中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (11): 191-203.DOI: 10.13304/j.nykjdb.2023.0155
• 生物制造 资源生态 • 上一篇
马铭泽(), 张帆, 王田, 李文芳, 毛娟, 陈佰鸿, 马宗桓(
)
收稿日期:
2023-03-05
接受日期:
2023-06-25
出版日期:
2024-11-15
发布日期:
2024-11-19
通讯作者:
马宗桓
作者简介:
马铭泽E-mail:1426432893@qq.com;
基金资助:
Mingze MA(), Fan ZHANG, Tian WANG, Wenfang LI, Juan MAO, Baihong CHEN, Zonghuan MA(
)
Received:
2023-03-05
Accepted:
2023-06-25
Online:
2024-11-15
Published:
2024-11-19
Contact:
Zonghuan MA
摘要:
为研究不同肥料配施对土壤营养及樱桃幼树树体长势的影响,以2年生‘美早’樱桃为试材,以不施肥(CK1)和常规施肥(CK2)作为对照,然后在常规施肥的基础上,分别配施氨基酸水溶肥(T1)、有机肥(T2)、微量元素水溶肥料(T3)、微生物菌肥(T4)、赤·吲乙·芸苔(T5)、芸苔素内酯(T6)、盐碱土壤改良剂(T7)、盐碱土壤改良剂+微生物菌肥(T8)、盐碱土壤改良剂+微生物菌肥+氨基酸水溶肥(T9)、盐碱土壤改良剂+微生物菌肥+赤·吲乙·芸苔(T10),共计12个处理,测定不同处理下土壤的理化性质、养分、酶活性及樱桃幼树生长指标。结果表明,T5处理土壤pH显著高于其他处理;T7、T8、T9处理土壤容重显著高于其他处理;T8、T9处理土壤含盐量较CK1显著降低23.36%、22.45%。T2处理在0—20、20—40 cm土层土壤的有机质含量最高,分别为21.79、16.00 g·kg-1,T2、T8、T9在40—60 cm土层土壤的有机质含量差异不显著。施肥处理土壤的碱解氮、有效磷、速效钾较CK1均有显著提升。T3处理由于施用微量元素水溶肥,土壤微量元素含量有较大提升,其他处理较CK1和CK2均有一定提升。T9处理土壤酶活性最高,其过氧化氢酶、脲酶、蔗糖酶活性分别比CK1处理提高50.83%、55.27%、61.70%,且T9处理樱桃的株高、新梢长、新梢粗提升最显著。综上所述,T9处理对增强樱桃树生长量方面有显著作用,能有效降低土壤pH和盐含量,提高土壤养分和理化性质、酶活性。
中图分类号:
马铭泽, 张帆, 王田, 李文芳, 毛娟, 陈佰鸿, 马宗桓. 不同肥料配施对樱桃园土壤及幼树生长的影响[J]. 中国农业科技导报, 2024, 26(11): 191-203.
Mingze MA, Fan ZHANG, Tian WANG, Wenfang LI, Juan MAO, Baihong CHEN, Zonghuan MA. Effects of Different Fertilizers on Soil and Sapling Growth in Cherry Orchard[J]. Journal of Agricultural Science and Technology, 2024, 26(11): 191-203.
处理 Treatment | 肥料类型 Fertilizer type | 商品名 Trade name | 方法用量 Method and dosage |
---|---|---|---|
CK1 | 不施肥 No fertilizer | ||
CK2 | 常规施肥(N、P、K) Conventional fertilization (N, P, K) | 20-20-20+TE大量元素水溶肥 20-20-20+TE large amount of elemental water soluble fertilizer | 每株施肥15 g,施用量3 g·L-1,每棵树冲施5 L Apply 15 g fertilizer per bead with a concentration of 3 g·L-1 and 5 L fertilizer per tree |
T1 | 常规施肥+氨基酸水溶肥 Conventional fertilization+amino acid water soluble fertilizer | 根宝 Genbao | 原液25 mL·株-1,分4穴施入 Stoste 25 mL·plant-1 was divided into 4 points |
T2 | 常规施肥+有机肥 Conventional fertilizer+organic fertilizer | 维特达 Vitda | 原液25m L·株-1,分4穴施入 Stoste 25 mL·plant-1 was divided into 4 points |
T3 | 常规施肥+微量元素水溶肥料 Conventional fertilizer+microelement water soluble fertilizer | 植物动力2003喜禾禾 Plant Power 2003 Xihehe | 原液25 mL·株-1,分4穴施入 Stoste 25 mL·plant-1 was divided into 4 points |
T4 | 常规施肥+微生物菌肥 Conventional fertilization+microbial fertilizer | 农用微生物菌剂 Agromicrobial agent | 原肥100 g·株-1,分4穴施入 Raw fertilizer 100 g·plant-1, divided into 4 points |
T5 | 常规施肥+赤·吲乙·芸苔 Regular fertilization+ red·indole·brassica | 碧护 Bio | 原液2.5 g·株-1,分4穴施入 Stoste was 2.5 g·plant-1, divided into 4 points |
T6 | 常规施肥+芸苔素内酯 Regular fertilization+brassinolactone | 芸苔素内酯 Brassinolide | 原液10g·株-1,分4穴施入 Stoste 10 g·plant-1, divided into 4 points |
T7 | 常规施肥+盐碱土壤改良剂 Conventional fertilization+saline-alkali soil amendment | 康地宝 Kangdibao | 原液25 g·株-1,分4穴施入 Stoste 25 g·plant-1 was divided into 4 points |
T8 | 常规施肥+盐碱土壤改良剂+微生物菌肥 Conventional fertilization+aline-alkali soil amendment+microbial fertilizer | 康地宝原液25 g·株-1+农用微生物菌剂原肥100 g·株-1,分4穴施入 Kangdibao stock solution 25 g·plant-1+agricultural microbial agent raw fertilizer 100 g·plant-1, divided into 4 points | |
T9 | 常规施肥+盐碱土壤改良剂+微生物菌肥+氨基酸水溶肥 Conventional fertilization+saline-alkali soil amendment+microbial fertilizer+amino acid water-soluble fertilizer | 康地宝原液25 g·株-1+农用微生物菌剂原肥100 g·株-1+根宝原液25 mL·株-1,分4穴施入 Kangdibao stock solution 25 g·plant-1 + agricultural microbial agent raw fertilizer 100 g·plant-1+Genbao stock solution 25 mL·plant-1, divided into 4 points | |
