中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (3): 140-151.DOI: 10.13304/j.nykjdb.2021.0698
• 生物制造 资源生态 • 上一篇
收稿日期:
2021-08-16
接受日期:
2021-11-22
出版日期:
2023-03-15
发布日期:
2023-05-22
通讯作者:
苏小娟
作者简介:
姚佳E-mail: 2205501935@qq.com;
基金资助:
Jia YAO(), Jiaxin LIU, Yan SU, Xiaojuan SU(
)
Received:
2021-08-16
Accepted:
2021-11-22
Online:
2023-03-15
Published:
2023-05-22
Contact:
Xiaojuan SU
摘要:
为了实现农业秸秆废弃物资源化利用,探讨烟杆炭与氮肥对玉米苗期生长、养分吸收、土壤肥力及酶活性的影响,通过盆栽试验,以不施烟杆炭和氮肥为对照(CK),设置2个生物炭水平BC1(22.5 t·hm-2,低炭)和BC2 (67.5 t·hm-2,高炭),2个氮肥水平N1(180 kg·hm-2,低氮)和N2 (270 kg·hm-2,高氮),在玉米生长60 d后,分析玉米生长及养分吸收、土壤养分含量和酶活性变化。结果表明,与CK相比,烟杆炭、氮肥单独及二者配施均可显著提高玉米生长、养分吸收量及土壤养分含量。其中,土壤pH、全氮和阳离子交换量以N1+BC2处理增加效果最显著,分别为对照的1.29、2.12和1.34倍;土壤有机质、速效氮、速效磷和速效钾含量以N2+BC2处理最高,分别为对照的3.4、7.0、1.5和2.5倍。此外,N2+BC1处理的脲酶、蔗糖酶和过氧化氢酶活性最高,分别为74.74、7.92和1.14 mL·100 g-1土。生物炭和氮肥施用均显著提高了土壤蔗糖酶和过氧化氢酶活性,与对照相比,提高幅度分别为63%~88%和24%~79%;烟杆炭与氮肥配施对3种土壤酶的影响表现为低炭促进,高炭抑制。相关性分析表明,速效氮含量与蔗糖酶和过氧化氢酶活性呈极显著正相关,与脲酶活性相关不显著;各酶活性之间呈极显著相关。结果可为烟杆循环利用提供科学参考,同时为农业生产中减肥增效提供新思路。
中图分类号:
姚佳, 刘加欣, 苏焱, 苏小娟. 烟杆炭配施氮肥对玉米苗期生长及土壤特性的影响[J]. 中国农业科技导报, 2023, 25(3): 140-151.
Jia YAO, Jiaxin LIU, Yan SU, Xiaojuan SU. Effects of Combined Application of Tobacco Stem Biochar and Nitrogen Fertilizers on Corn Growth and Soil Properties in Seeding Stage[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 140-151.
处理 Treatment | 氮肥施用量 Nitrogen fertilizer application amount / (kg·hm-2) | 生物炭施用量 Biochar application amount/(t·hm-2) |
---|---|---|
CK | 0 | 0.0 |
BC1 | 0 | 22.5 |
BC2 | 0 | 67.5 |
N1 | 180 | 0.0 |
N1+BC1 | 180 | 22.5 |
N1+BC2 | 180 | 67.5 |
N2 | 270 | 0.0 |
N2+BC1 | 270 | 22.5 |
N2+BC2 | 270 | 67.5 |
表1 试验方案设计
Table 1 Design of the experimental program
处理 Treatment | 氮肥施用量 Nitrogen fertilizer application amount / (kg·hm-2) | 生物炭施用量 Biochar application amount/(t·hm-2) |
---|---|---|
CK | 0 | 0.0 |
BC1 | 0 | 22.5 |
BC2 | 0 | 67.5 |
N1 | 180 | 0.0 |
N1+BC1 | 180 | 22.5 |
N1+BC2 | 180 | 67.5 |
N2 | 270 | 0.0 |
N2+BC1 | 270 | 22.5 |
N2+BC2 | 270 | 67.5 |
图1 不同处理下苗期玉米株高注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 1 Corn plant height at seedling stage under different treatmentsNote: Different lowercase letters indicate significant differences between treatments at P<0.05 level.
图2 不同处理下玉米地上和地下部干物质积累量注:同一指标中不同小写字母表示不同处理间差异在P<0.05水平显著。
Fig. 2 Dry weight of corn aboveground and underground at seedling stage under different treatmentsNote: Different lowercase letters in same index indicate significant differences between treatments at P<0.05 level.
