中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (12): 88-97.DOI: 10.13304/j.nykjdb.2023.0350
收稿日期:
2023-05-06
接受日期:
2024-07-25
出版日期:
2024-12-15
发布日期:
2024-12-17
通讯作者:
李飞翔
作者简介:
杨大芳 E-mail:jimydf@163.com;
基金资助:
Dafang YANG(), Feixiang LI(
), Yuefeng GE, Yichen LI
Received:
2023-05-06
Accepted:
2024-07-25
Online:
2024-12-15
Published:
2024-12-17
Contact:
Feixiang LI
摘要:
为提高播种机变量施肥的排肥性能,基于离散元法对外槽轮排肥器的排肥性能进行研究。首先,通过肥料标定试验确定离散元物料仿真参数;然后,基于Isight软件的优化模块设计试验,以外槽轮的工作长度、转速为因素,以排肥均匀性变异系数为响应设计试验,得到排肥器排肥均匀性变异系数的二阶回归方程,根据所得回归方程分析在特定肥量范围内,外槽轮的工作长度及转速组合对施肥稳定性的影响。针对300 kg·hm-2的施肥量,以外槽轮流量方程为约束条件进行寻优求解,得到外槽轮排肥器排肥参数的最佳组合为槽轮工作长度60 mm,转速30 r·min-1。采用最佳排肥参数组合进行排肥仿真试验,得到排肥均匀性变异系数为11.7%,符合施肥要求。研究结果为2BMJ系列免耕精量播种机排肥器工作中的参数调配提供参考。
中图分类号:
杨大芳, 李飞翔, 葛越锋, 李奕辰. 基于离散元法的外槽轮排肥器排肥性能研究[J]. 中国农业科技导报, 2024, 26(12): 88-97.
Dafang YANG, Feixiang LI, Yuefeng GE, Yichen LI. Study on Fertilizer Discharge Performance of External Groove Wheel Fertilizer Applicator Based on Discrete Element Method[J]. Journal of Agricultural Science and Technology, 2024, 26(12): 88-97.
仿真参数 Simulation parameter | 数值 Value |
---|---|
复合肥密度 Compound fertilizer density/(kg·m-3) | 1 510 |
复合肥泊松比 Poisson’s ratio of compound fertilizer | 0.40 |
复合肥剪切模量 Shear modulus of compound fertilizer/Pa | 7.65×107 |
塑料密度 Plastic density/(kg·m-3) | 900 |
塑料泊松比 Plastic Poisson’s ratio | 0.42 |
塑料剪切模量 Plastic modulus of shear/Pa | 3.2×108 |
复合肥-复合肥恢复系数 Compound fertilizer-compound fertilizer recovery coefficient | 0.2~0.4 |
复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer-compound fertilizer | 0.2~0.6 |
复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | 0.05~0.40 |
复合肥-塑料恢复系数 Compound fertilizer-plastic recovery coefficient | 0.3~0.6 |
复合肥-塑料静摩擦系数 Compound fertilizer-plastic static friction coefficient | 0.2~0.6 |
复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | 0.05~0.40 |
表1 离散元仿真参数
Table 1 Parameters required in DEM simulation
仿真参数 Simulation parameter | 数值 Value |
---|---|
复合肥密度 Compound fertilizer density/(kg·m-3) | 1 510 |
复合肥泊松比 Poisson’s ratio of compound fertilizer | 0.40 |
复合肥剪切模量 Shear modulus of compound fertilizer/Pa | 7.65×107 |
塑料密度 Plastic density/(kg·m-3) | 900 |
塑料泊松比 Plastic Poisson’s ratio | 0.42 |
塑料剪切模量 Plastic modulus of shear/Pa | 3.2×108 |
复合肥-复合肥恢复系数 Compound fertilizer-compound fertilizer recovery coefficient | 0.2~0.4 |
复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer-compound fertilizer | 0.2~0.6 |
复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | 0.05~0.40 |
复合肥-塑料恢复系数 Compound fertilizer-plastic recovery coefficient | 0.3~0.6 |
