中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (11): 126-135.DOI: 10.13304/j.nykjdb.2023.0524
• 动植物健康 • 上一篇
危潇1(), 曹春霞2(
), 黄大野2(
), 姚经武2, 袁勤峰2
收稿日期:
2023-07-07
接受日期:
2023-12-05
出版日期:
2024-11-15
发布日期:
2024-11-19
通讯作者:
曹春霞,黄大野
作者简介:
危潇 E-mail:weixiaohg123@163.com
基金资助:
Xiao WEI1(), Chunxia CAO2(
), Daye HUANG2(
), Jingwu YAO2, Qinfeng YUAN2
Received:
2023-07-07
Accepted:
2023-12-05
Online:
2024-11-15
Published:
2024-11-19
Contact:
Chunxia CAO,Daye HUANG
摘要:
木霉菌是一种广泛分布的丝状真菌,因其优秀的生防潜力,木霉菌在农业上被广泛用作生物杀菌剂,用于防治多种植物病害。木霉菌能够通过不同的直接作用机制(真菌寄生以及产生细胞壁裂解酶、抗生作用、争夺空间或养分)或间接作用机制(诱导植物防御)来减少病原体引起的植物疾病。近年来,复合型的生防菌剂越来越受到重视,木霉菌因其对化学农药的抗性以及与根际微生物的相容性,可以与其他生防产品协同使用产生更好的生防效果。综述了木霉菌的相关作用机制,包括寄生、抗生作用、营养竞争和植物抗性的诱导,讨论了其当前研究进展。此外,对木霉菌与其他具有防病效果的微生物或非生物(化学杀菌剂、其他物质)的协同防病研究进展进行综述,探究目前研究现状以及使用木霉作为生物杀菌剂的发展前景。
中图分类号:
危潇, 曹春霞, 黄大野, 姚经武, 袁勤峰. 木霉菌生防作用机制及协同防病的研究进展[J]. 中国农业科技导报, 2024, 26(11): 126-135.
Xiao WEI, Chunxia CAO, Daye HUANG, Jingwu YAO, Qinfeng YUAN. Research Progress on Biocontrol Mechanism and Synergistic Disease Prevention of Trichoderma[J]. Journal of Agricultural Science and Technology, 2024, 26(11): 126-135.
表1 木霉菌合成的主要化合物及其功能
Table 1 Main compounds synthesized by Trichoderma and their functions
1 | 袁杨,杨红艳.我国生物农药发展历程及应用展望[J].南方农业,2022,16(11):59-63. |
2 | MUKHOPADHYAY R, KUMAR D. Trichoderma:a beneficial antifungal agent and insights into its mechanism of biocontrol potential [J/OL].Egypt.J.Biol.Pest Control,2020,30(1):133[2023-06-06]. . |
3 | KAMALA T, DEVI S I, SHARMA K C,et al..Phylogeny and taxonomical investigation of Trichoderma spp.from Indian region of indo-burma biodiversity hot spot region with special reference to manipur [J/OL].Biomed. Res. Int.,2015,2015:285261 [2023-06-06]. . |
4 | MUKHERJEE P K, MENDOZA-MENDOZA A, ZEILINGER S, et al.. Mycoparasitism as a mechanism of trichoderma-mediated suppression of plant diseases [J]. Fungal Biol. Rev., 2022, 39: 15-33. |
5 | YANG P. The gene task1 is involved in morphological development, mycoparasitism and antibiosis of Trichoderma asperellum [J]. Biocontrol Sci. Technol.,2017,27(5):620-635. |
6 | GHORBANPOUR M, OMIDVARI M, ABBASZADEH-DAHAJI P, et al.. Mechanisms underlying the protective effects of beneficial fungi against plant diseases [J]. Biol. Control, 2018, 117: 147-157. |
7 | INBAR J, CHET I.The role of lectins in recognition and adhesion of the mycoparasitic fungus Trichoderma spp.to its host [J]. Adv. Exp. Med. Boil.,1996,408:229-231. |
8 | KAUR R, KALIA A, LORE J S, et al.. Antifungal effect of Trichoderma spp. Β‐1,3‐glucanase on Phytophthora parasitica: hyphal morphological distortions [J]. J. Phytopathol., 2020,168(11-12):700-706. |
9 | CHAUBE S K, PANDEY S. Trichoderma: a valuable multipurpose fungus for sustainable agriculture [J]. Malaysian J. Sustain. Agric., 2022,6(2):97-100. |
10 | TYŚKIEWICZ R, NOWAK A, OZIMEK E, et al.. Trichoderma:the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth [J/OL]. Int. J. Mol. Sci.,2022,23(4):2329 [2023-06-06]. . |
11 | 李纪顺,陈凯,杨合同,等.木霉抗生性代谢产物研究进展[J].农药,2010,49(10):713-716, 719. |
LI J S, CHEN K, YANG H T, et al..Bioactive secondary metabolites from Trichoderma species [J].Agrochemicals,2010,49(10):713-716, 719. | |
12 | AHMAD ASAD S. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases-a review [J/OL].Ecol.Complex.,2022,49:100978 [2023-06-06]. . |