指标 Index | 处理 Treatment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CK | BC1 | BC2 | N1 | N1+BC1 | N1+BC2 | N2 | N2+BC1 | N2+BC2 | ||
含量 Content/% | N | 0.63±0.03 i | 0.97±0.16 h | 1.86±0.04 g | 4.15±0.02 e | 4.70±0.03 c | 4.25±0.07 d | 4.85±0.05 b | 5.27±0.02 a | 3.51±0.06 f |
P | 0.30±0.03 e | 1.02±0.21 d | 1.97±0.10 a | 1.28±0.28 c | 1.71±0.05 b | 0.96±0.10 d | 1.35±0.12 c | 1.79±0.10 ab | 0.88±0.07 d | |
吸收量/ (g·盆-1) Adsorption/(g·pot-1) | N | 0.04±0.00 i | 0.05±0.00 h | 0.13±0.00 g | 0.49±0.00 f | 0.68±0.00 c | 0.55±0.00 d | 0.92±0.01 b | 0.97±0.00 a | 0.54±0.00 e |
P | 0.02±0.00 i | 0.05±0.00 h | 0.13±0.00 f | 0.15±0.02 d | 0.25±0.00 c | 0.12±0.01 g | 0.26±0.01 b | 0.33±0.01 a | 0.14±0.01 e |
表2 各处理下玉米苗期全氮、全磷含量及其吸收量
Table 2 N and P contents and absorption of maize seeding under different treatments
指标 Index | 处理 Treatment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CK | BC1 | BC2 | N1 | N1+BC1 | N1+BC2 | N2 | N2+BC1 | N2+BC2 | ||
含量 Content/% | N | 0.63±0.03 i | 0.97±0.16 h | 1.86±0.04 g | 4.15±0.02 e | 4.70±0.03 c | 4.25±0.07 d | 4.85±0.05 b | 5.27±0.02 a | 3.51±0.06 f |
P | 0.30±0.03 e | 1.02±0.21 d | 1.97±0.10 a | 1.28±0.28 c | 1.71±0.05 b | 0.96±0.10 d | 1.35±0.12 c | 1.79±0.10 ab | 0.88±0.07 d | |
吸收量/ (g·盆-1) Adsorption/(g·pot-1) | N | 0.04±0.00 i | 0.05±0.00 h | 0.13±0.00 g | 0.49±0.00 f | 0.68±0.00 c | 0.55±0.00 d | 0.92±0.01 b | 0.97±0.00 a | 0.54±0.00 e |
P | 0.02±0.00 i | 0.05±0.00 h | 0.13±0.00 f | 0.15±0.02 d | 0.25±0.00 c | 0.12±0.01 g | 0.26±0.01 b | 0.33±0.01 a | 0.14±0.01 e |
处理 Treatment | pH | 土壤有机质 Soil organic matter/(g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 速效氮 Available nitrogen/(mg·kg-1) | 速效磷Available phosphorus/ (mg·kg-1) | 速效钾Available potassium/ (mg·kg-1) | 阳离子交换量 Cation exchange capacity/ (cmol·kg-1) |
---|---|---|---|---|---|---|---|
CK | 6.46±0.15 e | 13.86±1.94 g | 1.94±0.10 h | 12.25±6.70 d | 9.39±0.18 f | 41.87±2.52 f | 7.07±0.10 g |
BC1 | 7.62±0.18 c | 26.40±1.94 ef | 3.00±0.14 e | 33.25±6.70 c | 10.25±0.17 e | 57.02±2.52 e | 7.46±0.09 f |
BC2 | 8.07±0.02 b | 33.66±2.47 c | 3.21±0.05 d | 64.75±19.28 ab | 10.77±0.17 d | 98.65±4.12 a | 7.65±0.07 e |
N1 | 6.31±0.06 f | 24.42±2.90 f | 2.25±0.12 g | 49.00±22.14 bc | 11.29±0.17 c | 67.11±2.53 d | 8.04±0.07 d |
N1+BC1 | 8.03±0.10 b | 31.02±1.94 cd | 3.72±0.17 c | 75.25±19.28 a | 11.29±0.17 c | 82.25±2.53 c | 9.16±0.15 b |
N1+BC2 | 8.33±0.05 a | 39.27±2.44 b | 4.12±0.08 a | 80.50±12.12 a | 12.33±0.17 b | 98.65±4.12 a | 9.45±0.18 a |