复合肥-塑料静摩擦系数 Compound fertilizer-plastic static friction coefficient | 0.2~0.6 |
复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | 0.05~0.40 |
参数 Parameter | 低水平 Low level(-1) | 中间水平 Intermediate level(0) | 高水平 High level(1) |
---|---|---|---|
A:复合肥-复合肥恢复系数 Compound fertilizer-compound fertilizer recovery coefficient | 0.20 | 0.300 | 0.40 |
B:复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer - compound fertilizer | 0.20 | 0.300 | 0.40 |
C:复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | 0.05 | 0.075 | 0.10 |
D:复合肥-塑料恢复系数 Compound fertilizer-plastic recovery coefficient | 0.30 | 0.450 | 0.60 |
E:复合肥-塑料静摩擦系数 Compound fertilizer-plastic static friction coefficient | 0.20 | 0.300 | 0.40 |
F:复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | 0.05 | 0.075 | 0.10 |
表2 Placketf-Burman试验参数范围
Table 2 Parameters range of Placketf-Burman test
参数 Parameter | 低水平 Low level(-1) | 中间水平 Intermediate level(0) | 高水平 High level(1) |
---|---|---|---|
A:复合肥-复合肥恢复系数 Compound fertilizer-compound fertilizer recovery coefficient | 0.20 | 0.300 | 0.40 |
B:复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer - compound fertilizer | 0.20 | 0.300 | 0.40 |
C:复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | 0.05 | 0.075 | 0.10 |
D:复合肥-塑料恢复系数 Compound fertilizer-plastic recovery coefficient | 0.30 | 0.450 | 0.60 |
E:复合肥-塑料静摩擦系数 Compound fertilizer-plastic static friction coefficient | 0.20 | 0.300 | 0.40 |
F:复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | 0.05 | 0.075 | 0.10 |
水平 Level | n:转速 Rotate speed/ (r·min-1) | L:工作长度 Working length/mm |
---|---|---|
1.414 | 73.28 | 68.28 |
1 | 65.00 | 60.00 |
0 | 45.00 | 40.00 |
-1 | 25.00 | 20.00 |
-1.414 | 16.72 | 11.72 |
表3 Central Composite Design试验因素范围
Table 3 Factor range of Central Composite Design test
水平 Level | n:转速 Rotate speed/ (r·min-1) | L:工作长度 Working length/mm |
---|---|---|
1.414 | 73.28 | 68.28 |
1 | 65.00 | 60.00 |
0 | 45.00 | 40.00 |
-1 | 25.00 | 20.00 |
-1.414 | 16.72 | 11.72 |
序号 No. | A:复合肥-复合肥恢复系数 Compound fertilizer-compound fertilizer recovery coefficient | B:复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer-compound fertilizer | C:复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | D:复合肥-塑料恢复系数 Compound fertilizer-plastic recovery coefficient | E:复合肥-塑料静摩擦系数 Compound fertilizer-plastic static friction coefficient | F:复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | θ:堆积角 Repose angle/(°) |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | -1 | -1 | -1 | 1 | 24.70 |
2 | -1 | -1 | 1 | -1 | 1 | 1 | 23.75 |
3 | 1 | 1 | 1 | -1 | -1 | -1 | 28.37 |