13 | GARDINER D M, WARING P, HOWLETT B J. The epipolythiodioxopiperazine (ETP) class of fungal toxins:distribution,mode of action,functions and biosynthesis [J].Microbiology, 2005,151(pt4):1021-1032. |
14 | MUKHERJEE P K, HORWITZ B A, KENERLEY C M. Secondary metabolism in Trichoderma:a genomic perspective [J].Microbiology, 2012,158(pt1):35-45. |
15 | DEGENKOLB T, NIELSEN K, DIECKMANN R, et al..Peptaibol,secondary-metabolite,and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex [J]. Chem. Biodivers, 2015,12(4):662-684. |
16 | ZHAO P, REN A, DONG P, et al..Antimicrobial peptaibols,trichokonins,inhibit mycelial growth and sporulation and induce cell apoptosis in the pathogenic fungus Botrytis cinerea [J]. Appl.Biochem. Microbiol., 2018,54(4):396-403. |
17 | ZHAO P B, REN A Z, DONG P, et al.. The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid [J/OL]. J. Phytopathol., 166(12):12692 [202306-06].. |
18 | SCARSELLETTI R, FAULL J L. In vitro activity of 6-pentyl-α-pyrone,a metabolite of Trichoderma harzianum,in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici [J].Mycol. Res.,1994,98(10):1207-1209. |
19 | WORASATIT N, SIVASITHAMPARAM K, GHISALBERTI E L, et al.. Variation in pyrone production, pectic enzymes and control of rhizoctonia root rot of wheat among single-spore isolates of Trichoderma koningii [J]. Mycol. Res., 1994, 98: 1357-1363. |
20 | MUTAWILA C, VINALE F, HALLEEN F, et al.. Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases [J]. Plant Pathol., 2016, 65: 104-113. |
21 | VINALE F, MARRA R, SCALA F,et al..Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens [J].Lett. Appl. Microbiol., 2006,43(2):143-148. |
22 | VINALE F, GHISALBERTI E L, SIVASITHAMPARAM K, et al..Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens [J]. Lett. Appl. Microbiol.,2009,48(6):705-711. |
23 | AHLUWALIA V, KUMAR J, RANA V S,et al..Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity [J].Nat. Prod. Res., 2015,29(10):914-920. |
24 | MUKHERJEE P K, BUENSANTEAI N, MORAN-DIEZ M E, et al..Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize [J]. Microbiology, 2012,158(pt1):155-165. |
25 | KHAMTHONG N, RUKACHAISIRIKUL V, TADPETCH K, et al.. Tetrahydroanthra quinone and xanthone derivatives from the marine-derived fungus Trichoderma aureoviride PSU-F95 [J]. Arch. Pharm. Res., 2012, 35(3): 461-468. |
26 | ZHANG Q Q, CHEN L, HU X, et al.. Novel cytotoxic metabolites from the marine-derived fungus Trichoder-macitrinoviride [J]. Heterocycles, 2014, 89(1): 189-196. |
27 | YAMAZAKI H, SAITO R, TAKAHASHI O, et al.. Trichoketides A and B,two new protein tyrosine phosphatase 1B inhibitors from the marine-derived fungus Trichoderma sp [J]. J. Antibiot. (Tokyo),2015,68(10):628-632. |
28 | QIN C, HU Z B, XIONG Y H, et al.. A new sesquiterpene derivative from the mangrove endophytic fungus Trichoderma harzianum (strain No.R1) [J].Chem.Nat.Compd.,2021,57(2):312-314. |
29 | MIAO F P, LIANG X R, YIN X L,et al..Absolute configurations of unique harziane diterpenes from Trichoderma species [J].Org. Lett., 2012,14(15):3815-3817. |
30 | ZHU L X, ZHAO X, WANG C H, et al.. Trichoderma affects plant growth and soil ecological environment: a review [J]. Zemdirbyste, 2022, 109(4):341-348. |