T10 | 常规施肥+盐碱土壤改良剂+微生物菌肥+赤·吲乙·芸苔 Conventional fertilization+saline-alkali soil amendment+microbial fertilizer+red·indome·brassica | 康地宝原液25 g·株-1+农用微生物菌剂原肥100 g·株-1+碧护原液2.5 mL·株-1,分4穴施入 Kangdibao stock solution 25 g·plant-1+agricultural microbial agent raw fertilizer 100 g·plant-1+Bihu stock solution 2.5 mL·plant-1, divided into 4 points |
表1 不同肥料处理的方法及用量
Table 1 Methods and dosage of different fertilizer treatments
处理 Treatment | 肥料类型 Fertilizer type | 商品名 Trade name | 方法用量 Method and dosage |
---|---|---|---|
CK1 | 不施肥 No fertilizer | ||
CK2 | 常规施肥(N、P、K) Conventional fertilization (N, P, K) | 20-20-20+TE大量元素水溶肥 20-20-20+TE large amount of elemental water soluble fertilizer | 每株施肥15 g,施用量3 g·L-1,每棵树冲施5 L Apply 15 g fertilizer per bead with a concentration of 3 g·L-1 and 5 L fertilizer per tree |
T1 | 常规施肥+氨基酸水溶肥 Conventional fertilization+amino acid water soluble fertilizer | 根宝 Genbao | 原液25 mL·株-1,分4穴施入 Stoste 25 mL·plant-1 was divided into 4 points |
T2 | 常规施肥+有机肥 Conventional fertilizer+organic fertilizer | 维特达 Vitda | 原液25m L·株-1,分4穴施入 Stoste 25 mL·plant-1 was divided into 4 points |
T3 | 常规施肥+微量元素水溶肥料 Conventional fertilizer+microelement water soluble fertilizer | 植物动力2003喜禾禾 Plant Power 2003 Xihehe | 原液25 mL·株-1,分4穴施入 Stoste 25 mL·plant-1 was divided into 4 points |
T4 | 常规施肥+微生物菌肥 Conventional fertilization+microbial fertilizer | 农用微生物菌剂 Agromicrobial agent | 原肥100 g·株-1,分4穴施入 Raw fertilizer 100 g·plant-1, divided into 4 points |
T5 | 常规施肥+赤·吲乙·芸苔 Regular fertilization+ red·indole·brassica | 碧护 Bio | 原液2.5 g·株-1,分4穴施入 Stoste was 2.5 g·plant-1, divided into 4 points |
T6 | 常规施肥+芸苔素内酯 Regular fertilization+brassinolactone | 芸苔素内酯 Brassinolide | 原液10g·株-1,分4穴施入 Stoste 10 g·plant-1, divided into 4 points |
T7 | 常规施肥+盐碱土壤改良剂 Conventional fertilization+saline-alkali soil amendment | 康地宝 Kangdibao | 原液25 g·株-1,分4穴施入 Stoste 25 g·plant-1 was divided into 4 points |
T8 | 常规施肥+盐碱土壤改良剂+微生物菌肥 Conventional fertilization+aline-alkali soil amendment+microbial fertilizer | 康地宝原液25 g·株-1+农用微生物菌剂原肥100 g·株-1,分4穴施入 Kangdibao stock solution 25 g·plant-1+agricultural microbial agent raw fertilizer 100 g·plant-1, divided into 4 points | |
T9 | 常规施肥+盐碱土壤改良剂+微生物菌肥+氨基酸水溶肥 Conventional fertilization+saline-alkali soil amendment+microbial fertilizer+amino acid water-soluble fertilizer | 康地宝原液25 g·株-1+农用微生物菌剂原肥100 g·株-1+根宝原液25 mL·株-1,分4穴施入 Kangdibao stock solution 25 g·plant-1 + agricultural microbial agent raw fertilizer 100 g·plant-1+Genbao stock solution 25 mL·plant-1, divided into 4 points | |
T10 | 常规施肥+盐碱土壤改良剂+微生物菌肥+赤·吲乙·芸苔 Conventional fertilization+saline-alkali soil amendment+microbial fertilizer+red·indome·brassica | 康地宝原液25 g·株-1+农用微生物菌剂原肥100 g·株-1+碧护原液2.5 mL·株-1,分4穴施入 Kangdibao stock solution 25 g·plant-1+agricultural microbial agent raw fertilizer 100 g·plant-1+Bihu stock solution 2.5 mL·plant-1, divided into 4 points |
图 1 不同肥料处理下土壤pH、容重及含盐量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 1 Soil pH, bulk density and salt content under different fertilizer treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图 2 不同肥料处理下土壤有机质含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 2 Soil organic matter content under different fertilizer treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图 3 不同肥料处理下土壤碱解氮含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 3 Soil alkali-hydrolyzable nitrogen content under different fertilizer treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图 4 不同肥料处理下土壤有效磷含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 4 Soil available phosphorus content under different fertilizer treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图 5 不同肥料处理下土壤速效钾含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 5 Soil available potassium content under different fertilizer treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