4 | -1 | -1 | -1 | 1 | -1 | 1 | 16.70 |
5 | -1 | -1 | -1 | -1 | -1 | -1 | 13.50 |
6 | -1 | 1 | 1 | 1 | -1 | -1 | 22.78 |
7 | 1 | -1 | 1 | 1 | -1 | 1 | 18.26 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 23.27 |
9 | -1 | 1 | -1 | 1 | 1 | -1 | 19.80 |
10 | -1 | 1 | 1 | -1 | 1 | 1 | 32.62 |
11 | 1 | -1 | -1 | -1 | 1 | -1 | 15.70 |
12 | 1 | 1 | -1 | 1 | 1 | 1 | 29.25 |
13 | 1 | -1 | 1 | 1 | 1 | -1 | 21.80 |
表4 Plackett-Burman 试验设计及结果
Table 4 Design and results of Plackett-Burman test
序号 No. | A:复合肥-复合肥恢复系数 Compound fertilizer-compound fertilizer recovery coefficient | B:复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer-compound fertilizer | C:复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | D:复合肥-塑料恢复系数 Compound fertilizer-plastic recovery coefficient | E:复合肥-塑料静摩擦系数 Compound fertilizer-plastic static friction coefficient | F:复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | θ:堆积角 Repose angle/(°) |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | -1 | -1 | -1 | 1 | 24.70 |
2 | -1 | -1 | 1 | -1 | 1 | 1 | 23.75 |
3 | 1 | 1 | 1 | -1 | -1 | -1 | 28.37 |
4 | -1 | -1 | -1 | 1 | -1 | 1 | 16.70 |
5 | -1 | -1 | -1 | -1 | -1 | -1 | 13.50 |
6 | -1 | 1 | 1 | 1 | -1 | -1 | 22.78 |
7 | 1 | -1 | 1 | 1 | -1 | 1 | 18.26 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 23.27 |
9 | -1 | 1 | -1 | 1 | 1 | -1 | 19.80 |
10 | -1 | 1 | 1 | -1 | 1 | 1 | 32.62 |
11 | 1 | -1 | -1 | -1 | 1 | -1 | 15.70 |
12 | 1 | 1 | -1 | 1 | 1 | 1 | 29.25 |
13 | 1 | -1 | 1 | 1 | 1 | -1 | 21.80 |
参数 Parameter | 效应 Effect | 均方和 Sum of squares | 影响率 Contribution rate/% | 显著性排序 Ranking of significance |
---|---|---|---|---|
A:复合肥-复合肥恢复系数 Compound fertilizer-compound fertilizer recovery coefficient | 1.49 | 6.65 | 1.77 | 6 |
B:复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer - compound fertilize | 7.97 | 190.43 | 50.68 | 1 |
C:复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | 4.66 | 65.01 | 17.29 | 2 |
D:复合肥-塑料恢复系数 Compound fertilizer-plastic recovery coefficient | -1.67 | 8.42 | 2.23 | 5 |
E:复合肥-塑料静摩擦系数 Compound fertilizer-plastic static friction coefficient | 3.11 | 28.86 | 6.68 | 4 |
F:复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | 3.88 | 45.36 | 12.07 | 3 |
表5 Plackett-Burman 试验参数显著性分析
Table 5 Analysis of significance of parameters in Plackett-Burman test
参数 Parameter | 效应 Effect | 均方和 Sum of squares | 影响率 Contribution rate/% | 显著性排序 Ranking of significance |
---|---|---|---|---|
A:复合肥-复合肥恢复系数 Compound fertilizer-compound fertilizer recovery coefficient | 1.49 | 6.65 | 1.77 | 6 |
