM S H, WATSON A L, LARGAESPADA D A. Spontaneous and engineered large animal models of neurofibromatosis type 1 [J/OL]. Int. J. Mol. Sci., 2021, 22(4): 1954 [2021-08-13]. . |
48 | WANG K, JIN Q, RUAN D, et al.. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing [J]. Genome Res., 2017, 27(12): 2061-2071. |
49 | HAUSER A S, ATTWOOD M M, RASK-ANDERSEN M, et al.. Trends in GPCR drug discovery: new agents, targets and indications [J]. Nat. Rev. Drug Discov., 2017, 16(12): 829-842. |
50 | HE J, YE J, LI Q, et al.. Construction of a transgenic pig model overexpressing polycystic kidney disease 2 (PKD2) gene [J]. Transgenic Res., 2013, 22(4): 861-867. |
51 | 陈雨荣,安星兰,汪正铸,等.猪作为人类疾病模型的研究进展[J].中国比较医学杂志,2020, 30(7): 110-119. |
CHEN Y, AN X L, WANG Z Z, et al.. Research progress of pigs as human disease model [J]. Chin. J. Comp. Med., 2020, 30(7) :110-119. | |
52 | JIANG R D, LIU M Q, CHEN Y, et al.. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-Converting enzyme2 [J]. Cell, 2020 182(1):50-58. |
53 | BAO L L, DENG W, HUANG B W, et al.. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice [J].Nature,2020,583(7818):830-833. |
54 | MCCRAY PB Jr, PEWE L, WOHLFORD-LENANE C, et al.. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus [J]. J. Virol., 2007, 81(2):813-21. |
55 | DU X, GUO Z, FAN W, et al.. Establishment of a humanized swine model for COVID-19 [J/OL]. Cell Discov., 2021, 7(1):70 [2021-08-25]. . |
56 | 黎汝楣,胡仁明.代谢性炎症综合征发病机制的研究进展[J].复旦学报(医学版),2017, 44(3):132-136. |
LI R M, H R M, Progress in the pathogenesis of metabolic inflammatory syndrome [J]. Fudan Univ. J. Med. Sci., 2017, 44(3):132-136. | |
57 | ZHANG K, TAO C, XU J, et al.. CD8+ T cells involved in metabolic inflammation in visceral adipose tissue and liver of transgenic pigs [J/OL]. Front. Immunol., 2021, 12: 690069 [2021-08-13]. . |
58 | 黄耀强, 李国玲, 杨化强, 等.基因编辑猪在生物医学研究中的应用[J]. 遗传 2018, 40(8): 30-44. |
HUANG Y Q, LI G L, YANG H Q, et al.. Progress and application of genome-edited pigs inbiomedical research [J]. Hereditas. 2018, 40(8): 30-44. | |
59 | BAXA M, HRUSKA-PLOCHAN M, JUHAS S, et al.. A transgenic minipig model of Huntington’s disease [J]. J Huntingtons Dis., 2013, 2(1): 47-68. |
60 | LADOWSKI J M, HOUPJ, HAUPTFELD-DOLEJSEK V, et al.. Aspects of histocompatibility testing in xenotransplantation [J/OL]. Transplant Immunol.,2021,67:101409 [2021-08-13]. . |
61 | 李国玲,徐志谦,杨化强,等.转基因和基因编辑猪的研究进展[J].华南农业大学学报,2019(5):99-109. |
LI G L, XU Z Q, YANG H Q, et al.. Research progress of transgenic and gene editing pigs [J]. South China Agric.Univ., 2019 (5):99-109. | |
62 | YUE Y, XU W, KAN Y, et al.. Extensive germline genome engineering in pigs [J]. Nat. Biomed. Eng., 2021, 5(2): 134-143. |