31 | HUANG X, ZHANG W, TANG S, et al..Collaborative biosynthesis of a class of bioactive azaphilones by two separate gene clusters containing four PKS/NRPSs with transcriptional crosstalk in fungi [J]. Angew. Chem. Int. Ed. Engl.,2020,59(11):4349-4353. |
32 | LIU K, YANG Y B, CHEN J L, et al..Koninginins N-Q,polyketides from the endophytic fungus Trichoderma koningiopsis harbored in Panax notoginseng [J].Nat.Prod.Bioprospect., 2016,6(1):49-55. |
33 | PARKER S R, CUTLER H G, SCHREINER P R. Koninginin E:isolation of a biologically active natural product from Trichoderma koningii [J]. Biosci. Biotechnol. Biochem., 1995,59(9):1747-1749. |
34 | AHLUWALIA V, WALIA S, SATI O P, et al.. Isolation, characterization of major secondary metabolites of the Himalayan Trichoderma koningii and their antifungal activity [J]. Arch. Phytopathol. Plant Prot., 2013, 47(9): 1063-1071. |
35 | LIU S Y, LO C T, SHIBU M A, et al..Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity [J].J.Agric. Food Chem., 2009,57(16):7288-7292. |
36 | VINALE F, MANGANIELLO G, NIGRO M, et al.. A novel fungal metabolite with beneficial properties for agricultural applications [J]. Molecules, 2014,19(7):9760-9772. |
37 | ZHAO D L, ZHANG X F, HUANG R H, et al..Antifungal nafuredin and epithiodiketopiperazine derivatives from the mangrove-derived fungus Trichoderma harzianum D13 [J/OL].Front. Microbiol.,2020,11:1495 [2023-06-06]. . |
38 | SOOD M, KAPOOR D, KUMAR V, et al.. Trichoderma:the “secrets” of a multitalented biocontrol agent [J/OL].Plants (Basel),2020,9(6):762 [2023-06-06]. . |
39 | GAJERA H, DOMADIYA R, PATEL S, et al.. Molecular mechanism of Trichoderma as biocontrol agents against phytopathogen system-a review [J]. Curr. Res. Microbiol. Biotechnol., 2013, 1(4): 133-142. |
40 | MIETHKE M. Molecular strategies of microbial iron assimilation:from high-affinity complexes to cofactor assembly systems [J]. Metallomics,2013,5(1):15-28. |
41 | CHAKRABORTY B N, CHAKRABORTY U, SUNAR K. Induced immunity developed by Trichoderma species in plants [C]// Trichoderma: Host Pathogen Interactions and Applications [M].Springer, 2020: 125-147. |
42 | CHEN S C, REN J J, ZHAO H J, et al.. Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism,redox balance,and energy flow in cucumber roots [J]. Phytopathology, 2019,109(6):972-982. |
43 | LAZAZZARA V, VICELLI B, BUESCHL C, et al.. Trichoderma spp. volatile organic compounds protect grapevine plants by activating defense-related processes against downy mildew [J]. Physiol. Plant, 2021,172(4):1950-1965. |
44 | MARRA R, COPPOLA M, PIRONTI A, et al..The application of Trichoderma strains or metabolites alters the olive leaf metabolome and the expression of defense-related genes [J/OL]. J. Fungi (Basel),2020, 6(4): 369 [2023-06-06]. . |
45 | PIMENTEL M F, ARNÃO E, WARNER A J, et al.. Trichoderma isolates inhibit Fusarium virguliforme growth,reduce root rot,and induce defense-related genes on soybean seedlings [J].Plant Dis.,2020,104(7):1949-1959. |
46 | ZEHRA A, AAMIR M, DUBEY M K, et al.. Enhanced protection of tomato against Fusarium wilt through biopriming with Trichoderma harzianum [J/OL]. J. King Saud Univ. Sci., 2023,35(2):102466 [2023-06-06]. . |