B:复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer - compound fertilize | 7.97 | 190.43 | 50.68 | 1 |
C:复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | 4.66 | 65.01 | 17.29 | 2 |
D:复合肥-塑料恢复系数 Compound fertilizer-plastic recovery coefficient | -1.67 | 8.42 | 2.23 | 5 |
E:复合肥-塑料静摩擦系数 Compound fertilizer-plastic static friction coefficient | 3.11 | 28.86 | 6.68 | 4 |
F:复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | 3.88 | 45.36 | 12.07 | 3 |
序号 No. | B:复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer-compound fertilize | C:复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | F:复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | θ:堆积角 Repose angle /(°) |
---|---|---|---|---|
1 | -1 | -1 | 0 | 21.80 |
2 | 0 | 1 | -1 | 31.80 |
3 | 0 | 1 | 1 | 42.21 |
4 | 1 | 0 | -1 | 30.11 |
5 | 0 | -1 | 1 | 22.78 |
6 | 0 | -1 | -1 | 16.70 |
7 | 1 | -1 | 0 | 24.70 |
8 | -1 | 1 | 0 | 28.37 |
9 | 1 | 0 | 1 | 45.57 |
10 | 1 | 1 | 0 | 47.34 |
11 | 0 | 0 | 0 | 38.66 |
12 | 0 | 0 | 0 | 38.61 |
13 | -1 | 0 | -1 | 17.22 |
14 | -1 | 0 | 1 | 26.57 |
15 | 0 | 0 | 0 | 38.65 |
表6 Box-Behnken 试验及结果
Table 6 Design and results of Box-Behnken test
序号 No. | B:复合肥-复合肥静摩擦系数 Static friction coefficient of compound fertilizer-compound fertilize | C:复合肥-复合肥滚动摩擦系数 Compound fertilizer-compound fertilizer rolling friction coefficient | F:复合肥-塑料滚动摩擦系数 Compound fertilizer-plastic rolling friction coefficient | θ:堆积角 Repose angle /(°) |
---|---|---|---|---|
1 | -1 | -1 | 0 | 21.80 |
2 | 0 | 1 | -1 | 31.80 |
3 | 0 | 1 | 1 | 42.21 |
4 | 1 | 0 | -1 | 30.11 |
5 | 0 | -1 | 1 | 22.78 |
6 | 0 | -1 | -1 | 16.70 |
7 | 1 | -1 | 0 | 24.70 |
8 | -1 | 1 | 0 | 28.37 |
9 | 1 | 0 | 1 | 45.57 |
10 | 1 | 1 | 0 | 47.34 |
11 | 0 | 0 | 0 | 38.66 |
12 | 0 | 0 | 0 | 38.61 |
13 | -1 | 0 | -1 | 17.22 |
14 | -1 | 0 | 1 | 26.57 |
15 | 0 | 0 | 0 | 38.65 |
序号 No. | n:转速 Rotate speed | L:工作长度 Working length | 变异系数 Coefficient of variation/% |
---|---|---|---|
1 | 1 | 1 | 11.25 |
2 | -1 | 1 | 6.45 |
3 | 0 | 0 | 9.53 |
4 | 0 | 0 | 9.53 |
5 | 0 | 0 | 9.53 |
6 | 0 | 0 | 9.53 |
7 | -1 | -1 | 8.36 |
8 | 0 | -1.414 | 12.72 |
9 | 1.414 | 0 | 13.85 |
10 | 0 | 0 | 9.53 |
11 | 1 | -1 | 13.35 |
12 | -1.414 | 0 | 8.26 |
13 | 0 | 1.414 | 8.87 |
表7 Central Composite Design试验及结果
Table 7 Central Composite Design test and results
序号 No. | n:转速 Rotate speed | L:工作长度 Working length | 变异系数 Coefficient of variation/% |
---|---|---|---|
1 | 1 | 1 | 11.25 |
2 | -1 | 1 | 6.45 |
3 | 0 | 0 | 9.53 |
4 | 0 | 0 | 9.53 |
5 | 0 | 0 | 9.53 |
6 | 0 | 0 | 9.53 |
7 | -1 | -1 | 8.36 |
8 | 0 | -1.414 | 12.72 |
