中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (6): 191-199.DOI: 10.13304/j.nykjdb.2023.0103
• 生物制造 资源生态 • 上一篇
收稿日期:
2023-02-16
接受日期:
2023-06-25
出版日期:
2024-06-15
发布日期:
2024-06-12
通讯作者:
张丽娟
作者简介:
秦宇坤 E-mail:18236411280@163.com;
基金资助:
Yukun QIN(), Junying CHEN, Lijuan ZHANG(
)
Received:
2023-02-16
Accepted:
2023-06-25
Online:
2024-06-15
Published:
2024-06-12
Contact:
Lijuan ZHANG
摘要:
为探究减氮措施对棉花干物质积累特征及产量的影响,设置常规施氮(N1,施氮量345 kg·hm-2)、减氮20%(N2,施氮量276 kg·hm-2),减氮20%其中配施10%有机肥(N3,施氮量276 kg·hm-2,化肥与有机肥配施比例9∶1)和不施氮(N4)共4个处理,分析棉花干物质积累特征参数、产量、养分含量对不同减氮措施的响应。结果表明,与N1处理相比, N2与N3处理吐絮期棉花生殖器官干物质分配比例显著增加10.29%、15.10%,干物质积累时长缩短10.97%、13.27%,生殖器官干物质积累快增期持续时长增加11.76%、90.04%,加快了棉花生育进程;N4处理干物质积累平均速率降低45.30%,干物质积累最大速率出现时间延缓。2年平均籽棉产量与经济效益均以N3处理最大,分别为3 496.87 kg·hm-2和22 956.64元。因此,N3处理即减氮20%并配施10%有机肥处理为赣北棉区高产、节肥并具有最佳经济效益的减氮措施。以上结果为降低赣北棉区氮肥投入量提供指导意义。
中图分类号:
秦宇坤, 陈俊英, 张丽娟. 赣北棉区棉花干物质积累特征和产量对减氮措施的响应[J]. 中国农业科技导报, 2024, 26(6): 191-199.
Yukun QIN, Junying CHEN, Lijuan ZHANG. Response of Dry Matter Accumulation Characteristics and Yield of Cotton in North Jiangxi Cotton Region to Nitrogen Reduction Measures[J]. Journal of Agricultural Science and Technology, 2024, 26(6): 191-199.
生育期 Stage | 处理 Treatment | 单株干物质量 Dry matter weight per plant/g | 干物质分配比例 Dry matter distribution ratio/% | ||||
---|---|---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 生殖器官 Reproduction organ | 营养器官 Vegetative organ | 生殖器官 Reproduction organ | ||
出苗期 Emergence stage | N1 | 1.40±0.25 a | 0.74±0.25 ab | 3.69±0.26 ab | 0.20±0.05 ab | 96.61±1.14 a | 3.39±0.57 a |
N2 | 1.44±0.17 a | 0.93±0.16 a | 4.34±0.41 a | 0.20±0.14 ab | 97.10±1.43 a | 2.90±1.07 a | |
N3 | 1.77± 0.12 a | 1.03±0.24 a | 4.53±0.44 a | 0.25±0.19 a | 96.66±1.06 a | 3.34±0.36 a | |
N4 | 0.76±0.14 b | 0.50±0.23 b | 3.01±0.15 b | 0.11±0.08 b | 97.55±1.38 a | 2.45±1.46 a | |
现蕾期 Budding stage | N1 | 4.63±1.27 a | 4.01±1.41 ab | 10.77±1.71 ab | 1.85±0.98 a | 91.24±0.77 b | 8.76±0.51 a |
N2 | 5.83±2.18 a | 5.74±0.82 ab | 11.59±0.99 ab | 1.62±1.04 ab | 93.48±0.63 a | 6.52±1.14 b | |
N3 | 6.00±1.21 a | 6.16±0.98 a | 13.53±3.36 a | 1.77±0.58 ab | 93.63±0.55 a | 6.37±1.68 b | |
N4 | 3.73±0.32 a | 3.16±0.68 b | 8.00±1.13 b | 0.91±0.22 b | 94.31±0.94 a | 5.69±0.59 b | |
初花期 Initial flowering stage | N1 | 9.43±2.18 ab | 16.32±2.46 b | 26.92±3.50 ab | 8.22±2.25 a | 86.87±0.74 a | 13.13±1.06 a |
N2 | 10.46±2.31 a | 15.99±2.31 b | 26.65±2.28 ab | 9.60±3.22 a | 84.34±0.69 a | 15.66±2.88 a | |
N3 | 10.78±1.14 a | 22.37±2.29 a | 27.98±2.74 a | 7.97±2.21 a | 88.65±1.36 a | 11.35±1.14 a | |
N4 | 6.46±1.33 b | 9.34±0.75 c | 19.01±3.41 b | 4.78±2.17 a | 88.35±0.98 a | 11.65±0.47 a | |
盛铃期 Peak boll stage | N1 | 22.23±1.04 a | 51.07±4.34 b | 54.00±3.36 a | 124.70±13.51 a | 50.51±3.67 b | 49.49±4.63 a |
N2 | 19.87±2.17 ab | 48.00±3.13 b | 49.03±4.24 a | 129.23±12.46 a | 47.90±3.66 b | 52.10±2.66 a | |
N3 | 26.20±3.17 a | 61.07±4.79 a | 61.20±3.20 a | 93.40±7.19 a | 61.15±4.89 a | 38.85±3.24 b | |
N4 | 8.50±1.32 b | 14.87±3.16 c | 17.63±2.09 b | 42.77±8.59 b | 50.20±3.55 b | 49.80±2.54 a | |
吐絮期 Catkins stage | N1 | 43.45±2.39 a | 91.50±4.34 a | 97.10±5.24 a | 155.00±7.78 a | 59.88±4.23 a | 40.12±2.29 c |
