中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (8): 189-200.DOI: 10.13304/j.nykjdb.2022.0963
• 生物制造 资源生态 • 上一篇
收稿日期:
2022-11-07
接受日期:
2022-12-26
出版日期:
2024-08-15
发布日期:
2024-08-12
通讯作者:
张金珠
作者简介:
吴梅 E-mail: 3106392644@qq.com;
基金资助:
Mei WU(), Jinzhu ZHANG(
), Zhenhua WANG, Jian LIU, Yue WEN, Xuanzhi LI
Received:
2022-11-07
Accepted:
2022-12-26
Online:
2024-08-15
Published:
2024-08-12
Contact:
Jinzhu ZHANG
摘要:
为研究水气互作对膜下滴灌玉米生理生长及产量的影响,探寻膜下滴灌玉米适宜的水气组合模式,以‘新玉66’为试验材料,设置3 375(W1)、4 500(W2)、5 625(W3)、6 750 m3?hm-2(W4)4个灌溉水平和加气滴灌(A)与不加气滴灌(C)2种灌水方式,分析不同水、气处理下滴灌玉米生理生长和产量的变化。结果表明,随着灌水量增加,玉米的净光合速率、气孔导度、蒸腾速率、地上部干物质量及产量先增大后降低,胞间CO2浓度和灌溉水分利用效率降低,W3水平下产量最大。加气滴灌较不加气处理提高了玉米的株高、茎粗、叶面积指数;加气滴灌下玉米净光合速率显著增加5.39%~10.09%(P<0.05),气孔导度显著提高10.64%~18.40%(P<0.05),蒸腾速率显著增加7.07%~15.27%(P<0.05),干物质量显著增加5.53%~7.76%(P<0.05),在W3灌溉水平下增长率最大。加气滴灌使玉米产量和灌溉水分利用效率平均提高3.58%~6.64%和3.36%~6.63%,在W3灌溉水平下的影响更显著(P<0.05),AW3处理玉米产量达到最大,为14 629 kg?hm-2。以上结果表明,AW3处理即加气滴灌下、灌水量为5 625 m3?hm-2时,可促进膜下滴灌玉米生长,提高产量。以上研究结果可为新疆干旱绿洲区玉米生产提供理论基础及技术指导。
中图分类号:
吴梅, 张金珠, 王振华, 刘健, 温越, 李宣志. 水气互作对膜下滴灌玉米生理生长及产量的影响[J]. 中国农业科技导报, 2024, 26(8): 189-200.
Mei WU, Jinzhu ZHANG, Zhenhua WANG, Jian LIU, Yue WEN, Xuanzhi LI. Effects of Water and Air Interaction on Physiological Growth and Yield of Maize Under Mulched Drip Irrigation[J]. Journal of Agricultural Science and Technology, 2024, 26(8): 189-200.