N2 | 6.58±0.06 e | 28.88±2.18 de | 2.03±0.08 h | 50.75±6.70 bc | 11.35±0.10 c | 60.80±2.91 e | 8.10±0.04 d |
N2+BC1 | 7.31±0.06 d | 42.08±1.65 b | 2.43±0.00 f | 75.25±8.81 a | 12.44±0.10 b | 89.82±4.83 b | 8.70±0.04 c |
N2+BC2 | 8.07±0.06 a | 46.70±2.37 a | 3.88±0.05 b | 85.75±6.70 a | 13.77±0.27 a | 103.70±4.12 a | 9.07±0.06 b |
表3 不同处理下土壤化学性质的变化
Table 3 Changes in soil chemical properties under different treatments
处理 Treatment | pH | 土壤有机质 Soil organic matter/(g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 速效氮 Available nitrogen/(mg·kg-1) | 速效磷Available phosphorus/ (mg·kg-1) | 速效钾Available potassium/ (mg·kg-1) | 阳离子交换量 Cation exchange capacity/ (cmol·kg-1) |
---|---|---|---|---|---|---|---|
CK | 6.46±0.15 e | 13.86±1.94 g | 1.94±0.10 h | 12.25±6.70 d | 9.39±0.18 f | 41.87±2.52 f | 7.07±0.10 g |
BC1 | 7.62±0.18 c | 26.40±1.94 ef | 3.00±0.14 e | 33.25±6.70 c | 10.25±0.17 e | 57.02±2.52 e | 7.46±0.09 f |
BC2 | 8.07±0.02 b | 33.66±2.47 c | 3.21±0.05 d | 64.75±19.28 ab | 10.77±0.17 d | 98.65±4.12 a | 7.65±0.07 e |
N1 | 6.31±0.06 f | 24.42±2.90 f | 2.25±0.12 g | 49.00±22.14 bc | 11.29±0.17 c | 67.11±2.53 d | 8.04±0.07 d |
N1+BC1 | 8.03±0.10 b | 31.02±1.94 cd | 3.72±0.17 c | 75.25±19.28 a | 11.29±0.17 c | 82.25±2.53 c | 9.16±0.15 b |
N1+BC2 | 8.33±0.05 a | 39.27±2.44 b | 4.12±0.08 a | 80.50±12.12 a | 12.33±0.17 b | 98.65±4.12 a | 9.45±0.18 a |
N2 | 6.58±0.06 e | 28.88±2.18 de | 2.03±0.08 h | 50.75±6.70 bc | 11.35±0.10 c | 60.80±2.91 e | 8.10±0.04 d |
N2+BC1 | 7.31±0.06 d | 42.08±1.65 b | 2.43±0.00 f | 75.25±8.81 a | 12.44±0.10 b | 89.82±4.83 b | 8.70±0.04 c |
N2+BC2 | 8.07±0.06 a | 46.70±2.37 a | 3.88±0.05 b | 85.75±6.70 a | 13.77±0.27 a | 103.70±4.12 a | 9.07±0.06 b |
图3 不同处理土壤脲酶活性注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 3 Soil urease enzyme activities under different treatmentsNote: Different lowercase letters indicate significant differences between treatments at P<0.05 level.
图4 不同处理土壤蔗糖酶活性注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 4 Soil invertase enzyme activities under different treatmentsNote: Different lowercase letters indicate significant differences between treatments at P<0.05 level.
图5 不同处理土壤过氧化氢酶活性注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 5 Soil catalase enzyme activities under different treatmentsNote: Different lowercase letters indicate significant differences between treatments at P<0.05 level.