N2 | 34.05±3.97 a | 79.15±6.31 ab | 73.55±4.39 ab | 147.95±8.47 a | 55.75±3.39 b | 44.25±4.31 b | |
N3 | 32.25±3.14 a | 75.20±5.19 b | 66.15±5.92 b | 148.55±10.55 a | 53.82±4.08 b | 46.18±2.08 b | |
N4 | 15.05±2.48 b | 35.10± 3.28 c | 31.70±2.19 c | 90.85±7.45 b | 47.38±3.82 c | 52.62±3.63 a |
表1 2020年不同生长阶段减氮措施下棉花干物质的积累与分配
Table 1 Accumulation and distribution of dry matter in cotton under nitrogen reduction measures at different growth stages in 2020
生育期 Stage | 处理 Treatment | 单株干物质量 Dry matter weight per plant/g | 干物质分配比例 Dry matter distribution ratio/% | ||||
---|---|---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 生殖器官 Reproduction organ | 营养器官 Vegetative organ | 生殖器官 Reproduction organ | ||
出苗期 Emergence stage | N1 | 1.40±0.25 a | 0.74±0.25 ab | 3.69±0.26 ab | 0.20±0.05 ab | 96.61±1.14 a | 3.39±0.57 a |
N2 | 1.44±0.17 a | 0.93±0.16 a | 4.34±0.41 a | 0.20±0.14 ab | 97.10±1.43 a | 2.90±1.07 a | |
N3 | 1.77± 0.12 a | 1.03±0.24 a | 4.53±0.44 a | 0.25±0.19 a | 96.66±1.06 a | 3.34±0.36 a | |
N4 | 0.76±0.14 b | 0.50±0.23 b | 3.01±0.15 b | 0.11±0.08 b | 97.55±1.38 a | 2.45±1.46 a | |
现蕾期 Budding stage | N1 | 4.63±1.27 a | 4.01±1.41 ab | 10.77±1.71 ab | 1.85±0.98 a | 91.24±0.77 b | 8.76±0.51 a |
N2 | 5.83±2.18 a | 5.74±0.82 ab | 11.59±0.99 ab | 1.62±1.04 ab | 93.48±0.63 a | 6.52±1.14 b | |
N3 | 6.00±1.21 a | 6.16±0.98 a | 13.53±3.36 a | 1.77±0.58 ab | 93.63±0.55 a | 6.37±1.68 b | |
N4 | 3.73±0.32 a | 3.16±0.68 b | 8.00±1.13 b | 0.91±0.22 b | 94.31±0.94 a | 5.69±0.59 b | |
初花期 Initial flowering stage | N1 | 9.43±2.18 ab | 16.32±2.46 b | 26.92±3.50 ab | 8.22±2.25 a | 86.87±0.74 a | 13.13±1.06 a |
N2 | 10.46±2.31 a | 15.99±2.31 b | 26.65±2.28 ab | 9.60±3.22 a | 84.34±0.69 a | 15.66±2.88 a | |
N3 | 10.78±1.14 a | 22.37±2.29 a | 27.98±2.74 a | 7.97±2.21 a | 88.65±1.36 a | 11.35±1.14 a | |
N4 | 6.46±1.33 b | 9.34±0.75 c | 19.01±3.41 b | 4.78±2.17 a | 88.35±0.98 a | 11.65±0.47 a | |
盛铃期 Peak boll stage | N1 | 22.23±1.04 a | 51.07±4.34 b | 54.00±3.36 a | 124.70±13.51 a | 50.51±3.67 b | 49.49±4.63 a |
N2 | 19.87±2.17 ab | 48.00±3.13 b | 49.03±4.24 a | 129.23±12.46 a | 47.90±3.66 b | 52.10±2.66 a | |
N3 | 26.20±3.17 a | 61.07±4.79 a | 61.20±3.20 a | 93.40±7.19 a | 61.15±4.89 a | 38.85±3.24 b | |
N4 | 8.50±1.32 b | 14.87±3.16 c | 17.63±2.09 b | 42.77±8.59 b | 50.20±3.55 b | 49.80±2.54 a | |
吐絮期 Catkins stage | N1 | 43.45±2.39 a | 91.50±4.34 a | 97.10±5.24 a | 155.00±7.78 a | 59.88±4.23 a | 40.12±2.29 c |
N2 | 34.05±3.97 a | 79.15±6.31 ab | 73.55±4.39 ab | 147.95±8.47 a | 55.75±3.39 b | 44.25±4.31 b | |
N3 | 32.25±3.14 a | 75.20±5.19 b | 66.15±5.92 b | 148.55±10.55 a | 53.82±4.08 b | 46.18±2.08 b | |
N4 | 15.05±2.48 b | 35.10± 3.28 c | 31.70±2.19 c | 90.85±7.45 b | 47.38±3.82 c | 52.62±3.63 a |
处理Treatment | Logistic回归方程 Logistic regression equation | R2 | 干物质积累特征值 Characteristic values of dry matter accumulation | ||||||
---|---|---|---|---|---|---|---|---|---|
最大速率 出现时间Tm/d | 持续时间T/d | 最大速率Vm/(g·d-1) | 平均速率Va/(g·d-1) | 最快起始时间T1/d | 快增期持续时间 T2/d | 缓增期持续时间T3/d | |||
N1 | y=420.72/[1×10(8.00-0.07t)] | 0.999 5** | 114.29 | 179.93 | 7.36 | 2.34 | 95.47 | 37.63 | 57.84 |