处理Treatment | 灌水方式Irrigation method | 灌水量Irrigation amount/(m3∙hm-2) |
---|---|---|
AW1 | 加气滴灌Aerated drip irrigation | 3 375 |
AW2 | 加气滴灌Aerated drip irrigation | 4 500 |
AW3 | 加气滴灌Aerated drip irrigation | 5 625 |
AW4 | 加气滴灌Aerated drip irrigation | 6 750 |
CW1 | 不加气滴灌Non-aerated drip irrigation | 3 375 |
CW2 | 不加气滴灌Non-aerated drip irrigation | 4 500 |
CW3 | 不加气滴灌Non-aerated drip irrigation | 5 625 |
CW4 | 不加气滴灌Non-aerated drip irrigation | 6 750 |
表1 试验设计
Table 1 Experimental design
处理Treatment | 灌水方式Irrigation method | 灌水量Irrigation amount/(m3∙hm-2) |
---|---|---|
AW1 | 加气滴灌Aerated drip irrigation | 3 375 |
AW2 | 加气滴灌Aerated drip irrigation | 4 500 |
AW3 | 加气滴灌Aerated drip irrigation | 5 625 |
AW4 | 加气滴灌Aerated drip irrigation | 6 750 |
CW1 | 不加气滴灌Non-aerated drip irrigation | 3 375 |
CW2 | 不加气滴灌Non-aerated drip irrigation | 4 500 |
CW3 | 不加气滴灌Non-aerated drip irrigation | 5 625 |
CW4 | 不加气滴灌Non-aerated drip irrigation | 6 750 |
生育期 Growth stage (m/d) | 苗期 Seedling stage (4/22—5/31) | 拔节期 Jointing stage (6/1—6/28) | 抽雄期 Tasseling stag (6/29—7/21) | 灌浆期 Filling stage (7/22—8/14) | 成熟期 Maturity stage (8/15—8/26) | 全生育期 Whole growth period (4/22—8/26) |
---|---|---|---|---|---|---|
灌溉周期 Irrigation cycle/d | 30 | 10 | 7 | 10 | 15 | 125 |
灌溉比例 Ratio of irrigation/% | 10 | 20 | 35 | 25 | 10 | 100 |
灌溉次数 Frequency of irrigation | 1 | 3 | 3 | 2 | 1 | 10 |
表2 玉米各生育期灌水试验方案
Table 2 Experimental scheme of irrigation in each growth period
生育期 Growth stage (m/d) | 苗期 Seedling stage (4/22—5/31) | 拔节期 Jointing stage (6/1—6/28) | 抽雄期 Tasseling stag (6/29—7/21) | 灌浆期 Filling stage (7/22—8/14) | 成熟期 Maturity stage (8/15—8/26) | 全生育期 Whole growth period (4/22—8/26) |
---|---|---|---|---|---|---|
灌溉周期 Irrigation cycle/d | 30 | 10 | 7 | 10 | 15 | 125 |
灌溉比例 Ratio of irrigation/% | 10 | 20 | 35 | 25 | 10 | 100 |
灌溉次数 Frequency of irrigation | 1 | 3 | 3 | 2 | 1 | 10 |
图3 不同处理下玉米各生育期的株高、茎粗和叶面积指数注:不同小写字母表示同一时期不同处理间在P<0.05水平差异显著。
Fig. 3 Plant height, stem diameter and leaf area index of maize at different growth stages under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments of same stage at P<0.05 level.
指标 Index | 处理 Treatment | 苗期 Seedling stage | 拔节期 Jointing stage | 抽雄期 Tasseling stage | 灌浆期 Filling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|---|
株高 Plant height | W | 2.364 | 79.350** | 30.847** | 53.001** | 43.632** |
AC | 0.043 | 51.218** | 18.652* | 19.512** | 20.720** | |
W×AC | 0.689 | 0.691 | 0.133 | 0.170 | 0.026 | |
茎粗 Stem diameter | W | 1.387 | 24.403** | 60.512** | 51.643** | 77.642** |
AC | 3.333 | 14.007* | 17.009** | 14.105** | 18.019* | |