处理 Treatment | 深度 Depth/cm | Ca/ (g·kg-1) | Mg/ (mg·kg-1) | Fe/ (mg·kg-1) | Cu/ (mg·kg-1) | Zn/ (mg·kg-1) | Mn/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
CK1 | 0—20 | 2.74±0.21 e | 142.09±2.64 g | 41.46±1.46 f | 7.11±0.16 e | 12.68±0.91 b | 3.81±0.09 c |
20—40 | 1.84±0.12 f | 80.96±2.34 f | 37.19±1.64 g | 6.24±0.16 f | 12.15±0.24 g | 3.01±0.14 f | |
40—60 | 1.52±0.13 f | 73.35±1.45 g | 30.6±0.95 g | 5.53±0.16 f | 5.21±0.14 f | 2.56±0.06 f | |
CK2 | 0—20 | 2.84±0.13 e | 146.51±2.16 fg | 44.19±1.48 ef | 7.89±0.27 d | 12.97±0.84 ab | 4.27±0.19 bc |
20—40 | 2.17±0.11 ef | 92.51±3.16 e | 40.32±1.48 f | 6.91±0.14 e | 12.43±0.29 f | 3.55±0.19 de | |
40—60 | 1.97±0.11 e | 80.22±1.48 f | 32.14±0.81 fg | 5.82±0.18 ef | 5.68±0.11 e | 3.01±0.12 ef | |
T1 | 0—20 | 3.48±0.11 abcd | 162.74±1.46 ab | 46.49±1.56 de | 8.04±0.28 d | 13.06±0.76 ab | 4.41±0.16 ab |
20—40 | 2.49±0.14 cd | 101.46±3.49 d | 45.52±1.64 cd | 7.09±0.45 de | 12.59±0.29 de | 3.42±0.09 e | |
40—60 | 2.19±0.15 de | 89.46±1.72 de | 35.49±0.67 de | 6.09±0.17 de | 5.98±0.09 de | 3.18±0.08 ef | |
T2 | 0—20 | 3.46±0.16 abcd | 156.62±3.48 cd | 46.64±1.57 cde | 8.16±0.49 cd | 13.02±0.74 ab | 4.15±0.09 bc |
20—40 | 3.08±0.12 a | 112.65±3.46 abc | 44.62±1.34 de | 7.34±0.13 cd | 12.64±0.21 de | 3.64±0.11 de | |
40—60 | 2.24±0.16 cd | 87.19±1.64 e | 35.46±1.08 de | 6.17±0.09 de | 6.07±0.07 d | 3.95±0.14 cd | |
T3 | 0—20 | 3.07±0.16 cde | 165.83±3.61 a | 54.73±1.38 a | 9.05±0.18 a | 13.16±0.72 ab | 4.92±0.13 a |
20—40 | 3.16±0.16 a | 120.18±2.94 a | 49.76±1.48 a | 8.22±0.11 a | 13.12±0.17 a | 4.29±0.17 a | |
40—60 | 2.68±1.13 a | 99.24±1.34 a | 41.12±1.16 a | 7.69±0.12 a | 6.94±1.06 a | 4.66±0.12 a | |
T4 | 0—20 | 3.61±0.13 abc | 150.61±3.46 ef | 48.51±1.49 bcd | 8.12±0.27 cd | 13.42±0.64 a | 4.11±0.14 bc |
20—40 | 2.67±0.17 bc | 113.24±2.48 ab | 46.49±1.49 bc | 7.03±0.18 de | 12.53±0.13 ef | 3.67±0.13 de | |
40—60 | 2.33±0.14 bcd | 92.46±1.28 bcd | 36.65±1.45 cd | 6.21±0.17 d | 6.14±1.04 cd | 3.41±0.11 de | |
T5 | 0—20 | 3.15±0.14 bcde | 154.61±2.64 de | 47.46±1.78 bcde | 8.61±0.31 abc | 13.24±0.62 ab | 4.25±0.11 bc |
20—40 | 2.49±0.11 cd | 106.46±2.46 bc | 45.34±1.13 cd | 7.39±0.15 cd | 12.61±0.21 de | 3.83±0.21 bcd | |
40—60 | 2.29±0.12 cd | 91.67±2.01 bcd | 37.12±0.87 bcd | 6.42±0.11 d | 6.19±1.13 cd | 3.47±0.09 de | |
T6 | 0—20 | 2.94±0.15 de | 157.93±2.49 bcd | 47.61±1.26 bcde | 8.14±0.18 cd | 13.15±0.67 ab | 4.29±0.15 bc |
20—40 | 2.85±0.13 abc | 104.95±2.81 d | 43.61±1.43 de | 7.16±0.14 de | 12.79±0.26 bc | 3.66±0.16 de | |
40—60 | 2.46±0.13 ab | 90.49±1.47 cd | 33.78±1.24 ef | 6.81±0.13 c | 6.25±0.08 cd | 3.88±0.13 cd | |
T7 | 0—20 | 3.47±0.13 abcd | 156.15±2.15 cd | 47.16±1.29 cde | 8.21±0.25 bcd | 13.21±0.72 ab | 4.43±0.21 ab |
20—40 | 2.46±0.15 de | 105.64±3.15 cd | 42.64±1.15 ef | 7.59±0.19 bc | 12.49±0.24 f | 3.79±0.14 cd | |
40—60 | 2.37±0.14 bc | 93.47±1.38 bc | 32.82±1.11 f | 6.15±0.18 de | 6.31±1.16 bcd | 3.68±0.08 de | |
T8 | 0—20 | 3.64±0.18 abc | 159.64±2.51 bcd | 49.78±1.49 bcd | 8.71±0.46 ab | 13.28±0.19 a | 4.63±0.16 ab |
20—40 | 2.97±0.14 ab | 114.64±3.19 a | 47.19±1.44 abc | 7.85±0.09 b | 12.97±0.22 ab | 4.09±0.17 ab | |
40—60 | 2.54±0.17 ab | 94.16±1.91 bc | 37.92±1.13 bc | 7.09±0.14 bc | 6.45±1.12 bc | 3.91±0.12 cd | |
T9 | 0—20 | 3.81±0.21 a | 161.46±2.75 abc | 51.16±1.44 b | 8.84±0.13 a | 13.32±0.34 a | 4.87±0.13 a |
20—40 | 3.15±0.13 a | 117.13±3.34 a | 48.67±1.35 ab | 7.94±0.15 ab | 13.01±0.25 ab | 4.16±0.15 a | |