N2 | y=348.27/[1×10(8.22-0.08t)] | 0.999 2** | 102.75 | 160.19 | 6.97 | 2.17 | 86.29 | 32.93 | 53.36 |
N3 | y=340.36/[1×10(7.89-0.08t)] | 0.999 6** | 98.63 | 156.06 | 6.81 | 2.18 | 82.16 | 32.92 | 49.24 |
N4 | y=329.53/[1×10(5.70-0.04t)] | 0.993 2** | 142.50 | 257.38 | 3.30 | 1.28 | 109.58 | 65.85 | 43.73 |
表2 不同减氮措施棉花单株干物质积累动态特征值
Table 2 Eigen values of cotton dry matter accumulation dynamics under different nitrogen fertilizer reduction
处理Treatment | Logistic回归方程 Logistic regression equation | R2 | 干物质积累特征值 Characteristic values of dry matter accumulation | ||||||
---|---|---|---|---|---|---|---|---|---|
最大速率 出现时间Tm/d | 持续时间T/d | 最大速率Vm/(g·d-1) | 平均速率Va/(g·d-1) | 最快起始时间T1/d | 快增期持续时间 T2/d | 缓增期持续时间T3/d | |||
N1 | y=420.72/[1×10(8.00-0.07t)] | 0.999 5** | 114.29 | 179.93 | 7.36 | 2.34 | 95.47 | 37.63 | 57.84 |
N2 | y=348.27/[1×10(8.22-0.08t)] | 0.999 2** | 102.75 | 160.19 | 6.97 | 2.17 | 86.29 | 32.93 | 53.36 |
N3 | y=340.36/[1×10(7.89-0.08t)] | 0.999 6** | 98.63 | 156.06 | 6.81 | 2.18 | 82.16 | 32.92 | 49.24 |
N4 | y=329.53/[1×10(5.70-0.04t)] | 0.993 2** | 142.50 | 257.38 | 3.30 | 1.28 | 109.58 | 65.85 | 43.73 |
部位 Part | 处理Treatment | Logistic回归方程 Logistic regression equation | R2 | 干物质积累特征值 Characteristic values of dry matter accumulation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
最大速率出现时间Tm/d | 持续 时间T/d | 最大速率Vm/(g·d-1) | 平均速率Va/(g·d-1) | 最快起始时间T1/d | 快增期持续时间T2/d | 缓增期持续时间T3/d | ||||
营养器官 Vegetative organ | N1 | y=278.66/[1×10(5.82-0.05t)] | 0.964 0** | 116.40 | 208.30 | 3.48 | 1.34 | 90.06 | 52.68 | 65.56 |
N2 | y=200.37/[1×10(5.89-0.06t)] | 0.965 3** | 98.17 | 174.75 | 3.01 | 1.15 | 76.22 | 43.90 | 54.64 | |
N3 | y=179.46/[1×10(7.08-0.07t)] | 0.990 0** | 101.14 | 166.79 | 3.14 | 1.08 | 82.33 | 37.63 | 46.83 | |
N4 | y=203.21/[1×10(4.35-0.03t)] | 0.930 9** | 145.00 | 298.17 | 1.52 | 0.68 | 101.1 | 87.80 | 109.27 | |
生殖器官 Reproductive organ | N1 | y=155.48/[1×10(21.01-0.19t)] | 0.998 1** | 110.58 | 134.76 | 7.39 | 1.15 | 103.65 | 13.86 | 17.25 |
N2 | y=149.02/[1×10(17.76-0.18t)] | 0.998 9** | 104.47 | 131.50 | 6.33 | 1.13 | 96.72 | 15.49 | 19.28 | |
N3 | y=154.16/[1×10(11.41-0.10t)] | 0.999 5** | 114.10 | 160.05 | 3.85 | 0.96 | 100.93 | 26.34 | 32.78 | |
N4 | y=104.51/[1×10(9.88-0.03t)] | 0.999 3** | 123.50 | 180.94 | 2.09 | 0.58 | 107.04 | 32.93 | 40.98 |
表3 不同减氮措施棉花单株营养器官和生殖器官干物质积累动态特征值
Table 3 Eigen values of cotton dry matter accumulation dynamics in vegetative organ under different nitrogen fertilizer reduction
部位 Part | 处理Treatment | Logistic回归方程 Logistic regression equation | R2 | 干物质积累特征值 Characteristic values of dry matter accumulation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
最大速率出现时间Tm/d | 持续 时间T/d | 最大速率Vm/(g·d-1) | 平均速率Va/(g·d-1) | 最快起始时间T1/d | 快增期持续时间T2/d | 缓增期持续时间T3/d | ||||
营养器官 Vegetative organ | N1 | y=278.66/[1×10(5.82-0.05t)] | 0.964 0** | 116.40 | 208.30 | 3.48 | 1.34 | 90.06 | 52.68 | 65.56 |
N2 | y=200.37/[1×10(5.89-0.06t)] | 0.965 3** | 98.17 | 174.75 | 3.01 | 1.15 | 76.22 | 43.90 | 54.64 | |
N3 | y=179.46/[1×10(7.08-0.07t)] | 0.990 0** | 101.14 | 166.79 | 3.14 | 1.08 | 82.33 | 37.63 | 46.83 | |
N4 | y=203.21/[1×10(4.35-0.03t)] | 0.930 9** | 145.00 | 298.17 | 1.52 | 0.68 | 101.1 | 87.80 | 109.27 | |