指标 Index | pH | 全氮 TN | 有机质 SOM | 速效氮 AN | 速效磷 AP | 速效钾 AK | 阳离子交换量 CEC | 脲酶 Urease | 蔗糖酶 Sucrase |
---|---|---|---|---|---|---|---|---|---|
全氮 TN | 0.920** | ||||||||
有机质 SOM | 0.681* | 0.658 | |||||||
速效氮 AN | 0.325 | 0.468 | 0.732* | ||||||
速效磷 AP | 0.443 | 0.462 | 0.918** | 0.720* | |||||
速效钾 AK | 0.785* | 0.789* | 0.911** | 0.722* | 0.788* | ||||
阳离子交换量 CEC | 0.596 | 0.727* | 0.794* | 0.717* | 0.847** | 0.775* | |||
脲酶 Urease | -0.367 | -0.227 | 0.096 | 0.514 | 0.121 | -0.066 | 0.088 | ||
蔗糖酶 Sucrase | 0.038 | 0.248 | 0.371 | 0.801** | 0.369 | 0.319 | 0.492 | 0.846** | |
过氧化氢酶 Catalase | -0.004 | 0.173 | 0.544 | 0.886** | 0.616 | 0.431 | 0.595 | 0.809** | 0.930** |
表4 土壤化学特性和土壤酶活性的相关分析
Table 4 Correlation coefficient of soil chemical properties and soil enzyme activities
指标 Index | pH | 全氮 TN | 有机质 SOM | 速效氮 AN | 速效磷 AP | 速效钾 AK | 阳离子交换量 CEC | 脲酶 Urease | 蔗糖酶 Sucrase |
---|---|---|---|---|---|---|---|---|---|
全氮 TN | 0.920** | ||||||||
有机质 SOM | 0.681* | 0.658 | |||||||
速效氮 AN | 0.325 | 0.468 | 0.732* | ||||||
速效磷 AP | 0.443 | 0.462 | 0.918** | 0.720* | |||||
速效钾 AK | 0.785* | 0.789* | 0.911** | 0.722* | 0.788* | ||||
阳离子交换量 CEC | 0.596 | 0.727* | 0.794* | 0.717* | 0.847** | 0.775* | |||
脲酶 Urease | -0.367 | -0.227 | 0.096 | 0.514 | 0.121 | -0.066 | 0.088 | ||
蔗糖酶 Sucrase | 0.038 | 0.248 | 0.371 | 0.801** | 0.369 | 0.319 | 0.492 | 0.846** | |
过氧化氢酶 Catalase | -0.004 | 0.173 | 0.544 | 0.886** | 0.616 | 0.431 | 0.595 | 0.809** | 0.930** |
1 | 袁金华,徐仁扣.生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报,2011,20(4):189-195. |
YUAN J H, XU R K. Research progress on properties of biochar and its effects on soil environmental functions [J]. Ecol. Environ. Sci., 2011,20(4):189-195. | |
2 | 云南省统计局.云南统计年鉴2020[EB/OL].(2020-11-25)[2021-07-16]. . |
3 | 李文豪.烟草秸秆有机肥的研制与土壤改良应用[D].武汉:湖北大学,2019. |
LI W H. Development and application of organic tobacco straw fertilizer for soil improvement [D]. Wuhan:Hubei University,2019. | |
4 | 肖和友,李宏图,杨勇,等.烟草废弃物生物质炭对植烟土壤、烤烟生长与经济效益的影响[J].湖南农业科学,2018(6):36-39, 43. |
XIAO H Y, LI H T, YANG Y, et al.. Effects of tobacco waste biochar on the growth and economic benefits of tobacco and tobacco-planting soil [J]. Hunan Agric. Sci., 2018(6):36-39, 43. | |
5 | 谢祖彬,刘琦,许燕萍,等. 生物炭研究进展及其研究方向[J]. 土壤,2011,43(6):857-861. |
XIE Z B, LIU Q, XU Y P, et al.. Advances and perspectives of biochar research [J]. Soils, 2011, 43(6): 857-861. | |
6 | 侯建伟,邢存芳,邓晓梅,等. 不同秸秆生物炭对黄壤理化性质及综合肥力的影响[J]. 西北农林科技大学学报(自然科学版),2019, 47(11):49-59. |
HOU J W, XING C F, DENG X M, et al.. Effect of straw biochar on yellow soil physicochemical properties and comprehensive fertility [J]. J. Northwest Sci-Tech. Univ. Agric. For. (Nat. Sci.), 2019, 47(11):49-59. | |
7 | 杨浩鹏,李飞跃,索改弟,等.生物炭配施化肥对土壤理化性质、氮素利用率和玉米产量的影响[J]. 安徽科技学院学报,2020,34(6):53-58. |
YANG H P, LI F Y, SUO G D,et al.. Effect of biochar combined with chemical fertilizer on soil physicochemical properties, nitrogen use efficiency and maize yield [J]. J. Anhui Univ. Sci. Technol., 2020,34(6):53-58. | |