9 | 1.414 | 0 | 13.85 |
10 | 0 | 0 | 9.53 |
11 | 1 | -1 | 13.35 |
12 | -1.414 | 0 | 8.26 |
13 | 0 | 1.414 | 8.87 |
方差来源 Soruce of variation | 均方 Mean square | 自由度 Freedom | 平方和 Quadratic sum | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 50.32 | 2 | 25.16 | 47.05 | <0.000 1 |
n:转速 Rotate speed | 39.14 | 1 | 39.14 | 73.20 | <0.000 1 |
L:工作长度 Working length | 11.17 | 1 | 11.17 | 20.90 | 0.001 |
总和Sum | 55.66 | 12 |
表8 Central Composite试验方差分析
Table 8 ANOVA of quadraticl of Central Composite test
方差来源 Soruce of variation | 均方 Mean square | 自由度 Freedom | 平方和 Quadratic sum | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 50.32 | 2 | 25.16 | 47.05 | <0.000 1 |
n:转速 Rotate speed | 39.14 | 1 | 39.14 | 73.20 | <0.000 1 |
L:工作长度 Working length | 11.17 | 1 | 11.17 | 20.90 | 0.001 |
总和Sum | 55.66 | 12 |
1 | 张季琴,刘刚,仁重义,等.基于GWO-GRNN的双变量施肥系统排肥量预测模型构建[J].江苏农业科学,2023,51(2):210-217. |
2 | 王辉,刘艺豪,周利明,等.施肥播种机肥料流量分段式PID控制系统设计与试验[J].农业机械学报,2023,54(2):32-40, 94. |
WANG H, LIU Y H, ZHOU L M, et al.. Design and test of fertilizer flow piecewise PID control system of fertilizer planter [J]. Trans. Chin. Soc. Agric. Mach., 2023,54(2):32-40, 94. | |
3 | 刘刚,胡号,黄家运,等.变量施肥滞后时间检测与位置修正方法研究[J].农业机械学报,2021,52():74-80. |
LIU G, HU H, HUANG J Y, et al.. Lag time detection and position correction method of variable rate fertilization [J]. Tran. Chin. Soc. Agric. Mach., 2021, 52(S1): 74-80. | |
4 | 杨洪坤,张立新,董万城,等.基于离散元法的双变量施肥机排肥装置分析与试验[J].机械设计与研究,2019,35(5):179-183. |
YANG H K, ZHANG L X, DONG W C, et al.. Analysis and experiment of fertilizer device for bivariate fertilizer based on discrete element method [J]. Mach. Des. Res.,2019,35(5):179-183. | |
5 | 顿国强,于春玲,杨永振,等.外槽轮排肥器排肥离散元仿真及排肥舌参数优化[J].湖南农业大学学报(自然科学版),2018,44(6):661-665. |
DUN G Q, YU C L, YANG Y Z, et al.. Discharging characteristic test of outer-groove wheel fertilizer and parameter optimization of fertilizer tongue by discrete element simulation [J]. J. Hunan Agric. Univ. (Nat. Sci.), 2018,44(6):661-665. | |
6 | 韩连杰,俞金金,金佳俊,等.无管式小麦播种机电控排肥装置设计与试验[J].中国农机化学报,2021,42(6):27-34. |
HAN L J, YU J J, JIN J J, et al.. Design and experiment of electronic control fertilization device for tubeless wheat seeder [J]. J. Chin. Agric. Mech., 2021,42(6):27-34. | |
7 | 张季琴,刘刚,胡号,等.双变量螺旋外槽轮排肥器控制序列对排肥性能的影响[J].农业机械学报,2020,51():137-144. |
ZHANG J Q, LIU G, HU H, et al.. Influence of control sequence of spiral fluted roller fertilizer distributer on fertilization performance [J]. Tran. Chin. Soc. Agric. Mach., 2020, 51(S1): 137-144. | |
8 | 梁宇超,汤智辉,纪超,等.外槽轮排肥器结构参数优化与试验[J].农机化研究,2023,45(12):7-14. |