40—60 | 2.59±0.14 ab | 95.38±1.06 b | 38.82±1.16 b | 7.26±0.15 b | 6.54±1.11 b | 4.26±0.14 b | |
T10 | 0—20 | 3.69±0.22 ab | 160.46±2.16 abc | 50.45±1.16 bc | 8.76±0.15 a | 13.29±0.48 a | 4.57±0.18 ab |
20—40 | 2.90±0.15 ab | 113.46±3.06 ab | 47.98±1.67 abc | 7.79±0.16 b | 12.86±0.11 c | 4.02±0.31 abc | |
40—60 | 2.48±0.09 ab | 94.94±1.48 b | 37.68±0.91 bc | 7.16±0.14 bc | 6.49±1.13 bc | 4.09±0.11 bc |
表 2 不同肥料处理下不同土壤深度微量元素的含量
Table 1 Contents of trace elements in different soil depths under different fertilizer treatments
处理 Treatment | 深度 Depth/cm | Ca/ (g·kg-1) | Mg/ (mg·kg-1) | Fe/ (mg·kg-1) | Cu/ (mg·kg-1) | Zn/ (mg·kg-1) | Mn/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
CK1 | 0—20 | 2.74±0.21 e | 142.09±2.64 g | 41.46±1.46 f | 7.11±0.16 e | 12.68±0.91 b | 3.81±0.09 c |
20—40 | 1.84±0.12 f | 80.96±2.34 f | 37.19±1.64 g | 6.24±0.16 f | 12.15±0.24 g | 3.01±0.14 f | |
40—60 | 1.52±0.13 f | 73.35±1.45 g | 30.6±0.95 g | 5.53±0.16 f | 5.21±0.14 f | 2.56±0.06 f | |
CK2 | 0—20 | 2.84±0.13 e | 146.51±2.16 fg | 44.19±1.48 ef | 7.89±0.27 d | 12.97±0.84 ab | 4.27±0.19 bc |
20—40 | 2.17±0.11 ef | 92.51±3.16 e | 40.32±1.48 f | 6.91±0.14 e | 12.43±0.29 f | 3.55±0.19 de | |
40—60 | 1.97±0.11 e | 80.22±1.48 f | 32.14±0.81 fg | 5.82±0.18 ef | 5.68±0.11 e | 3.01±0.12 ef | |
T1 | 0—20 | 3.48±0.11 abcd | 162.74±1.46 ab | 46.49±1.56 de | 8.04±0.28 d | 13.06±0.76 ab | 4.41±0.16 ab |
20—40 | 2.49±0.14 cd | 101.46±3.49 d | 45.52±1.64 cd | 7.09±0.45 de | 12.59±0.29 de | 3.42±0.09 e | |
40—60 | 2.19±0.15 de | 89.46±1.72 de | 35.49±0.67 de | 6.09±0.17 de | 5.98±0.09 de | 3.18±0.08 ef | |
T2 | 0—20 | 3.46±0.16 abcd | 156.62±3.48 cd | 46.64±1.57 cde | 8.16±0.49 cd | 13.02±0.74 ab | 4.15±0.09 bc |
20—40 | 3.08±0.12 a | 112.65±3.46 abc | 44.62±1.34 de | 7.34±0.13 cd | 12.64±0.21 de | 3.64±0.11 de | |
40—60 | 2.24±0.16 cd | 87.19±1.64 e | 35.46±1.08 de | 6.17±0.09 de | 6.07±0.07 d | 3.95±0.14 cd | |
T3 | 0—20 | 3.07±0.16 cde | 165.83±3.61 a | 54.73±1.38 a | 9.05±0.18 a | 13.16±0.72 ab | 4.92±0.13 a |
20—40 | 3.16±0.16 a | 120.18±2.94 a | 49.76±1.48 a | 8.22±0.11 a | 13.12±0.17 a | 4.29±0.17 a | |
40—60 | 2.68±1.13 a | 99.24±1.34 a | 41.12±1.16 a | 7.69±0.12 a | 6.94±1.06 a | 4.66±0.12 a | |
T4 | 0—20 | 3.61±0.13 abc | 150.61±3.46 ef | 48.51±1.49 bcd | 8.12±0.27 cd | 13.42±0.64 a | 4.11±0.14 bc |
20—40 | 2.67±0.17 bc | 113.24±2.48 ab | 46.49±1.49 bc | 7.03±0.18 de | 12.53±0.13 ef | 3.67±0.13 de | |
40—60 | 2.33±0.14 bcd | 92.46±1.28 bcd | 36.65±1.45 cd | 6.21±0.17 d | 6.14±1.04 cd | 3.41±0.11 de | |
T5 | 0—20 | 3.15±0.14 bcde | 154.61±2.64 de | 47.46±1.78 bcde | 8.61±0.31 abc | 13.24±0.62 ab | 4.25±0.11 bc |
20—40 | 2.49±0.11 cd | 106.46±2.46 bc | 45.34±1.13 cd | 7.39±0.15 cd | 12.61±0.21 de | 3.83±0.21 bcd | |
40—60 | 2.29±0.12 cd | 91.67±2.01 bcd | 37.12±0.87 bcd | 6.42±0.11 d | 6.19±1.13 cd | 3.47±0.09 de | |
T6 | 0—20 | 2.94±0.15 de | 157.93±2.49 bcd | 47.61±1.26 bcde | 8.14±0.18 cd | 13.15±0.67 ab | 4.29±0.15 bc |
20—40 | 2.85±0.13 abc | 104.95±2.81 d | 43.61±1.43 de | 7.16±0.14 de | 12.79±0.26 bc | 3.66±0.16 de | |
40—60 | 2.46±0.13 ab | 90.49±1.47 cd | 33.78±1.24 ef | 6.81±0.13 c | 6.25±0.08 cd | 3.88±0.13 cd | |
T7 | 0—20 | 3.47±0.13 abcd | 156.15±2.15 cd | 47.16±1.29 cde | 8.21±0.25 bcd | 13.21±0.72 ab | 4.43±0.21 ab |
20—40 | 2.46±0.15 de | 105.64±3.15 cd | 42.64±1.15 ef | 7.59±0.19 bc | 12.49±0.24 f | 3.79±0.14 cd | |
40—60 | 2.37±0.14 bc | 93.47±1.38 bc | 32.82±1.11 f | 6.15±0.18 de | 6.31±1.16 bcd | 3.68±0.08 de | |
T8 | 0—20 | 3.64±0.18 abc | 159.64±2.51 bcd | 49.78±1.49 bcd | 8.71±0.46 ab | 13.28±0.19 a | 4.63±0.16 ab |