8 | 葛春辉,张云舒,唐光木,等. 生物炭的施入对玉米生物量和磷养分吸收的影响[J].新疆农业科学, 2020,57( 3):442-449. |
GE C H, ZHANG Y S, TANG G M, et al.. Effect of biochar application on biomass and phosphorus uptake in maize [J]. Xinjiang Agric. Sci., 2020,57(3):442-449. | |
9 | 彭辉辉,刘强,荣湘民,等.生物炭、有机肥与化肥配施对春玉米养分利用及产量的影响[J]. 南方农业学报,2015,46(8):1396-1400. |
PENG H H, LIU Q, RONG X M, et al.. Effect of biochar, organic fertilizer and chemical fertilizer on nutrient untilization and yield of spring maize [J]. J. Southern Agric., 2015,46(8):1396-1400. | |
10 | 刘美玲,刘悦,陈婷婷,等.水稻秸秆生物炭对江汉平原麦区小麦养分吸收和产量的影响[J].中国农学通报,2021,37(15):7-13. |
LIU M L, LIU Y, CHEN T T, et al.. Effect of rice straw biochar on nutrient uptake and yield of wheat in Jianghan plain [J]. Chin. Agric. Sci. Bull., 2021, 37(15):7-13. | |
11 | 丁艳丽,刘杰,王莹莹. 生物炭对农田土壤微生物生态的影响研究进展[J].应用生态学报,2013,24(11): 3311-3317. |
DING Y L, LIU J, WANG Y Y. Research progress on effects of biochar on microbial ecology of farmland soil [J]. Chin. J. Appl. Ecol., 2013, 24(11):3311-3317. | |
12 | 张帅,成宇阳,吴行,等.生物炭施用下潮土团聚体微生物量碳氮和酶活性的分布特征[J].植物营养与肥料学报,2021,27(3):369-379. |
ZHANG S, CHENG Y Y, WU X, et al.. Distribution characteristics of microbial biomass C,N and enzyme activities in aquic soil agregates under biochar application [J]. Plant Nutr. Fert. Sci., 2021,27(3):369-379. | |
13 | 张晗芝,黄云,刘钢,等.生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响[J].生态环境学报,2010,19(11):2713-2717. |
ZHANG H Z, HUANG Y, LIU G, et al.. Effect of biochar on maize seeding growth, nutrient uptake and soil chemical properties [J]. Ecol. Environ. Sci., 2010,19 (11):2713-2717. | |
14 | 陈伟,周波,束怀瑞.生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响[J].中国农业科学,2013,46(18): 3850-3856. |
CHEN W, ZHOU B, SHU H R. Effect of biochar and organic fertilizer treatments on functional diversity of root and soil microbial communities of sweet tea in Pingyi [J]. Sci. Agric. Sin., 2013,46(18):3850-3856. | |
15 | 杜倩,黄容,李冰,等. 生物炭还田对植烟土壤活性有机碳及酶活性的影响[J]. 核农学报,2021,35 (6) : 1440-1450. |
DU Q, HUANG R, LI B, et al.. Effect of biochar returning on labile organic carbon and enzyme activity in tobacco-growing soil [J]. Acta Agric. Nucl. Sin., 2021,35 (6) : 1440-1450. | |
16 | 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2005:20-133. |
17 | 胡慧蓉.土壤学实验指导教程[M].第2版.北京:中国林业出版社,2020:48-55. |
18 | 谷学佳,王玉峰,孙阳,等.增苗减氮对稻田氮素流失及利用效率的影响[J].中国农学通报 2021,37(9):64-70. |
GU X J, WANG Y F, SUN Y, et al.. Effect of increasing seeding and reducing nitrogen on nitrogen loss and utilization efficiency in rice field [J]. Chin. Agric. Sci. Bull.,2021,37(9):64-70. | |
19 | 卢焱焱.生物质炭与氮肥配施对红壤线虫及土壤酶活性的影响[D].南京:南京农业大学,2015. |
LU Y Y. Influences of combining biochar and nitrogen fertilization on red soil nematode assemblages and soil enzyme activities [D]. Nanjing: Nanjing Agricultural University,2015. | |
20 | 王宇龙.减氮配施腐植酸、生物炭对土壤理化性质及玉米养分吸收的影响[D].哈尔滨:东北农业大学,2021. |
WANG Y L. Effect of nitrogen reduction with humic acid and biochar application on soil physicochemical properties and nutrient uptake of maize [D]. Harbin: Northeastern Agricultural University, 2021. | |