W×AC | 0.143 | 0.684 | 0.651 | 0.369 | 0.594 | |
叶面积指数 Leaf area index | W | 2.094 | 34.377** | 38.051** | 45.001** | 46.526** |
AC | 0.149 | 11.731* | 23.200** | 29.208** | 31.186** | |
W×AC | 0.705 | 0.435 | 0.403 | 0.368 | 1.049 |
表3 不同处理对玉米各生育期株高、茎粗、叶面积指数的双因素方差分析
Table 3 Two-factor variance analysis of different treatments on plant height, stem diameter and leaf area index of maize at different growth stages
指标 Index | 处理 Treatment | 苗期 Seedling stage | 拔节期 Jointing stage | 抽雄期 Tasseling stage | 灌浆期 Filling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|---|
株高 Plant height | W | 2.364 | 79.350** | 30.847** | 53.001** | 43.632** |
AC | 0.043 | 51.218** | 18.652* | 19.512** | 20.720** | |
W×AC | 0.689 | 0.691 | 0.133 | 0.170 | 0.026 | |
茎粗 Stem diameter | W | 1.387 | 24.403** | 60.512** | 51.643** | 77.642** |
AC | 3.333 | 14.007* | 17.009** | 14.105** | 18.019* | |
W×AC | 0.143 | 0.684 | 0.651 | 0.369 | 0.594 | |
叶面积指数 Leaf area index | W | 2.094 | 34.377** | 38.051** | 45.001** | 46.526** |
AC | 0.149 | 11.731* | 23.200** | 29.208** | 31.186** | |
W×AC | 0.705 | 0.435 | 0.403 | 0.368 | 1.049 |
图4 不同处理下玉米灌浆期光合作用参数注:不同小写字母表示不同处理间在 P<0.05 水平差异显著。
Fig. 4 Photosynthesis parameters of maize at grain filling stage under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
处理 Treatment | 净光合速率 Pn/(µmol·m-2·s-1) | 气孔导度 Gs/(mmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 胞间CO2浓度 Ci/(µmol·mol-1) |
---|---|---|---|---|
W | 57.897** | 30.887** | 36.177** | 45.214** |
AC | 43.223** | 27.312** | 13.494** | 38.347** |
W× AC | 0.485 | 0.655 | 1.623 | 2.351 |
表4 不同处理对玉米灌浆期光合指标的双因素方差分析
Table 4 Two-factor variance analysis of different treatments on maize photosynthesis of maize at grain filling stage
处理 Treatment | 净光合速率 Pn/(µmol·m-2·s-1) | 气孔导度 Gs/(mmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 胞间CO2浓度 Ci/(µmol·mol-1) |
---|---|---|---|---|
W | 57.897** | 30.887** | 36.177** | 45.214** |
AC | 43.223** | 27.312** | 13.494** | 38.347** |
W× AC | 0.485 | 0.655 | 1.623 | 2.351 |
处理 Treatment | 干物质量/(g·株-1) Dry matter accumulation/(g·plant-1) | |||
---|---|---|---|---|
茎 Stem | 叶 Leaf | 穗 Spike | 总 Total | |
AW1 | 41.80±1.20 ef | 22.92±1.22 de | 197.31±3.79 de | 262.02±3.75 de |
AW2 | 45.66±0.83 d | 27.15±1.02 bc | 216.20±5.68 c | 289.01±5.63 c |
AW3 | 51.82±0.74 a | 30.72±1.22 a | 235.80±7.53 a | 318.34±6.89 a |
AW4 | 50.09±1.58 ab | 29.26±1.50 ab | 230.53±6.71 ab | 309.89±9.64 ab |
CW1 | 40.32±1.42 f | 21.67±1.08 e | 186.29±6.53 e | 248.29±8.70 e |
CW2 | 43.33±1.87 e | 24.87±1.65 cd | 202.21±8.00 d | 270.41±11.24 d |
CW3 | 48.19±1.62 bc | 28.00±1.05 b | 219.21±3.93 bc | 295.40±5.72 bc |