生殖器官 Reproductive organ | N1 | y=155.48/[1×10(21.01-0.19t)] | 0.998 1** | 110.58 | 134.76 | 7.39 | 1.15 | 103.65 | 13.86 | 17.25 |
N2 | y=149.02/[1×10(17.76-0.18t)] | 0.998 9** | 104.47 | 131.50 | 6.33 | 1.13 | 96.72 | 15.49 | 19.28 | |
N3 | y=154.16/[1×10(11.41-0.10t)] | 0.999 5** | 114.10 | 160.05 | 3.85 | 0.96 | 100.93 | 26.34 | 32.78 | |
N4 | y=104.51/[1×10(9.88-0.03t)] | 0.999 3** | 123.50 | 180.94 | 2.09 | 0.58 | 107.04 | 32.93 | 40.98 |
年份 Year | 处理 Treatment | 营养器官养分含量 Nutrient content of vegetative organs | 生殖器官养分含量 Nutrient content of reproductive organs | ||||
---|---|---|---|---|---|---|---|
氮 N | 磷 P | 钾 K | 氮 N | 磷 P | 钾 K | ||
2019 | N1 | 2.13±0.04 a | 0.09±0.01 a | 0.46±0.02 a | 2.48±0.03 a | 0.14±0.02 a | 0.25±0.08 a |
N2 | 2.16±0.28 a | 0.10±0.01 a | 0.53±0.03 a | 2.61±0.21 a | 0.16±0.02 a | 0.27±0.10 a | |
N3 | 1.95±0.13 a | 0.09±0.01 a | 0.47±0.11 a | 2.83±0.13 a | 0.14±0.01 a | 0.28±0.08 a | |
N4 | 1.44±0.06 b | 0.07±0.02 a | 0.30±0.11 a | 1.99±0.12 b | 0.12±0.03 a | 0.17±0.07 a | |
2020 | N1 | 2.14±0.06 a | 0.05±0.04 a | 0.24±0.18 a | 2.43±0.03 a | 0.10±0.05 a | 0.27±0.07 a |
N2 | 2.20±0.18 a | 0.08±0.02 a | 0.33±0.17 a | 2.70±0.14 a | 0.13±0.04 a | 0.29±0.08 a | |
N3 | 2.08±0.12 a | 0.06±0.04 a | 0.40±0.19 a | 2.75±0.07 a | 0.09±0.05 a | 0.24±0.05 a | |
N4 | 1.36±0.04 b | 0.05±0.02 a | 0.21±0.13 a | 1.87±0.09 b | 0.09±0.03 a | 0.18±0.04 a |
表4 不同减氮措施下棉花单株氮、磷、钾养分吸收 (%)
Table 4 Nitrogen, phosphorus and potassium uptake by cotton under different nitrogen reduction measures
年份 Year | 处理 Treatment | 营养器官养分含量 Nutrient content of vegetative organs | 生殖器官养分含量 Nutrient content of reproductive organs | ||||
---|---|---|---|---|---|---|---|
氮 N | 磷 P | 钾 K | 氮 N | 磷 P | 钾 K | ||
2019 | N1 | 2.13±0.04 a | 0.09±0.01 a | 0.46±0.02 a | 2.48±0.03 a | 0.14±0.02 a | 0.25±0.08 a |
N2 | 2.16±0.28 a | 0.10±0.01 a | 0.53±0.03 a | 2.61±0.21 a | 0.16±0.02 a | 0.27±0.10 a | |
N3 | 1.95±0.13 a | 0.09±0.01 a | 0.47±0.11 a | 2.83±0.13 a | 0.14±0.01 a | 0.28±0.08 a | |
N4 | 1.44±0.06 b | 0.07±0.02 a | 0.30±0.11 a | 1.99±0.12 b | 0.12±0.03 a | 0.17±0.07 a | |
2020 | N1 | 2.14±0.06 a | 0.05±0.04 a | 0.24±0.18 a | 2.43±0.03 a | 0.10±0.05 a | 0.27±0.07 a |
N2 | 2.20±0.18 a | 0.08±0.02 a | 0.33±0.17 a | 2.70±0.14 a | 0.13±0.04 a | 0.29±0.08 a | |
N3 | 2.08±0.12 a | 0.06±0.04 a | 0.40±0.19 a | 2.75±0.07 a | 0.09±0.05 a | 0.24±0.05 a | |
N4 | 1.36±0.04 b | 0.05±0.02 a | 0.21±0.13 a | 1.87±0.09 b | 0.09±0.03 a | 0.18±0.04 a |
年份 Year | 处理 Treatment | 单株结铃数 Boll density | 单铃重 Boll weight/g | 衣分 Lint percentage/% | 籽棉产量 Seed cotton yield/ (kg·hm-2) | 增产率 Yield growth rate/% |
---|---|---|---|---|---|---|
2019 | N1 | 35.60±0.58 a | 4.82±0.34 a | 42.01±0.18 b | 3 367.36±405.64 a | 74.29 |
N2 | 34.68±3.67 a | 5.24± 0.38 a | 43.40±1.11 a | 3 632.79±239.28 a | 88.03 | |
N3 | 33.75±2.74 a | 5.14±0.66 a | 42.84±0.65 ab | 3 720.29±387.10 a | 92.56 | |
N4 | 18.15±1.18 b | 4.17±0.31 b | 42.02±0.23 b | 1 932.06±283.39 b | — | |
2020 | N1 | 28.35±3.66 a | 5.40±0.14 a | 42.99±0.43 ab | 3 319.50±154.50 a | 194.28 |
N2 | 25.01±3.12 a | 5.30±0.36 a | 43.99±0.79 a | 3 164.55±116.50 a | 180.55 | |