21 | 田福,聂金锐,周子渝,等.生物炭与化肥减量配施对玉米干物质、产量及氮、磷、钾积累转运的影响[J].陕西农业科学, 2022,68(5): 41-45 |
TIAN F, NIE J R, ZHOU Z Y, et al.. Effect of biochar and chemical fertilizer reduction on dry matter, yield and N, P and K accumulation and translocation in maize [J].Shaanxi Sci. Agric., 2022, 68(5): 41-45. | |
22 | 张爱平,刘汝亮,高霁,等.生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响[J].植物营养与肥料学报,2015,21(5):1352-1360. |
ZHANG A P, LIU R L, GAO J, et al.. Effect of biochar on rice yield and nitrogen use efficiency in Ningxia Yellow River irrigation area [J]. Plant Nutr. Fert. Sci., 2015,21(5):1352-1360. | |
23 | 吴伟祥,孙雪,董达,等.生物质炭土壤环境效应[M].北京:科学出版社,2016:279-281. |
WU W X, SUN X, DONG D, et al.. Environmetal Effects of Biochar in Soil [M]. Beijing: Science Press, 2016:279-281. | |
24 | 曲晶晶,郑金伟,郑聚锋,等.小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报, 2012, 28(3): 288-293. |
QU J J, ZHENG J W, ZHENG J F, et al.. Effect of wheat straw biomass char on rice yield and nitrogen utilization in late rice [J].J. Ecol. Rural Environ., 2012, 28(3): 288-293. | |
25 | 吴昕怡. 氮肥减量对设施番茄产量品质的影响[D]. 咸阳:西北农林科技大学, 2018. |
WU X Y. Effect of N fertilizer reduction on yield quality of tomatoes in facilities [D]. Xianyang: Northwest A & F University, 2018. | |
26 | 陈红霞,杜章留,郭伟,等.施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J].应用生态学报, 2011, 22(11) :2930-2934. |
CHEN H X, DU Z L, GUO W, et al.. Effect of biochar application on soil bulk density, cation exchange capacity and particulate organic matter content in farmland North China plain [J]. Chin. J. Appl. Ecol., 2011, 22(11):2930-2934. | |
27 | CHEN W, MENG J, HAN X, et al.. Past,present,and future of biochar [J]. Biochar,2019,1(8):75-87. |
28 | CHAN K Y, XU Z. Biochar:nutrient properties and their enhancement [C]//LEHMANN J,JOSEPH S. Biochar for Environmental Management:Science and Technology. London:Earthscan,2009:67-84. |
29 | 张文锋,周际海,袁颖红,等. 低剂量生物质炭对旱地红壤增肥增产效果[J]. 生态杂志,2016,35(3):647-654. |
ZHANG W F, ZHOU J H, YUAN Y H, et al.. Effectiveness of low-dose biomass charcoal in increasing fertility and yield in dryland red soil [J].Chin. J. Ecol.,2016, 35(3): 647-654. | |
30 | 袁晶晶,同延安,卢绍辉,等. 生物炭与氮肥配施对土壤肥力及红枣产量、品质的影响[J]. 植物营养与肥料学报,2017,23(2):468-475. |
YUAN J J, TONG Y A, LU S H, et al.. Effect of combined application of biochar and nitrogen fertilizer on soil fertility and yield and quality of Jujube [J]. Plant Nutr. Fert. Sci.,2017,23(2):468-475. | |
31 | 靖彦,陈效民,刘祖香. 生物黑炭与无机肥料配施对旱作红壤有效磷含量的影响[J]. 应用生态学报,2013,24(4):989-994. |
JING Y, CHEN X M, LIU Z X, et al.. Effect of biochar and inorganic fertilizer on available phosphorus content in red soil in dryland [J]. Chin. J. Appl. Ecol.,2013,24(4):989-994. | |
32 | 王智慧,唐春双,赵长江,等. 生物炭与肥料配施对土壤养分及玉米产量的影响[J]. 玉米科学,2018,26(6):146-151, 159. |
WANG Z H, TANG C S, ZHAO C J, et al.. effect of biochar combined with fertilizer on soil nutrients and maize yield [J]. J. Maize Sci.,2018,26(6):146-151, 159. | |