20—40 | 2.97±0.14 ab | 114.64±3.19 a | 47.19±1.44 abc | 7.85±0.09 b | 12.97±0.22 ab | 4.09±0.17 ab | |
40—60 | 2.54±0.17 ab | 94.16±1.91 bc | 37.92±1.13 bc | 7.09±0.14 bc | 6.45±1.12 bc | 3.91±0.12 cd | |
T9 | 0—20 | 3.81±0.21 a | 161.46±2.75 abc | 51.16±1.44 b | 8.84±0.13 a | 13.32±0.34 a | 4.87±0.13 a |
20—40 | 3.15±0.13 a | 117.13±3.34 a | 48.67±1.35 ab | 7.94±0.15 ab | 13.01±0.25 ab | 4.16±0.15 a | |
40—60 | 2.59±0.14 ab | 95.38±1.06 b | 38.82±1.16 b | 7.26±0.15 b | 6.54±1.11 b | 4.26±0.14 b | |
T10 | 0—20 | 3.69±0.22 ab | 160.46±2.16 abc | 50.45±1.16 bc | 8.76±0.15 a | 13.29±0.48 a | 4.57±0.18 ab |
20—40 | 2.90±0.15 ab | 113.46±3.06 ab | 47.98±1.67 abc | 7.79±0.16 b | 12.86±0.11 c | 4.02±0.31 abc | |
40—60 | 2.48±0.09 ab | 94.94±1.48 b | 37.68±0.91 bc | 7.16±0.14 bc | 6.49±1.13 bc | 4.09±0.11 bc |
图 6 不同肥料处理下土壤酶活性注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 6 Soil enzyme activities under different fertilizer treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图 7 不同施肥处理下樱桃幼树株高、茎粗注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 7 Plant height and stem diameter of cherry saplings under different fertilization treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图 8 不同的施肥处理下樱桃幼树新梢长、新梢粗注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 8 Length and diameter of newly slightly in cherry saplings under different fertilization treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
株高 Plant height | 茎粗 Stem diameter | 新梢长 Shoot length | 新梢粗 Shoot diameter | |
---|---|---|---|---|
有机质Organic matter | 0.831** | 0.754** | 0.719** | 0.848** |
碱解氮Alkali-hydrolyzed nitrogen | 0.978** | 0.922** | 0.859** | 0.870** |
有效磷Available phosphorus | 0.937** | 0.895** | 0.829** | 0.828** |
速效钾Available potassium | 0.927** | 0.824** | 0.802** | 0.913** |
Ca | 0.905** | 0.819** | 0.681* | 0.799** |
Mg | 0.797** | 0.744** | 0.531 | 0.590* |
Fe | 0.714** | 0.631* | 0.469 | 0.514 |
Cu | 0.679* | 0.613* | 0.421 | 0.505 |
Zn | 0.743** | 0.676* | 0.480 | 0.560 |
Mn | 0.677* | 0.575 | 0.427 | 0.536 |
过氧化氢酶Catalase | 0.885** | 0.736** | 0.798** | 0.912** |
脲酶Urease | 0.915** | 0.840** | 0.817** | 0.923** |
蔗糖酶Sucrase | 0.829** | 0.713** | 0.729** | 0.818** |
表 3 土壤各物质含量与植株生长相关性分析
Table 3 Correlation analysis between soil substance content and plant growth
株高 Plant height | 茎粗 Stem diameter | 新梢长 Shoot length | 新梢粗 Shoot diameter | |
---|---|---|---|---|
有机质Organic matter | 0.831** | 0.754** | 0.719** | 0.848** |
碱解氮Alkali-hydrolyzed nitrogen | 0.978** | 0.922** | 0.859** | 0.870** |
有效磷Available phosphorus | 0.937** | 0.895** | 0.829** | 0.828** |
速效钾Available potassium | 0.927** | 0.824** | 0.802** | 0.913** |
Ca | 0.905** | 0.819** | 0.681* | 0.799** |
Mg | 0.797** | 0.744** | 0.531 | 0.590* |
Fe | 0.714** | 0.631* | 0.469 | 0.514 |
Cu | 0.679* | 0.613* | 0.421 | 0.505 |
Zn | 0.743** | 0.676* | 0.480 | 0.560 |
Mn | 0.677* | 0.575 | 0.427 | 0.536 |
过氧化氢酶Catalase | 0.885** | 0.736** | 0.798** | 0.912** |
脲酶Urease | 0.915** | 0.840** | 0.817** | 0.923** |
蔗糖酶Sucrase | 0.829** | 0.713** | 0.729** | 0.818** |
1 | 蔡春芳.不同施肥方式对樱桃产量、品质和土壤养分含量的影响[J].乡村科技,2023,14(4):58-60. |
2 | 曹德宾.富硒樱桃生产施肥技术[J].农业知识,2016(14):51-52. |
3 | 周丽平,赵秋,张新建,等.新型增效肥料对甜瓜养分吸收和产量的影响[J].北方园艺,2023(4):25-32. |
ZHOU L P, ZHAO Q, ZHANG X J, et al.. Effects of new synergistic fertilizers on nutrient absorption and yield of melon [J]. Northern Hortic., 2023(4):25-32. | |
4 | 元文霞,毕影东,樊超,等.我国生物肥料的发展现状与应用[J].农业科技通讯,2022, 612(12):4-9. |
5 | HUANG H, JIA Y, SUN G X, et al.. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters [J]. Environ. Sci. Technol., 2012, 46(4):2163-2168. |