47 | 马志强,牛芳胜,毕秋艳,等.哈茨木霉菌与啶酰菌胺联用对番茄灰霉病菌的增效机制[J].植物保护学报,2013,40(4):369-373. |
MA Z Q, NIU F S, BI Q Y, et al.. The synergistic mechanism of Trichoderma harzianum combined with boscalid to Botrytis cinerea [J]. J. Plant Prot., 2013,40(4):369-373. | |
48 | 牛芳胜,马志强,毕秋艳.哈茨木霉与啶酰菌胺互作对番茄灰霉病的增效作用评价[J].中国农学通报,2013,29(12):201-205. |
NIU F S, MA Z Q, BI Q Y.The synergism evaluation of Trichoderma harzianum interaction with boscalid to Botrytis cinerea [J]. Chin. Agric. Sci. Bull.,2013,29(12):201-205. | |
49 | TANG J, LIU L, HUANG X, et al..Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos [J]. J. Microbial.,2010,56(2):121-127. |
50 | ZHANG C, WANG W, XUE M, et al.. The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea [J/OL].J. Fungi (Basel),2021,7(9):685 [2023-06-06]. . |
51 | IZQUIERDO-GARCÍA L F, GONZÁLEZ-ALMARIO A, COTES A M, et al.. Trichoderma virens Gl006 and Bacillus velezensis Bs006:a compatible interaction controlling Fusarium wilt of cape gooseberry [J/OL].Sci.Rep.,2020,10:6857 [2023-06-06]. . |
52 | MANJULA K, KISHORE G K, GIRISH A G, et al.. Combined application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem rot in groundnut [J]. Plant Pathol.,2004,20(1):75-80. |
53 | SAINI I, YADAV K, AGGARWAL A. Response of arbuscular mycorrhizal fungi along with Trichoderma viride and Pseudomonas fluorescens on the growth, biochemical attributes and vase life of Chrysanthemum indicum [J]. J. Environ. Biol., 2019, 40(2): 183-191. |
54 | KARUPPIAH V, VALLIKKANNU M, LI T T, et al.. Simultaneous andsequential based co-fermentations of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841:a strategy to enhance the gene expression and metabolites to improve the bio-control and plant growth promoting activity [J/OL].Microb.Cell Fact., 2019,18(1):185 [2023-06-06]. . |
55 | WU Q, NI M, DOU K, et al.. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield [J/OL]. Microb Cell. Fact.,2018,17(1):155 [2023-06-06]. . |
56 | HAO D Z, LANG B, WANG Y K, et al.. Designing synthetic consortia of Trichoderma strains that improve antagonistic activities against pathogens and cucumber seedling growth [J/OL]. Microb.Cell Fact., 2022,21(1):234 [2023-06-06].. |
57 | 陈凯,隋丽娜,赵忠娟,等.木霉共培养发酵对黄瓜枯萎病的防治效果[J].中国生物防治学报,2022,38(1):108-114. |
CHEN K, SUI L N, ZHAO Z J, et al.. Control effect of co-cultured fermentation of two Trichoderma strains on cucumber Fusarium wilt [J]. Chin. J. Biol. Contr., 2022,38(1):108-114. | |
58 | 陈凯,隋丽娜,杨凯,等.两株木霉共培养发酵提高对小麦苗期茎基腐病的防治效果[J].植物病理学报,2022,52(3):425-433. |
CHEN K, SUI L N, YANG K, et al..Co-culturation of two Trichoderma strains enhanced control efficiency against wheat crown rot at seedling stage [J]. Acta Phytopathol. Sin., 2022,52(3):425-433. | |
59 | KUMAR S, CHANDRA R, BEHERA L, et al.. Dual Trichoderma consortium mediated elevation of systemic defense response against early blight in potato [J]. Eur. J. Plant Pathol., 2022,162(3):681-696. |
60 | YANG R, QIN Z, WANG J,et al.. The interactions between arbuscular mycorrhizal fungi and Trichoderma longibrachiatum enhance maize growth and modulate root metabolome under increasing soil salinity [J/OL].Microorganisms,2022,10(5):1042[2023-06-06]. . |