33 | 冯爱青,张民,路艳艳,等. 控释氮用量及生物炭对玉米产量及土壤生物化学性质的影响 [J]. 水土保持学报,2014,28(2):159-164. |
FENG A Q, ZHANG M, LU Y Y, et al.. Effect of controlled release nitrogen and biochar on maize yield and soil biochemical properties [J]. J. Soil Water Conserv., 2014,28(2):159-164. | |
34 | FARREL M, MACDONALD L M, BUTLER G, et al.. Biochar and fertilizer applications influence phosphorus fractionation and wheat yield [J]. Biol. Fert. Soils, 2014, 50(1):169-178. |
35 | ZWIETEN L V, KIMBER S, MORRIS S, et al.. Influence of biochars on flux of N2O and CO2 from ferrosol [J]. Australian J. Soil Res., 2010, 48(6): 555-568. |
36 | YANAI Y, TOYTA K, OKAZAKI M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments [J]. Soil Sci. Plant Nutr.,2007,53(2):181-188. |
37 | 李玥,余亚琳,张欣,等. 连续施用炭基肥及生物炭对棕壤有机氮组分的影响[J].生态学杂志, 2017, 36(10):2903-2909. |
LI Y, YU Y L, ZHANG X, et al.. Effects of continuous application of charcoal-based fertilizer and biochar on organic nitrogen fraction in brown soils [J]. Chin. J. Ecol., 2017, 36(10):2903-2909. | |
38 | 阎海涛,常栋,王晓强,等.生物炭与氮肥减量配施对土壤养分含量及烟叶产质量的影响[J].玉米科学,2021,29(5):158-165. |
YAN H T, CHANG D, WANG X Q,et al.. Effect of biochar and nitrogen fertilizer reduction on soil nutrient content and tobacco yield quality [J]. J. Maize Sci.,2021,29(5):158-165. | |
39 | 马锋锋, 赵保卫, 钟金魁,等. 牛粪生物炭对磷的吸附特性及其影响因素研究[J].中国环境科学, 2015, 35(4):1156-1163. |
MA F F, ZHAO B W, ZHONG J K, et al.. Study of phosphorus adsorption properties of bovine manure biochar and its influencing factors [J]. China Environ. Sci., 2015, 35(4):1156-1163. | |
40 | 张伟明.生物炭的理化性质及其在作物生产上的应用[D].沈阳: 沈阳农业大学, 2012. |
ZHANG W M. Physical and chemical properties of biochar and its application in crop production [D]. Shenyang: Shenyang Agricultural University,2012. | |
41 | SPARKS D L, LIEBHARDT W C. Temperature effects of potassium exchange and selectivity in delaware soils [J]. Soil Sci.,1982, 133(1): 10-17. |
42 | LEHMANN J D, JOSEPH S. Biochar for Environmental Management: Science and Technology [M].First edition. UK and USA: Earthscan, 2009: 15801-15811. |
43 | 房彬,李心清,赵斌,等.生物炭对旱作农田土壤理化性质及作物产量的影响[J].生态环境学报,2014,23(8): 1292-1297. |
FANG B, LI X Q, ZHAO B, et al.. Effect of biochar on soil physicochemical properties and crop yield in dryland farmland [J]. Ecol. Environ. Sci., 2014,23(8):1292-1297. | |
44 | 陈温福,张伟明,孟军.农用生物炭研究进展与前景[J].中国农业科学,2013,46(16): 3324-3333. |
CHEN W F, ZHANG W M, MENG J. Research progress and prospect of agricultural biochar [J]. Sci. Agric. Sin., 2013, 46(16):3324-3333. | |
45 | 张伟明,孟军,王嘉宇,等.生物炭对水稻根系形态与生理特性及产量的影响[J].作物学报, 2013, 39(8):1445-1451. |
ZHANG W M, MENG J, WANG J Y,et al.. Effect of biochar on root morphology and physiogical characteristics and yield of yield [J]. Acta Agron. Sin., 2013,39(8):1445-1451. | |
46 | CZIMCZIK C I, MASIELLO C. Controls on black carbon storage in soils [J/OL]. Global Biogeochem. Cycles, 2007, 21(3):2798 [2021-07-16]. . |
47 | 赵军,耿增超,尚杰,等. 生物炭及炭基硝酸铵对土壤微生物量碳、氮及酶活性的影响[J].生态学报, 2016,36(8):2355-2362. |