N3 | 26.70±2.09 a | 5.41±0.28 a | 42.98±1.07 ab | 3 273.45±107.55 a | 190.2 | |
N4 | 9.60±2.10 b | 4.08±0.34 b | 41.34±0.87 b | 1 128.00±204.50 b | — |
表5 不同减氮措施下棉花产量及其构成因素
Table 5 Cotton yield and its components under different nitrogen reduction measures
年份 Year | 处理 Treatment | 单株结铃数 Boll density | 单铃重 Boll weight/g | 衣分 Lint percentage/% | 籽棉产量 Seed cotton yield/ (kg·hm-2) | 增产率 Yield growth rate/% |
---|---|---|---|---|---|---|
2019 | N1 | 35.60±0.58 a | 4.82±0.34 a | 42.01±0.18 b | 3 367.36±405.64 a | 74.29 |
N2 | 34.68±3.67 a | 5.24± 0.38 a | 43.40±1.11 a | 3 632.79±239.28 a | 88.03 | |
N3 | 33.75±2.74 a | 5.14±0.66 a | 42.84±0.65 ab | 3 720.29±387.10 a | 92.56 | |
N4 | 18.15±1.18 b | 4.17±0.31 b | 42.02±0.23 b | 1 932.06±283.39 b | — | |
2020 | N1 | 28.35±3.66 a | 5.40±0.14 a | 42.99±0.43 ab | 3 319.50±154.50 a | 194.28 |
N2 | 25.01±3.12 a | 5.30±0.36 a | 43.99±0.79 a | 3 164.55±116.50 a | 180.55 | |
N3 | 26.70±2.09 a | 5.41±0.28 a | 42.98±1.07 ab | 3 273.45±107.55 a | 190.2 | |
N4 | 9.60±2.10 b | 4.08±0.34 b | 41.34±0.87 b | 1 128.00±204.50 b | — |
参数 Parameter | 干物质积累特征值 Characteristic value of dry matter accumulation | 营养器官养分含量 Nutrient content of vegetative organ | 生殖器官养分含量 Nutrient content of reproductive organ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最大速率出现时间Tm | 持续 时间T | 最大 速率Vm | 平均速率Va | 最快起始时间T1 | 快增期持续时间T2 | 缓增期持续时间T3 | 氮N | 磷P | 钾K | 氮N | 磷P | 钾K | |
籽棉产量 Seed cotton yield | -0.981* | -0.988* | 0.968* | 0.951* | -0.968* | -0.991** | -0.991** | -0.684 | -0.999* | -0.358 | -0.622 | -0.860 | -0.596 |
表6 不同减氮措施棉花干物质积累参数、养分含量与产量的相关系数
Table 6 Correlation coefficients between dry matter accumulation parameters and yields of cotton under different nitrogen fertilizer reduction treatments
参数 Parameter | 干物质积累特征值 Characteristic value of dry matter accumulation | 营养器官养分含量 Nutrient content of vegetative organ | 生殖器官养分含量 Nutrient content of reproductive organ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最大速率出现时间Tm | 持续 时间T | 最大 速率Vm | 平均速率Va | 最快起始时间T1 | 快增期持续时间T2 | 缓增期持续时间T3 | 氮N | 磷P | 钾K | 氮N | 磷P | 钾K | |
籽棉产量 Seed cotton yield | -0.981* | -0.988* | 0.968* | 0.951* | -0.968* | -0.991** | -0.991** | -0.684 | -0.999* | -0.358 | -0.622 | -0.860 | -0.596 |
1 | 毛树春,李亚兵,王占彪,等.农业高质量发展背景下中国棉花产业的转型升级[J].农业展望,2018,14(5):39-45. |
MAO S C, LI Y B, WANG Z B, et al.. Transformation and upgrading of China’s cotton industry under the background of agricultural high-quality development [J]. Agric. Outlook, 2018, 14(5):39-45. | |
2 | 李高华,刘培源.不同肥料组合对棉花连作的增产效应[J].新疆农垦科技,2013,36(3):54-55. |
3 | MACDONALD B C T, LATIMER J O, SCHWENKE G D, et al.. The current status of nitrogen fertiliser use efficiency and future research directions for the Australian cotton industry [J]. J. Cott. Res., 2018, 1(3):44-53. |
4 | 李飞,郭利双,李景龙,等.施氮水平对油棉连作棉花氮磷钾吸收、分配与利用的影响[J].华北农学报,2018,33(3):196-202. |
LI F, GUO L S, LI J L, et al.. Effects of nitrogen application rate on NPK uptake,distribution and utilization of direct seeding cotton after rape harvest [J]. Acta Agric. Boreali-Sin., 2018, 33(3):196-202. | |
5 | 张教海,羿国香,别墅,等.近五年湖北省及长江流域棉区棉花生产形势分析[J].湖北农业科学,2020,59(18):25-28. |