61 | EGBERONGBE H O, AKINTOKUN A K, BABALOLA O O, et al.. The effect of Glomus mosseae and Trichoderma harzianum on proximate analysis of soybean (Glycine max (L.) Merrill.) seed grown in sterilized and unsterilised soil [J]. J. Agric. Ext. Rural Dev., 2010, 2(4): 54-58. |
62 | TRIVEDI P, PANDEY A, PALNI L M S. Bacterial inoculants for field applications under mountain ecosystem: present initiatives and future prospects [C]// Bacteria in Agrobiology: Plant Probiotics [M]. Springer, 2012:15-44. |
63 | D’ERRICO G, GRECO N, VINALE F,et al.. Synergistic effects of Trichoderma harzianum,1,3 dichloropropene and organic matter in controlling the root-knot nematode Meloidogyne incognita on tomato [J/OL].Plants (Basel),2022,11(21):2890[2023-06-06]. . |
64 | APRILE A M, COPPOLA M, TURRÀ D, et al.. Combination of the systemin peptide with the beneficial fungus;Trichoderma afroharzianum;T22 improves plant defense responses against pests and diseases [J]. J. Plant Interact,2022,17(1):569-579. |
65 | EL-MOHAMEDY R S, ABDEL-KAREEM F, DAAMI-REMADI M. Chitosan and Trichoderma harzianum as fungicide alternatives for controlling Fusarium crown and root rot of tomato [J]. Tunisian J. Plant Prot., 2014,9(1):5-6. |
66 | AL-SURHANEE A A. Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants [J].Saudi J.Biol.Sci.,2022,29(4):2933-2941. |
67 | CAO X, ZHANG N, ZENG X Y, et al.. Effects of biochar and Trichoderma on bacterial community diversity in continuous cropping soil [J]. Hortic. Environ. Biotechnol., 2022,63(1):1-12. |
68 | WEI Z, YANG T J, FRIMAN V P, et al.. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health [J/OL].Nat.Commun.,2015,6:8413 [2023-06-06]. . |
69 | SARMA B K, YADAV S K, SINGH S, et al..Microbial consortium-mediated plant defense against phytopathogens:readdressing for enhancing efficacy [J].Soil Biol.Biochem.,2015,87:25-33. |
[1] | 常峻嘉, 盖佳鑫, 陶刚, 莫转龙海. 哈茨木霉菌对烟草的促生及其黑胫病的诱导抗性评价[J]. 中国农业科技导报, 2024, 26(10): 168-176. |
[2] | 冯雪莹, 王路宽, 黄玉翠, 杨春萍, 徐海云. 发育高温对烟粉虱及其优势寄生蜂适合度和同步性的影响[J]. 中国农业科技导报, 2023, 25(5): 131-138. |
[3] | 赵欣, 王怡霏, 王嘉嘉, 王佩瑶, 王桂端, 朱利霞, 李俐俐. 木霉菌对作物及土壤生态环境的影响[J]. 中国农业科技导报, 2023, 25(11): 166-172. |
[4] | 金辉, 王伟, 颜尘栋, 王薇, 李熙英. 水稻纹枯病生防木霉菌分离鉴定及适应性研究[J]. 中国农业科技导报, 2022, 24(9): 139-148. |
[5] | 林志坚, 陈长江, 周挺, 顾钢, 胡方平, 李春英, 蔡学清. 青枯菌噬菌体RPZH6株系对烟草青枯病的生防效果及全基因组测序分析[J]. 中国农业科技导报, 2022, 24(10): 133-142. |
[6] | 刘利佳, 徐志强, 何佳, 丁永乐, 孙聚涛. 哈茨木霉菌诱导烟草抗黑胫病代谢差异的研究[J]. 中国农业科技导报, 2021, 23(8): 91-105. |
[7] | 赵兴丽1,陶刚2,3*,娄璇4,顾金刚5*. 钩状木霉在辣椒根际定殖动态及其对辣椒疫病的生物防治[J]. 中国农业科技导报, 2020, 22(5): 106-114. |
[8] | 刘杜娟,黄火清*,苏小运* . 低纤维素酶背景里氏木霉菌株的构建和应用[J]. 中国农业科技导报, 2020, 22(12): 50-57. |
[9] | 周红姿1,周方园1,赵晓燕1,吴翠霞2,张广志1,苑伟伟3,吴晓青1,谢雪迎1,范素素1,张新建1*. 小麦赤霉病生防菌的筛选及其田间防效研究[J]. 中国农业科技导报, 2020, 22(1): 67-77. |
[10] | 路露1,2,张孟丽2,狄怡琳2,朱凯1*,石宝俊2*. 百里香酚对不同时期秀丽线虫杀虫效果探究[J]. 中国农业科技导报, 2019, 21(9): 97-103. |
[11] | 吴晓青1,赵晓燕1,徐元章2,王加宁1,周方园1,周红姿1,张广志1,谢雪迎1,颜坤3,张新建1*. 植物生物防治精准化施药技术的研究进展[J]. 中国农业科技导报, 2019, 21(3): 13-21. |
[12] | 吴毅兰1,2§,薛鲜丽2§,谢响明1*,苏小运2* . 黑曲霉葡萄糖氧化酶在里氏木霉中的分泌表达及其对内源纤维素酶表达的影响[J]. 中国农业科技导报, 2017, 19(5): 42-50. |
[13] | 崔西苓1,2,李世贵1,2,杨佳2,樊祥臣2,顾金刚1,2*. 耐盐碱抗烟草黑胫病木霉菌株的筛选与鉴定[J]. , 2014, 16(3): 81-89. |
[14] | 程亮1,2,郭青云1,2*. 燕麦镰刀菌GD\|2菌株作为生物除草剂的潜力研究(英文)[J]. , 2014, 16(3): 70-80. |
[15] | 周庆新1,2,戴炳业3,陈蕾蕾1,刘孝永1,裘纪莹1,陈相艳1*. 瑞氏木霉中β-葡萄糖苷酶基因功能研究进展[J]. , 2014, 16(2): 74-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||