LIANG Y C, TANG Z H, JI C, et al.. Optimization and experiment of structural parameters of outer groove wheel fertilizer drainer [J]. J. Agric. Mech. Res., 2023,45(12):7-14. | |
9 | 张小成. 外槽轮式排肥器优化设计与关键工作参数对排肥性能的影响[D].南京:南京农业大学, 2019. |
ZHANG X C. Optimization design and key working parameters of external trough wheel type fertilizer effect on fertilizer performance [D]. Nanjing: Nanjing Agricultural University, 2019. | |
10 | 汪博涛,白璐,丁尚鹏,等.外槽轮排肥器关键工作参数对排肥量影响的仿真与试验研究[J].中国农机化学报,2017,38(10):1-6, 23. |
WANG B T, BAI L, DING S P, et al.. Simulation and experimental study on impact of fluted-roller fertilizer key parameters on fertilizer amount [J]. J. Chin. Agric. Mech., 2017,38(10):1-6, 23. | |
11 | 钱郁文,章湘华,林仲宁,等. 粉尘物性试验方法 第5部分:安息角的测定 注入限定底面法: [S]. 北京:中国标准出版社,1997. |
12 | 张建路,王鹏飞.基于EDEM机施有机肥离散元模型参数标定[J].农机化研究,2023,45(9):122-128. |
ZHANG J L, WANG P F. Calibration of discrete element model parameters of organic fertilizer application based on EDEM [J]. J. Agric. Mech. Res.,2023,45(9):122-128. | |
13 | 张荣芳,周纪磊,刘虎,等.玉米颗粒粘结模型离散元仿真参数标定方法研究[J].农业机械学报,2022,53():69-77. |
ZHANG R F, ZHOU J L, LIU H, et al.. Determination of interspecific contact parameters of corn and simulation calibration of discrete element [J]. Tran. Chin. Soc. Agric. Mach., 2022,53(S1):69-77. | |
14 | 肖子卿,田海清,张涛,等.玉米秸秆饲料除尘筛出物离散元数值模拟参数标定[J].中国农业大学学报,2022,27(7):172-183. |
XIAO Z Q, TIAN H Q, ZHANG T, et al.. Parameter calibration of discrete element numerical simulation for the dedusting sieve of corn straw feed [J]. J. China Agric. Univ., 2022,27(7):172-183. | |
15 | 李超,施伟,姚应方,等.基于离散元的间歇式施肥器的施肥过程[J].江苏农业科学,2021,49(1):166-170. |
16 | 张东超,汤智辉,何义川,等.基于EDEM离散元法的分层施肥靴仿真与试验[J].农机化研究,2020,42(2):146-151. |
ZHANG D C, TANG Z H, HE Y C, et al.. Simulation and experimen of layered fertilizing boots based on EDEM discrete element method [J]. J. Agric. Mech. Res., 2020,42(2):146-151. | |
17 | 闫银发,赵庆吉,王瑞雪,等.四槽轮配肥器肥料颗粒碰撞掺混离散元分析与优化设计[J].农业机械学报,2023,54(3):49-59. |
YAN Y F, ZHAO Q J, WANG R X, et al.. Discrete element analysis and optimization design of collision blending for four flute-wheels fertilizer [J]. Tran. Chin. Soc. Agric. Mach., 2023,54(3):49-59. | |
18 | 李永祥,李飞翔,徐雪萌,等.基于颗粒缩放的小麦粉离散元参数标定[J].农业工程学报,2019,35(16):320-327. |
LI Y X, LI F X, XU X M, et al.. Parameter calibration of wheat flour for discrete element method simulation based on particle scaling [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(16):320-327. | |
19 | 杨家琦.颗粒离散元岩石模型参数特性研究与应用[D].邯郸:河北工程大学,2018. |
YANG J Q. Study and application of parameter characteristics of bonded particle rock model [D]. Handan:Hebei Engineering University, 2018. | |