6 | 洪嘉乐,毛小云,李世坤.有机肥提质增效促进绿色种养循环技术研究进展与展望[J].广东化工,2022,49(18):107-109. |
HONG J L, MAO X Y, LI S K. Research progress and prospect of organic fertilizer improving quality and efficiency to promote green planting and breeding cycle technology [J]. Guangdong Chem. Ind., 2022, 49(18):107-109. | |
7 | CONACHER J, CONACHER A. Organic farming and the environment, with part icular reference to Australia: a review [J]. Biol. Agric. Hortic., 2012, 16(2):145-171. |
8 | 廖超林,黎丽娜,谢丽华,等.增减施有机肥对红壤性水稻土团聚体稳定性及胶结物的影响[J].土壤学报,2021,58(4):978-988. |
LIAO C L, LI L N, XIE L H, et al.. Effect of increased or decreased application of organic manure on aggregates stability and soil cement in red paddy soil [J]. Acta Pedol. Sin., 2021, 58(4):978-988. | |
9 | 汪学美.谈土壤肥料对农业生产的影响[J].农业开发与装备,2017(4):107. |
10 | 王秀英.重庆地区柑橘园土壤养分现状及优化施肥研究[D].重庆:西南大学,2011. |
WANG X Y. Study on soil nutrient status of citrus orchards and optimization fertilization in Chongqing area [D]. Chongqing: Southwest University, 2011. | |
11 | 潘峰,黄素平,梁冷冰,等.配方施肥对阿坝州甜樱桃果实品质及土壤理化性质的影响[J].中国南方果树,2018,47(5):97-100. |
PAN F, HUANG S P, LIANG L B, et al.. Effect of formula fertilization on fruit quality of sweet cherry and physicochemical characteristics of soil in Aba autonomous prefecture [J]. South China Fruits, 2018, 47(5):97-100. | |
12 | 马旭升,张建梅,孙晓慧,等.不同施肥模式对大樱桃品质和土壤养分的影响[J].河北果树,2022(3):13-15, 18. |
MA X S, ZHANG J M, SUN X H, et al.. Effects of different fertilization patterns on fruit qualities of sweet cherry and soil nutrients in garden [J]. Hebei Fruits, 2022(3):13-15, 18. | |
13 | 高学芳,孙超,包淑萍.测定土壤田间持水量的环刀法改进研究[J].宁夏工程技术,2019,18(4):347-349. |
GAO X F, SUN C, BAO S P. Improement of ring-knife method for measuring field moisture capacity [J]. Ningxia Eng. Technol., 2019, 18(4):347-349. | |
14 | 杜苗,钟慧琴.重铬酸钾氧化-容量法测定土壤中有机质的方法改进[J].化工管理,2021(25):16-17. |
DU M, ZHONG H Q. Improvement of potassium dichromate oxidation volumetric method for determination of organic matter in soil [J]. Chem. Eng. Manage., 2021(25):16-17. | |
15 | 胡庆兰,刘梦梦,张文静.原子吸收光谱法在食品金属元素检测中的应用[J].湖北第二师范学院学报,2018,35(8):4-8. |
HU Q L, LIU M M, ZHANG W J. Application of atomic absorption spectrometry in the metal metal elements determation of food [J]. J. Hubei Univ. Edu., 2018, 35(8):4-8. | |
16 | 黄际薇,张永明,黄亚非,等.原子吸收光谱法测定番石榴果中微量元素[J].安徽农业科学,2011,39(26):15929-15931. |
HUANG J W, ZHANG Y M, HUANG Y F, et al.. Determination of trace elements in Psidium L. fruits by atomic absorption spectrometry [J]. J. Anhui Agric. Sci., 2011, 39(26):15929-15931. | |
17 | NADAL-ROMERO E, CAMMERAAT E, PEREZ-CARDIEL E, et al.. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas [J]. Agric. Ecosyst. Environ., 2016, 228:91-100. |
18 | WU M, QIN H, CHEN Z, et al.. Effect of long-term fertilization on bacterial composition in rice paddy soil [J]. Biol. Fert. Soils, 2011, 47(4):397-405. |
19 | 张兴国,胡笑涛,冉辉,等.不同施肥处理对温室葡萄园土壤速效养分含量的影响[J].排灌机械工程学报,2018,36(11):1187-1192. |
ZHANG X G, HU X T, RAN H, et al.. Effects of fertilization treatments on available nutrient contents in soil of greenhouse vineyard [J]. J. Drain. Irrig. Mach. Eng., 2018, 36(11):1187-1192. | |
20 | 王素萍,李小坤,鲁剑巍,等.施用控释尿素对油菜籽产量、氮肥利用率及土壤无机氮含量的影响[J].植物营养与肥料学报,2012,18(6):1449-1456. |
WANG S P, LI X K, LU J W, et al.. Effects of controlled release urea application on yield, nitrogen recovery efficiency of rapeseed and soil inorganic nitrogen content [J]. J. Plant Nutr. Fert., 2012, 18(6):1449-1456. | |
21 | 赵伟,杨圆圆,刘梦龙,等.减量施肥对越夏番茄产量、品质及土壤养分的影响[J].西北农业学报,2018,27(9):1335-1342. |
ZHAO W, YANG Y Y, LIU M L, et al.. Effect of reducing fertilizer application on yield,nutritional quality of over-summering tomato and soil nutrients [J]. Acta Agric. Bor-Occid. Sin., 2018, 27(9):1335-1342. | |