ZHANG J H, YI G X, BIE S, et al.. Analysis of cotton production situation in Hubei province and Yangtze River Basin in recent five years [J]. Hubei Agric. Sci., 2020, 59(18):25-28. | |
6 | 刘冬碧,吴茂前,熊桂云,等.江汉平原棉花氮肥合理运筹技术研究[J].湖北农业科学,2014,53(23):5758-5761, 5764. |
LIU D B, WU M Q, XIONG G Y, et al.. Nitrogen fertilizer application and assignment techniques of cotton in Jianghan Plain [J]. Hubei Agric. Sci., 2014, 53(23):5758-5761, 5764. | |
7 | 曾小林,孙亮庆,刘光荣,等.鄱阳湖植棉区马铃薯棉花连作轻简高效栽培技术规程[J].棉花科学,2018,40(6):39-42. |
8 | 哈丽哈什·依巴提,张炎,李青军,等.不同施氮量对棉花产量、养分吸收分配及利用的影响[J].新疆农业科学,2017,54(8):1422-1428. |
Yibati Halihashi, ZHANG Y, LI Q J, et al.. Effects of different nitrogen rates on cotton yield, nutrient uptake, distribution and utilization [J]. Xinjiang Agric. Sci., 2017, 54(8):1422-1428. | |
9 | 魏红安,潘春翔,杨蕊,等.湖垸旱地减氮控磷对棉花生长和氮磷迁移的影响[J].农业现代化研究,2010,31(5):621-625. |
WEI H A, PAN C X, YANG R, et al.. Impacts of reducing N and P on cotton growth and N and P transportation in embankment upland of Dongting lake area [J]. Res. Agric. Mod., 2010,31(5):621-625. | |
10 | 陈永高,张瑞斌.不同施肥模式对太湖流域农田土体氮磷流失与营养累积的影响[J].水土保持通报,2016,36(2):115-119. |
CHEN Y G, ZHANG R B. Effects of fertilization patterns on loss of soil nitrogen, phosphorus and nutrients accumulation in farmlands of Taihu lake basin [J]. Bull. Soi. Water Conserv., 2016, 36(2):115-119. | |
11 | 习斌,翟丽梅,刘申,等.有机无机肥配施对玉米产量及土壤氮磷淋溶的影响[J].植物营养与肥料学报,2015,21(2):326-335. |
XI B, ZHAI L M, LIU S, et al.. Effects of combination of organic and inorganic fertilization on maize yield and soil nitrogen and phosphorus leaching [J]. J. Plant Nutr. Fert., 2015, 21(2):326-335. | |
12 | 文明,李鹏兵,王乐,等.减施氮肥对北疆滴灌棉花干物质积累及产量的影响[J].新疆农业科学,2019,56(1):120-129. |
WEN M, LI P B, WANG L, et al.. Effects of reduced nitrogen application on dry matter accumulation and yield of cotton under drip irrigation in Northern Xinjiang [J]. Xinjiang Agric. Sci., 2019, 56(1):120-129. | |
13 | 林涛,张昊,汤秋香,等.施氮量对南疆机采棉产量形成及氮肥利用率影响[J].新疆农业大学学报,2019,42(2):77-83. |
LIN T, ZHANG H, TANG Q X, et al.. Effects of different treatments of nitrogen application on yield formation and nitrogen use efficiency for machine-picked cotton in Southern Xinjiang [J]. J. Xinjiang Agric. Univ., 2019, 42(2):77-83. | |
14 | 薛晓萍,王建国,郭文琦,等.氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响[J].生态学报,2006,26(11):3631-3640. |
XUE X P, WANG J G, GUO W Q, et al.. Effect of nitrogen applied levels on the dynamics of biomass,nitrogen accumulation and nitrogen fertilization recovery rate of cotton after initial flowering [J]. Acta Ecol. Sin., 2006, 26(11):3631-3640. | |
15 | 郑剑超,闫曼曼,张巨松,等.氮肥前移对果棉间作棉花干物质积累和氮肥利用效率的影响[J]. 中国土壤与肥料,2016(2):78-84. |
ZHENG J C, YAN M M, ZHANG J S, et al.. Effects of nitrogen topdressing time on accumulation of cotton dry matter and nitrogen fertilizer use efficiency under fruit tree and cotton intercropping [J]. Soil Fert. Sci. China, 2016(2):78-84. | |
16 | 董合林,李鹏程,刘爱忠,等.河南植棉区施氮量对麦棉两熟产量及氮肥利用率的影响[J].棉花学报,2014,26(1):73-80. |
DONG H L, LI P C, LIU A Z, et al.. Effect of nitrogen application rate on yield and nitrogen use efficiency of wheat cotton double cropping in the Henan cotton region [J]. Cott. Sci., 2014, 26(1):73-80, | |
17 | 李鹏程,郑苍松,孙淼,等.棉花施肥技术与营养机理研究进展[J].棉花学报,2017,29(1):118-130. |