ZHAO J, GENG Z C, SHANG J, et al.. Effect of biochar and carbon-based ammonium nitrate on soil microbial biomass C,N and enzyme activities [J]. Acta Ecol. Sin., 2016,36(8):2355-2362. | |
48 | 李静静,丁松爽,李艳平,等. 生物炭与氮肥配施对烤烟干物质积累及土壤生物学特性的影响[J].浙江农业学报, 2016, 28(1): 96-103. |
LI J J, DING S S, LI Y P, et al.. Effect of combined application of biochar and nitrogen fertilizer on dry matter accumulation and soil biological characteristics of flue-cured tobacco [J]. Acta Agric. Zhejiangensis, 2016,28(1):96-103. | |
49 | RAO M A. Interactions between xenobiotics and microbial and enzymatic soil activity [J]. Critical Rev. Environ. Sci. Technol., 2008, 38(4): 269-310. |
50 | 武鹏, 尹雪巍, 杨丽, 等. 不同氮素形态及配比对土壤养分和酶活性及玉米产量的影响[J]. 中国土壤与肥料, 2018(5):24-32. |
WU P, YIN X W, YANG L,et al.. Effect of different nitrogen forms and ratios on soil nutrient and enzyme activities and maize yield [J]. Soil Fert. Sci. China, 2018(5):24-32. | |
51 | 陈丽美, 李小英, 陆晓英,等. 竹炭与有机肥配施对葡萄根区土壤养分及酶活性的影响[J]. 中国农学通报, 2021, 37(3):81-89. |
CHEN L M, LI X Y, LU X Y, et al.. Effect of bamboo charcoal combined with organic fertilizer on soil nutrients and enzyme activities in grape root zone [J]. Chin. Agric. Sci. Bull.,2021, 37(3):81-89. | |
52 | 王佩雯,朱金峰,任志广,等. 不同土壤改良剂处理下连作植烟土壤化学性质及土壤酶活性的耦合分析[J]. 中国农业科技导报, 2017,19(4):82-91. |
WANG P W, ZHU J F, REN Z G, et al.. Coupling analysis of soil enzyme activities of continuous cropping tobacco under different soil amendments [J]. J. Agric. Sci.Technol., 2017,19(4):82-91. |
[1] | 郑云珠, 孙树臣. 秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J]. 中国农业科技导报, 2023, 25(2): 152-162. |
[2] | 黄巧义, 吴永沛, 黄旭, 李苹, 付弘婷, 张木, 逄玉万, 曾招兵, 唐拴虎. 控释尿素与尿素配施对甜玉米产量和氮肥利用率的影响[J]. 中国农业科技导报, 2023, 25(2): 163-173. |
[3] | 高日平, 刘小月, 潘遵天, 张东旭, 沈祥军, 栗艳芳, 黄洁, 景宇鹏. 生物菌剂对玉米秸秆堆沤过程水热状况及酶活性的影响[J]. 中国农业科技导报, 2023, 25(2): 174-181. |
[4] | 郭巨先, 欧阳碧珊, 李桂花, 符梅, 罗文龙, 骆善伟, 陆美莲. 微生物有机肥对连作菜薹生长及土壤性质的影响[J]. 中国农业科技导报, 2023, 25(2): 182-191. |
[5] | 郭胜微, 边思文, 丁建文, 张晓辰, 杨兴, 杜锦, 向春阳. 糯玉米萌发期耐低温品种资源的综合评价[J]. 中国农业科技导报, 2023, 25(2): 38-47. |
[6] | 董伟欣, 李东晓, 张月辰. 不同氮素水平对夏玉米生理参数及产量品质的影响[J]. 中国农业科技导报, 2023, 25(1): 142-152. |
[7] | 卢闯, 胡海棠, 覃苑, 淮贺举, 李存军. 基于无人机多光谱影像的春玉米田管理分区研究[J]. 中国农业科技导报, 2022, 24(9): 106-115. |
[8] | 杨茜, 吴娜, 赵匆, 韩羽, 麻仲花, 杨永森, 刘吉利. 施锌对盐碱地玉米生理特性及籽粒锌含量的影响[J]. 中国农业科技导报, 2022, 24(9): 166-176. |
[9] | 刘洋, 张启昌, 张璐, 李玉灵. 水肥耦合对蓝靛果忍冬幼苗细根生长及根抗氧化酶的影响[J]. 中国农业科技导报, 2022, 24(9): 197-207. |
[10] | 李志元, 江虹, 马艳, 姜秀梅, 张力方, 梁志国, 王泽鹏, 唐亮, 梁肖, 秦勇. 氮水平对雪菊幼苗中黄酮类化合物和矿质营养累积的影响[J]. 中国农业科技导报, 2022, 24(9): 208-216. |
[11] | 郝变青, 马利平, 赵永胜, 石文鑫, 王建雄, 景玉川. BC98-Ⅰ和B96-Ⅱ发酵液对马铃薯的防病促生作用及对土壤酶活性的影响[J]. 中国农业科技导报, 2022, 24(8): 116-123. |
[12] | 杨文竹, 陈茹梅. 花青素玉米的育种进展[J]. 中国农业科技导报, 2022, 24(8): 18-24. |
[13] | 魏全全, 高英, 芶久兰, 张萌, 饶勇, 杨斌, 凡迪, 冯文豪, 肖华贵. 播种量和播种方式对冬油菜养分吸收利用及产量的影响[J]. 中国农业科技导报, 2022, 24(8): 182-191. |
[14] | 刘晓玉, 盛锡兴, 廖宗文, 林黎珍, 黎坤婷, 蔡燕飞, 陈火君. 生物-化学联用对钾长石的活化效果及其肥效[J]. 中国农业科技导报, 2022, 24(7): 132-140. |
[15] | 彭增莹, 申莹莹, 段松江, 吴一帆, 李宗润, 郭仁松, 张巨松. 化学调控对不同施氮量棉花冠层结构及产量的影响[J]. 中国农业科技导报, 2022, 24(7): 177-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||