22 | 殷冠羿,胡克林,李品芳,等.不同水肥管理对京郊设施菜地氮素损失及氮素利用效率的影响[J].农业环境科学学报,2013,32(12):2403-2412. |
YIN G Y, HU K L, LI P F, et al.. Nitrogen loss and use efficiency in greenhouse vegetable soil under different water and fertilizer managements [J]. J. Agro-Environ. Sci., 2013, 32(12):2403-2412. | |
23 | 袁子茹,任灵,陈建纲,等.祁连山不同草地类型土壤有机质与全氮分布的关系[J].草原与草坪,2016,36(3):12-16. |
YUAN Z R, REN L, CHEN J G, et al.. Relationship between soil organic matter and total nitrogen in different types of grassland on Qilian mountain [J]. Grassland Turf, 2016, 36(3):12-16. | |
24 | LI Y, NIE C, LIU Y H, et al.. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland [J]. Sci. Total Environ., 2019, 654:264-274. |
25 | 杨志晓.烟草抗赤星病的遗传、生理变化研究及转录因学分析[D].郑州:河南农业大学,2015. |
YANG Z X. Study on genetic, physiological changes of resistance to tobacco brown spot and transcriptome analysis in tobacco (Nicotiana tabacum L.) [D]. Zhengzhou: Henan Agricultural University, 2015. | |
26 | 孙大生.水分与温度对土壤碱氮磷转化的影响及其机理[D].杭州:浙江大学,2016. |
SUN D S. Effects of moisture and temperature on soil carbon, nitrogen and phosphorus transformation and corresponding mechanisms [D]. Hangzhou: Zhejiang University, 2016. | |
27 | DJUKIC L, ZEHETNER F, MENTLER A, et al.. Microbial community composition and activity in different Alpine vegetation zones [J]. Soil Biol. Biochem., 2010, 42(2):155-161. |
28 | 范仲卿,郭新送,张晶,等.不同配比腐植酸复合肥对种植辣椒的土壤酶活性和养分含量的影响[J].腐植酸,2022,207(4):42-46. |
FAN Z Q, GUO X S, ZHANG J, et al.. Effects of different proportions of humic acid compound fertilizer on enzyme activity and nutrient content in soil for growing pepper [J]. Humic Acid, 2022, 207(4):42-46. | |
29 | 胡诚,刘东海,乔艳,等.施用生物有机肥对土壤酶活性及作物产量的影响[J].华北农学报,2017,32():308-312. |
HU C, LIU D H, QIAO Y, et al.. Effects of biological organic manure on soil enzyme activity and crop yields [J]. Acta. Agric. Boreali-Sin., 2017, 32(S1):308-312. | |
30 | 刘云,曹莉,秦舒清,等.缓释尿素对土壤微生物群落、酶活性及辣椒产量的影响[J].甘肃农业大学学报,2018,53(4):41-48. |
LIU Y, CAO L, QIN S Q, et al.. Effects of slow-release urea on soil microbial community, enzyme activities and yield of pepper [J]. J. Gansu Agric. Univ., 2018, 53(4):41-48. | |
31 | 马骏,王天宁,雷金银,等.马铃薯淀粉加工汁水灌溉对土壤过氧化氢酶、脲酶、磷酸酶的影响[J].宁夏农林科技,2020,61(8):40-41. |
MA J, WANG T N, LEI J Y, et al.. Potato starch processing juice water irrigation on soil catalase, urease and phosphatase [J]. Ningxia Agric. For. Sci. Technol., 2020, 61(8):40-41. | |
32 | 赵满兴,刘慧,王静,等.减量复合肥配施生物有机肥对番茄土壤肥力及酶活性的影响[J].农学学报,2020,10(2):56-61. |
ZHAO M X, LIU H, WANG J, et al.. Reduced compound fertilizer with bio-organic fertilizer: effects on soil fertility and enzyme activity of tomato [J]. J. Agric. Sci., 2020, 10(2):56-61. | |
33 | 王宁,南宏宇,冯克云.化肥减量配施有机肥对棉田土壤微生物生物量、酶活性和棉花产量的影响[J].应用生态学报,2020,31(1):173-181. |
WANG N, NAN H Y, FENG K Y. Effects of reduced chemical fertilizer with organic fertilizer application on soil microbial biomass, enzyme activity and cotton yield [J]. Chin. J. Appl. Ecol., 2020, 31(1):173-181. | |
34 | 王兴龙,朱敏,杨帆,等.配施有机肥减氮对川中丘区土壤微生物量与酶活性的影响[J].水土保持学报,2017,31(3):271-276. |
WANG X L, ZHU M, YANG F, et al.. Effects of reducing nitrogen and applying organic fertilizers on soil microbial biomass carbon and enzyme activity in the hilly area of central Sichuan basin [J]. J. Soil Water Conserv., 2017, 31(3):271-276. | |
35 | 姚云柯,徐卫红,周豪,等.脲酶/硝化抑制剂缓释肥对番茄养分吸收和土壤肥力的影响[J].西南农业学报,2018,31(4):748-753. |
YAO Y K, XU W H, ZHOU H, et al.. Effects of special slow release fertilizer containing urease/nitrification inhibitor on nutrient uptake of tomato and soil fertility [J]. Southwest Chin. J. Agric. Sci., 2018, 31(4):748-753. | |