LI P C, ZHENG C S, SUN M, et al.. Research progress on fertilization technology and nutrition mechanism of cotton [J]. Cott. Sci., 2017, 29(1):118-130. | |
18 | 宋兴虎, TUFAIL A W, SOULIYANONH B,等.氮肥用量及其后效对棉花产量和生物质累积动态的影响[J].棉花学报,2018,30(2):145-154. |
SONG X H, WAGAN T A, BIANGKHAM S, et al.. Nitrogen fertilizer and its residual effect on cotton yield and biomass accumulation [J]. Cott. Sci., 2018, 30(2):145-154. | |
19 | 徐海江,田立文,林涛,等.施氮量对南疆膜下滴灌陆地棉干物质积累与分配的影响[J].新疆农业科学,2012,49(10):1765-1772. |
XU H J, TIAN L W, LIN T, et al.. Study on effect of dry matter accumulation and distribute on the nitrogen fertilizer applied to upland cotton using drip irrigation under plastic film in Southern Xinjiang [J]. Xinjiang Agric. Sci., 2012, 49(10):1765-1772. | |
20 | 冯卫娜,郑苍松,李小飞,等.适宜施氮量提高棉花氮磷钾养分积累和皮棉产量[J].植物营养与肥料学报,2022,28(12):2263-2273. |
FENG W N, ZHENG C S, LI X F, et al.. Optimum nitrogen application rate improves the accumulation of nitrogen,phosphorous and potassium and lint yield of cotton [J]. J. Plant Nutr. Fert., 2022, 28(12):2263-2273. | |
21 | 杜孝敬,符小文,安崇霄,等.夏大豆干物质积累参数及产量对膜下滴灌量的响应[J].生态学杂志,2019,38(6):1751-1759. |
DU X J, FU X W, AN C X, et al.. Response of dry matter accumulation parameters and yield of summer soybean to different amounts of drip irrigation under mulch film [J]. Chin. J. Ecol., 2019, 38(6):1751-1759. | |
22 | 王信理.在作物干物质积累的动态模拟中如何合理运用Logistic方程[J].农业气象,1986(1):14-19. |
23 | 夏冰,任晓明,杜明伟,等.黄河流域棉区秸秆还田下机采棉的氮肥用量和利用率研究[J].棉花学报,2016,28(4):315-323. |
XIA B, REN X M, DU M W, et al.. Nitrogen rate and nitrogen use efficiency of cotton harvested by machine in the field with stalks recycling in the Yellow River valley region [J]. Cott. Sci., 2016, 28(4):315-323. | |
24 | 吴雪琴,赵强,田立文,等. 3种打(封)顶方式对南疆棉花株型及干物质积累的影响[J].西北农业学报,2021,30(12):1797-1803. |
WU X Q, ZHAO Q, TIAN L W, et al.. Effect of three top topping (capping) methods on plant type and dry matter accumulation of cotton in Southern Xinjiang [J]. Acta Agric. Bor-Occid. Sin., 2021, 30(12):1797-1803. | |
25 | 赵姣,郑志芳,方艳茹,等.基于动态模拟模型分析冬小麦干物质积累特征对产量的影响[J]. 作物学报,2013,39(2):300-308. |
ZHAO J, ZHENG Z F, FANG Y R, et al.. Effect of dry matter accumulation characteristics on yield of winter wheat analyzed by dynamic simulation model [J]. Acta Agron. Sin., 2013, 39(2): 300-308. | |
26 | 蔡立旺,陈源,王永慧,等.棉花钾素吸收利用效率与产量的关系[J].江苏农业学报,2014,30(5):972-979. |
CAI L W, CHEN Y, WANG Y H, et al.. Relationship between potassium uptake and utilization efficiency and yield in cotton [J]. Jiangsu J. Agric. Sci., 2014, 30(5):972-979. | |
27 | 汪玲,朱靖蓉,杨涛,等.氮肥施用策略对棉花干物质积累及产量构成的影响[J].新疆农业科学, 2010,47(10):1952-1957. |
WANG L, ZHU J R, YANG T, et al.. Effects of using strategy of N fertilizer on dry matter accumulation and yield component of cotton [J]. Xinjiang Agric. Sci., 2010, 47(10):1952-1957. | |
28 | 陈求柱,王志琴,图尔汗,等.氮肥运筹对棉花干物质累积及产量的影响[J].湖北农业科学, 2013, 52(22):5437-5442. |
CHEN Q Z, WANG Z Q, Turhan, et al.. Effects of nitrogen management on dry matter accumulation and yield of cotton [J]. Hubei Agric. Sci., 2013, 52(22):5437-5442. | |
29 | 司转运,高阳,申孝军,等.水氮供应对夏棉产量、水氮利用及土壤硝态氮累积的影响[J].应用生态学报,2017,28(12):3945-3954. |