63 | WANG H, YANG Y G. Innate cellular immunity and xenotransplantation [J]. Curr. Opin. Organ. Tran., 2012, 17(2): 162-167. |
64 | GRIESEMER A, YAMADA K, SYKES M. Xenotransplantation: immunological hurdles and progress toward tolerance [J]. Immunol. Rev., 2014, 258(1): 241-258. |
65 | LAI L, PRATHER R S. Progress in producing knockout models for xenotransplantation by nuclear transfer [J]. Ann. Med., 2002, 34(7-8): 501-506. |
66 | HAUSCHILD J, PETERSEN B, SANTIAGO Y, et al.. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases [J]. Proc. Natl. Acad. Sci. USA, 2011, 108(29): 12013-12017. |
67 | SUZUKI A. Genetic basis for the lack of N-glycolylneuraminic acid expression in human tissues and its implication to human evolution [J]. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 2006, 82(3): 93-103. |
68 | MIWA Y, KOBAYASHI T, NAGASAKA T, et al.. Are N-glycolylneuraminic acid (Hanganutziu-Deicher) antigens important in pig-to-human xenotransplantation? [J]. Xenotransplantation, 2004, 11(3): 247-253. |
69 | ZHU A, HURST R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum [J]. Xenotransplantation, 2002, 9(6): 376-381. |
70 | GAO H, ZHAO C, XIANG X, et al.. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning [J]. J. Reprod. Dev., 2017, 63(1): 17-26. |
71 | LUNDVIG D M, IMMENSCHUH S, WAGENER F A. Heme oxygenase, inflammation, and fibrosis: the good, the bad, and the ugly? [J/OL]. Front. Pharmacol., 2012, 3: 81 [2021-08-13]. . |
72 | SINGH A K, CHAN J L, DICHIACCHIO L, et al.. Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs [J/OL]. Xenotransplantation, 2019, 26(2): e12465 [2021-08-13]. . |
73 | MOHIUDDIN M M, SINGH A K, CORCORAN P C, et al.. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiacxenograft [J/OL]. Nat. Commun., 2016, 7: 11138 [2021-08-13]. . |
74 | LEE S J, KIM J S, CHEE H K, et al.. Seven years of experiences of preclinical experiments of xeno-heart transplantation of pig to non-human primate (cynomolgus monkey) [J]. Transplant Proc., 2018, 50(4): 1167-1171. |
75 | IRIE A, KOYAMA S, KOZUTSUMI Y, et al.. The molecular basis for the absence of N-glycolylneuraminic acid in humans [J]. J. Biol. Chem., 1998, 273(25): 15866-15871. |
76 | CHONG A S, SHEN J, XIAO F, et al.. Delayed xenograft rejection in the concordant hamster heart into Lewis rat model [J]. Transplantation,1996, 62(1): 90-96. |
77 | CARDONA K, KORBUTT G S, MILAS Z, et al.. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways [J]. Nat. Med., 2006, 12(3): 304-306. |
78 | HERING B J, WIJKSTROM M, GRAHAM M L, et al.. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates [J]. Nat. Med., 2006, 12(3): 301-303. |