36 | 陈德伟,汤寓涵,石文波,等.钙调控植物生长发育的进展分析[J].分子植物育种,2019,17(11):3593-3601. |
CHEN D W, TANG Y H, SHI W B, et al.. Progress in the regulation of calcium growth and development [J]. Mol. Plant Breeding, 2019, 17(11):3593-3601. | |
37 | 张亚晨.简述镁元素对植物的作用[J].农业开发与装备,2018(11):166, 192. |
38 | 位杰,马建江,陈久红,等.库尔勒香梨叶片营养元素含量的年变化规律及相关性研究[J].河南农业科学,2020,49(3):121-128. |
WEI J, MA J J, CHEN J H, et al.. Research on the annual variation rules and correlation of leaf nutrient element content in Korla fragrant pear [J]. J. Henan Agric. Sci., 2020, 49(3):121-128. | |
39 | 肖海龙.三江源地区不同退化程度高寒草原土壤和牧草微量元素含量研究[D].兰州:甘肃农业大学,2022. |
XIAO H L. Study on the content of trace elements in soil and forage of alpine steppe under different degradation degrees in Sanjiangyuan region [D]. Lanzhou: Gansu Agricultural University, 2022. | |
40 | 韩秀萍,马彦平,黄灿灿.微量元素铁与植物营养和人体健康的关系解析[J].磷肥与复肥,2020,35(12):33-35. |
HAN X P, MA Y P, HUANG C C. Analysis of the relationship between iron, plant nutrition and human health [J]. Phosphate Compd. Fert., 2020, 35(12):33-35. | |
41 | 马琦琦,李丽君,王斌,等.微肥对植物生长作用及施用技术的研究进展[J].安徽农业科学,2022,50(13):4-6. |
MA Q Q, LI L J, WANG B . et al .. Research progress on the effects of micro-fertilizers on plant growth and application techniques [J]. J. Anhui Agric. Sci., 2022, 50(13):4-6. | |
42 | 朱海峰.‘库尔勒香梨’不同产量园叶片矿质元素含量的年变化研究[D].石河子:石河子大学,2017. |
ZHU H F. Study on annual variation of mineral element contents in leaves of different yield orchard of ‘Korla Fragrant Pear’ [D]. Shihezi: Shihezi University, 2017. | |
43 | 贾兵,衡伟,刘莉,等.砀山酥梨叶片矿质元素含量年变化及其相关性分析[J].安徽农业大学学报,2011,38(2):212-217. |
JIA B, HENG W, LIU L, et al.. Annual changes of mineral elements in the leaves of pear (Pyrus bretchnederi cv. ‘Dangshansuli’) and their correlation analysis [J]. J. Anhui Agric Univ., 2011, 38(2):212-217. | |
44 | 林敏娟,王振磊,徐继忠,等.“黄金梨”叶片及果实中主要矿质元素含量变化及相关关系[J].北方园艺,2011(19):5-7. |
LIN M J, WANG Z L, XU J Z, et al.. Seasonal changes and correlation of major mineral elements between leaves and fruits in ‘Whangkeumbae’ pear [J]. Northern Hortic., 2011(19):5-7. |
[1] | 张继东, 张亚雄, 程伟, 蒲莉, 柳路行, 王亚明. 生物质炭和有机肥配施对苹果重茬育苗地土壤理化性质和微生物群落特征的影响[J]. 中国农业科技导报, 2024, 26(8): 213-222. |
[2] | 孙亮, 徐益, 蔡沁, 郭靖豪, 赵灿, 郭保卫, 邢志鹏, 霍中洋, 张洪程, 胡雅杰. 中微量元素对水稻产量和品质的影响研究进展[J]. 中国农业科技导报, 2024, 26(8): 9-19. |
[3] | 杨娅琳, 吴峰婧琳, 陈健鑫, 武自强, 刘丽, 张东华, 马焕成, 伍建榕. 油茶根腐病根际土壤、根系内真菌群落结构和多样性分析[J]. 中国农业科技导报, 2024, 26(7): 121-135. |
[4] | 王子凡, 李燕, 张庆银, 王丹丹, 师建华, 耿晓彬, 田东良, 钟增明, 赵晓明, 齐连芬. 微生物菌剂对设施番茄主要病害及土壤微生物群落的影响[J]. 中国农业科技导报, 2024, 26(6): 102-112. |
[5] | 高丽敏, 顾泽辰, 贡雪菲, 崔联明, 郭东森, 周影, 王琳, 魏启舜. 果园生草对中国果树-土壤系统生产性能影响的Meta分析[J]. 中国农业科技导报, 2024, 26(4): 184-194. |
[6] | 张桐毓, 勾颖, 李琪, 杨莉. 人参锈腐病对人参品质和土壤相关因子的影响研究[J]. 中国农业科技导报, 2024, 26(3): 124-133. |
[7] | 周旭东, 韩天华, 申云鑫, 施竹凤, 贺彪, 杨明英, 裴卫华, 何永宏, 杨佩文. 4种轮作模式下长期连作烟田土壤微生态的响应特征[J]. 中国农业科技导报, 2024, 26(3): 174-187. |
[8] | 张二豪, 刘盼盼, 何萍, 简阅, 徐雨婷, 陈诚欣, 禄亚洲, 兰小中, 索朗桑姆. 甘青青兰根际土壤理化性质及微生物群落结构特征分析[J]. 中国农业科技导报, 2024, 26(3): 201-213. |
[9] | 郭靖捷, 任晓萌, 蒙仲举, 王涛, 祁帅, 宋佳佳, 宝孟克那顺, 韩胜利. 半干旱风沙草原区盐湖植物防护体系土壤理化性状特征[J]. 中国农业科技导报, 2024, 26(1): 182-192. |
[10] | 肖锐, 谭璐, 吴亮, 张皓, 郭佳源, 杨海君. 镉胁迫下地肤根际与非根际土壤微生物群落结构及多样性[J]. 中国农业科技导报, 2023, 25(8): 203-215. |
[11] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[12] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
[13] | 庞喆, 王启龙, 李娟. 不同土壤改良剂对陕北低洼盐碱地土壤理化性质及水稻产量和经济效益的影响[J]. 中国农业科技导报, 2023, 25(6): 174-180. |
[14] | 孟璐, 范敬文, 赛欣娱, 曾路生, 宋祥云, 崔德杰. 石灰对苹果园土壤改良和植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 197-204. |
[15] | 赵柏霞, 闫建芳. 高通量技术分析‘砂蜜豆’甜樱桃不同组织内生细菌多样性[J]. 中国农业科技导报, 2023, 25(3): 66-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||