SI Z Y, GAO Y, SHEN X J, et al.. Effects of nitrogen and irrigation water application on yield,water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton [J]. Chin. J. Appl. Ecol., 2017, 28(12):3945-3954. | |
30 | 张宏媛,卢闯,逄焕成,等.亚表层培肥结合覆膜提高干旱区盐碱地土壤肥力及优势菌群丰度的机理[J].植物营养与肥料学报,2019,25(9):1461-1472. |
ZHANG H Y, LU C, PANG H C, et al.. Mechanism of subsurface organic amendment combined with plastic mulching increasing soil fertility and microflora in an arid saline soil [J]. J. Plant Nutr. Fert., 2019, 25(9):1461-1472. | |
31 | GAO W L, CHENG S L, FANG H J, et al.. Effects of simulated atmospheric nitrogen deposition on inorganic nitrogen content and acidification in a cold-temperate coniferous forest soil [J]. Acta Ecol. Sin., 2013, 33(2):114-121. |
32 | 李鹏程,董合林,刘爱忠,等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响[J].植物营养与肥料学报,2015,21(1):81-91. |
LI P C, DONG H L, LIU A Z, et al.. Effects of nitrogen application rates on physiological characteristics of functional leaves,nitrogen use efficiency and yield of cotton [J]. J. Plant Nutr. Fert., 2015, 21(1):81-91. | |
33 | 谢淑芹,王磊,班战军,等.氮肥施用量对邯棉559主要农艺性状和产量的影响[J].河北农业科学,2017,21(2):54-56. |
XIE S Q, WANG L, BAN Z J, et al.. Effect of different fertilizing amount of nitrogen fertilizer on main agronomic traits and yield of Hanmian 559 [J]. J. Hebei Agric. Sci., 2017, 21(2):54-56. | |
34 | 石洪亮,张巨松,严青青,等.非充分滴灌下施氮量对棉花生长特性、产量及水氮利用率的影响[J].干旱地区农业研究,2017,35(4):129-136. |
SHI H L, ZHANG J S, YAN Q Q, et al.. Effects of different nitrogen fertilizer levels on growth,yield,water and nitrogen use efficiency of cotton under non-sufficient drip irrigation [J]. Agric. Res. Arid Areas, 2017, 35(4):129-136. |
[1] | 李江博, 高文举, 运晓东, 赵杰银, 耿世伟, 韩春斌, 陈全家, 陈琴. 不同水分胁迫处理对陆地棉核心种质资源的影响[J]. 中国农业科技导报, 2024, 26(3): 26-39. |
[2] | 李丽花, 孙正文, 柯会锋, 谷淇深, 吴立强, 张艳, 张桂寅, 王省芬. 陆地棉纤维强度KASP-SNP标记的开发及效应评价[J]. 中国农业科技导报, 2024, 26(2): 46-55. |
[3] | 郑德有, 左东云, 王巧莲, 吕丽敏, 程海亮, 顾爱星, 宋国立. 氟节胺与杀菌剂复配防治棉花枯萎病的增效药剂筛选[J]. 中国农业科技导报, 2024, 26(1): 119-124. |
[4] | 王为, 赵强, 穆妮热·阿卜杜艾尼, 阿里木·阿木力null, 李欣欣, 田阳青. 烯效唑复配不同外源物质对棉花化学封顶及产量品质的影响[J]. 中国农业科技导报, 2023, 25(9): 57-68. |
[5] | 冯小鼎, 王成, 金晓彤, 董宏图, 罗斌, 王晓冬. 水培环境下的作物养分吸收多参数检测系统研究[J]. 中国农业科技导报, 2023, 25(8): 106-114. |
[6] | 孙正冉, 张翠萍, 张晋丽, 吴昊, 刘秀艳, 王振凯, 杨玉珍, 贺道华. 喷施化学打顶剂对关中棉区棉花植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 167-177. |
[7] | 牛营超, 王星, 郭青云, 戴小华, 袁小勇, 陈琳. 棉花立枯病拮抗细菌的分离鉴定及抑菌活性[J]. 中国农业科技导报, 2023, 25(12): 138-144. |
[8] | 杨文俊, 朱雨婷, 张杰, 徐凯祥, 韦聪敏, 陈全家. 棉花苗期耐盐相关性状QTL元分析[J]. 中国农业科技导报, 2023, 25(12): 26-34. |
[9] | 陈炟, 巨吉生, 马麒, 徐守振, 刘娟娟, 袁文敏, 李吉莲, 王彩香, 宿俊吉. FeNPs对苗期棉花根系生长及其对干旱响应的影响[J]. 中国农业科技导报, 2023, 25(11): 49-57. |
[10] | 张曼, 张进, 张新雨, 王国宁, 王省芬, 张艳. 陆地棉GhNAC1基因的克隆及抗黄萎病功能分析[J]. 中国农业科技导报, 2023, 25(10): 35-44. |
[11] | 陆国清, 马彩霞, 孙国清, 郭惠明, 程红梅. 抗除草剂棉花GV-2的分子特征和遗传稳定性分析[J]. 中国农业科技导报, 2023, 25(1): 42-49. |
[12] | 刘艳, 鲍红帅, 尚红燕, 王国宁, 张艳, 王省芬, 马峙英, 吴金华. 棉花枯萎病菌及其培养条件筛选[J]. 中国农业科技导报, 2022, 24(8): 124-132. |
[13] | 刘海涛, 韩鑫, 兰玉彬, 伊丽丽, 王宝聚, 崔立华. 基于YOLOv4网络的棉花顶芽精准识别方法[J]. 中国农业科技导报, 2022, 24(8): 99-108. |
[14] | 孙正文, 谷淇深, 张艳, 王省芬, 马峙英. 棉花基因发掘与分子育种研究进展[J]. 中国农业科技导报, 2022, 24(7): 32-38. |
[15] | 闫成川, 曾庆涛, 陈琴, 付锦程, 王婷伟, 陈全家, 曲延英. 陆地棉花铃期抗旱指标筛选及评价[J]. 中国农业科技导报, 2022, 24(7): 46-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||