79 | TSUYUKI S, KONO M, BLOOM E T. Cloning and potential utility of porcine Fas ligand: overexpression in porcine endothelial cells protects them from attack by human cytolytic cells [J]. Xenotransplantation, 2002, 9(6): 410-421. |
80 | BäHR A, KäSER T, KEMTER E, et al.. Ubiquitous LEA29Y expression blocks T cell co-stimulation but permits sexual reproduction in genetically modified pigs [J/OL]. PLoS One, 2016, 11(5): e0155676 [2021-08-13]. . |
81 | NOTTLE M B, SALVARIS E J, FISICARO N, et al.. Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9 [J/OL]. Sci. Rep., 2017, 7(1): 8383 [2021-08-13]. . |
82 | VABRES B, LE BAS-BERNARDET S, RIOCHET D, et al.. hCTLA4-Ig transgene expression in keratocytes modulates rejection of corneal xenografts in a pig to non-human primate anterior lamellar keratoplasty model [J]. Xenotransplantation, 2014, 21(5): 431-443. |
83 | BOEKE J D, CHURCH G, HESSEL A, et al.. GENOME ENGINEERING. the genome project-write [J]. Science, 2016, 353(6295): 126-127. |
84 | NIU D, WEI H J, LIN L, et al.. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9 [J]. Science, 2017, 357(6357): 1303-1307. |
[1] | 汪海, 赖锦盛, 王海洋, 李新海. 作物智能设计育种——自然变异的智能组合和人工变异的智能创制[J]. 中国农业科技导报, 2022, 24(6): 1-8. |
[2] | 魏艳晨, 陈吉祥, 王永刚, 孟彤彤, 韩亚龙, 李美. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析[J]. 中国农业科技导报, 2022, 24(5): 209-217. |
[3] | 庄重, 赵龙, 白皓, 毕瑜林, 黄应权, 陈国宏, 常国斌. CRISPR/Cas9技术在家禽育种方面的应用[J]. 中国农业科技导报, 2022, 24(1): 14-23. |
[4] | 马小倩, 杨涛, 张全, 张洪亮. 水稻新型育种技术研究现状与展望[J]. 中国农业科技导报, 2022, 24(1): 24-30. |
[5] | 高云, 王瑜, 鲁斯迪, 雷明刚, 罗俊杰, 黎煊, . 猪舍热舒适性评价及夏季湿帘作用下的CFD模拟[J]. 中国农业科技导报, 2021, 23(7): 125-135. |
[6] | 王巍1,2,罗玉子1,张丽1,马吉飞2*,仇华吉1*. 消毒技术在非洲猪瘟防控中的应用现状与问题[J]. 中国农业科技导报, 2021, 23(4): 93-102. |
[7] | 刘广娟,徐泽权,邢世均,陈铮,朱明睿,徐艳丽,张洪瑞,张莉,王子荣*. 磷酸盐对PSE猪肉食用品质和微观结构的影响[J]. 中国农业科技导报, 2021, 23(3): 114-121. |
[8] | 廖嘉明, §, 李春梅§, 张石虎, 李布野, 欧阳昆唏, 陈晓阳. CRISPR/Cas9基因编辑技术的发展及其在植物中的应用[J]. 中国农业科技导报, 2021, 23(12): 20-28. |
[9] | 李刚, 郑敏娜, 李荫藩. 饲用燕麦品种在晋北农牧交错区的生产性能和营养价值研究[J]. 中国农业科技导报, 2021, 23(12): 42-53. |
[10] | 赵云翔1,2§*,高广雄1§,方程2,朱琳2,李晓辉1,杨文俊1,张从林2. 不同品种公猪睾丸、精液品质发育规律及相关性研究[J]. 中国农业科技导报, 2020, 22(7): 61-68. |
[11] | 王祖力. 新型冠状病毒肺炎疫情对我国生猪产业的影响及对策建议[J]. 中国农业科技导报, 2020, 22(6): 6-11. |
[12] | 杨海峰1,2§,李艳艳1,2§,陈晓兰1,姚诗贇1,黄亚奇2,夏良友2,李宇琛2,卜仕金2*. 烯丙孕素内服溶液的临床药效和靶动物安全性研究[J]. 中国农业科技导报, 2020, 22(1): 78-86. |
[13] | 张丽,罗玉子,王涛,孙元,仇华吉*. 非洲猪瘟诊断技术发展现状与需求分析[J]. 中国农业科技导报, 2019, 21(9): 1-11. |
[14] | 周丹1,2,高云1,3*,雷明刚3,4,黎煊1,3. 冬季仔猪舍内二氧化碳浓度的数值模拟研究[J]. 中国农业科技导报, 2019, 21(8): 90-98. |
[15] | 李丹,陈一飞*,李行健,蒲东. 计算机视觉技术在猪行为识别中应用的研究进展[J]. 中国农业科技导报, 2019, 21(7): 59-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||