20 | 赖庆辉,袁海阔,胡子武,等.三七种苗物料特性研究及离散元法参数标定[J].扬州大学学报(农业与生命科学版),2018,39(2):74-79. |
LAI Q H, YUAN H K, HU Z W,et al.. Experimental study of physical characteristics and parameters calibration of Panax notoginseng seedling [J]. J. Yangzhou Univ. (Agric. Life Sci.),2018,39(2):74-79. | |
21 | 陈林涛,薛俊祥,牟向伟,等.基于离散元的木薯种茎仿真参数标定方法研究[J].江苏农业科学,2023,51(4):198-205. |
22 | 刘磊,杜岳峰,栗晓宇,等.基于离散元法的种子玉米剥皮过程籽粒损失分析与试验[J].农业机械学报,2022,53():28-38. |
LIU L, DU Y F, LI X Y, et al.. Analysis and experiment on kernel loss of seed corn during peeling based on DEM [J]. J. Agric. Mach., 2022,53(S2):28-38. | |
23 | 李长荣,刘立晶,马强,等. 播种机 外槽轮排种器: [S].北京:机械工业出版社,2013. |
24 | 樊成赛,何瑞银,施印炎,等.有机无机混合肥料离散元参数标定方法研究[J].南京农业大学学报,2024,47(2):402-413. |
FAN C S, HE R Y, SHI Y Y, et al.. Study on discrete element parameter calibration method for organic inorganic mixed fertilizers [J]. J. Nanjing Agric. Univ., 2024, 47(2):402-413. | |
25 | 丁筱玲,崔东云,刘童,等.精准变量排肥器结构优化设计与试验[J].中国农机化学报,2019,40(1):5-12. |
DING X L, CUI D Y, LIU T,et al.. Optimization design and experiment of precision variable fertilizer device [J].J. Chin. Agric. Mech., 2019,40(1):5-12. |
[1] | 顿国强, 王雷, 纪欣鑫, 姜新波, 赵宇, 郭娜. 金乡紫皮蒜种离散元参数标定与试验验证[J]. 中国农业科技导报, 2024, 26(8): 131-139. |
[2] | 顿国强, 吴星澎, 纪欣鑫, 张福利, 纪文义, 杨永振. 双摆盘式大豆小区排种器的仿真优化[J]. 中国农业科技导报, 2024, 26(6): 82-90. |
[3] | 李明, 董帅, 庞永强, 燕洁华, 叶汪忠. 风沙土混拌刀具的改良设计与试验[J]. 中国农业科技导报, 2024, 26(4): 87-96. |
[4] | 黄元昊, 全腊珍, 胡广发, 全伟, 石方刚. 多种材料与不同含水率土壤的离散元接触参数标定[J]. 中国农业科技导报, 2024, 26(3): 98-109. |
[5] | 陈林, 余南辉, 王立宗, 范吉军, 雷港, 刘晓鹏, 周龙, 周劲. 米糠和碎米的接触参数测量与离散元仿真标定[J]. 中国农业科技导报, 2024, 26(2): 127-136. |
[6] | 王洪波, 樊志鹏, 乌兰图雅, 王春光, 马哲. 揉碎玉米秸秆螺旋输送仿真离散元模型参数标定[J]. 中国农业科技导报, 2023, 25(3): 96-106. |
[7] | 于淼, 周海宾, 丁京涛, 程红胜, 沈玉君, 范盛远, 张曦, 王健, 徐鹏翔, 程琼仪. 基于EDEM的餐厨垃圾组成颗粒间接触参数标定[J]. 中国农业科技导报, 2023, 25(12): 111-120. |
[8] | 马紫涛, 赵智豪, 全伟, 石方刚, 高晨, 吴明亮. 基于EDEM的水稻残茬秸秆离散元仿真参数标定[J]. 中国农业科技导报, 2023, 25(11): 103-113. |
[9] | 单发科, 康朔, 朱建锡, 王永维, 王俊. 基于EDEM的粉垄和旋耕作业混肥效果研究[J]. 中国农业科技导报, 2023, 25(11): 90-102. |
[10] | 周婷, 孙松林, 朱海英, 彭才望. 含水率对黑水虻生物转化猪粪有机肥黏结流动的影响[J]. 中国农业科技导报, 2023, 25(10): 126-136. |
[11] | 李飞翔, 王鹏, 王云飞, 葛越锋, 唐凯怿, 李得志. 基于堆积试验的玉米包衣种子离散元参数标定[J]. 中国农业科技导报, 2022, 24(7): 97-107. |
[12] | 宋世圣, 孙松林, 方芹, 彭才望, 周婷, 朱海英. 黑水虻生物转化餐厨垃圾有机肥离散元模型参数标定[J]. 中国农业科技导报, 2022, 24(6): 123-132. |
[13] | 闫建伟, 魏松, 胡冬军, 刘启合, 张富贵. 白萝卜种子颗粒模型离散元接触参数标定与试验[J]. 中国农业科技导报, 2022, 24(5): 119-128. |
[14] | 杨贵川, 张富贵, 郑乐, 王震, 孔曼曼, 章鑫鹏. 半夏块茎物理特性研究及离散元仿真参数标定[J]. 中国农业科技导报, 2022, 24(10): 99-108. |
[15] | 胡婷, 全伟, 吴明亮, 李林. 双垄四行花生垄作播种机种沟开沟器设计与试验[J]. 中国农业科技导报, 2021, 23(9): 129-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||