CW4 | 47.52±0.90 cd | 27.77±0.99 b | 217.88±7.95 bc | 293.17±8.85 c |
W | 57.296** | 39.452** | 38.325** | 53.463** |
AC | 21.259** | 14.678* | 26.447** | 31.153** |
W×AC | 0.668 | 0.458 | 0.200 | 0.357 |
表5 不同处理下玉米成熟期的干物质量
Table 5 Dry matter accumulation of maize at maturity under different treatments
处理 Treatment | 干物质量/(g·株-1) Dry matter accumulation/(g·plant-1) | |||
---|---|---|---|---|
茎 Stem | 叶 Leaf | 穗 Spike | 总 Total | |
AW1 | 41.80±1.20 ef | 22.92±1.22 de | 197.31±3.79 de | 262.02±3.75 de |
AW2 | 45.66±0.83 d | 27.15±1.02 bc | 216.20±5.68 c | 289.01±5.63 c |
AW3 | 51.82±0.74 a | 30.72±1.22 a | 235.80±7.53 a | 318.34±6.89 a |
AW4 | 50.09±1.58 ab | 29.26±1.50 ab | 230.53±6.71 ab | 309.89±9.64 ab |
CW1 | 40.32±1.42 f | 21.67±1.08 e | 186.29±6.53 e | 248.29±8.70 e |
CW2 | 43.33±1.87 e | 24.87±1.65 cd | 202.21±8.00 d | 270.41±11.24 d |
CW3 | 48.19±1.62 bc | 28.00±1.05 b | 219.21±3.93 bc | 295.40±5.72 bc |
CW4 | 47.52±0.90 cd | 27.77±0.99 b | 217.88±7.95 bc | 293.17±8.85 c |
W | 57.296** | 39.452** | 38.325** | 53.463** |
AC | 21.259** | 14.678* | 26.447** | 31.153** |
W×AC | 0.668 | 0.458 | 0.200 | 0.357 |
处理 Treatment | 秃尖长 Bald tip long/cm | 穗长 Ear length/cm | 穗粒数 Grain number | 千粒重 1 000-kernel weight/g | 产量 Yield/(kg∙hm-2) | 灌溉水利用效率 IWUE/(kg∙m-3) |
---|---|---|---|---|---|---|
AW1 | 2.08±0.22 ab | 18.72±0.28 cd | 475.67±17.00 ef | 369.50±6.79 f | 10 768±483 f | 3.19±0.04 a |
AW2 | 1.74±0.05 cd | 19.48±0.34 bc | 506.00±10.77 cd | 379.70±1.00 de | 12 843±233 de | 2.85±0.05 b |
AW3 | 0.98±0.17 f | 21.18±1.11 a | 567.00±7.56 a | 411.80±3.57 a | 14 629±132 a | 2.60±0.02 cd |
AW4 | 1.42±0.02 e | 20.17±0.34 b | 536.87±5.85 b | 398.70±5.18 b | 14 081±179 ab | 2.09±0.03 e |
CW1 | 2.35±0.34 a | 18.14±0.25 d | 462.33±12.27 f | 358.80±2.74 g | 10 395±517 f | 3.08±0.15 a |
CW2 | 1.97±0.10 bc | 18.78±0.30 cd | 487.33±4.57 de | 371.70±6.73 ef | 12 243±228 e | 2.72±0.05 bc |
CW3 | 1.32±0.14 e | 20.15±0.22 bc | 535.33±4.77 b | 388.60±1.19 c | 13 743±327 bc | 2.44±0.06 d |
CW4 | 1.62±0.06 de | 19.60±0.53 bc | 518.20±12.59 bc | 383.10±2.69 cd | 13 235±55 cd | 1.96±0.01 e |
W | 42.871** | 21.999** | 72.666** | 82.771** | 158.929* | 191.305** |
AC | 13.875** | 12.278** | 23.951** | 66.811** | 28.560** | 14.891** |
W×AC | 0.177 | 0.280 | 0.861 | 3.615* | 0.889 | 0.070 |
表6 不同处理下玉米产量及灌溉水分利用效率
Table 6 Maize yield and irrigation water use efficiency under different treatments
处理 Treatment | 秃尖长 Bald tip long/cm | 穗长 Ear length/cm | 穗粒数 Grain number | 千粒重 1 000-kernel weight/g | 产量 Yield/(kg∙hm-2) | 灌溉水利用效率 IWUE/(kg∙m-3) |
---|---|---|---|---|---|---|
AW1 | 2.08±0.22 ab | 18.72±0.28 cd | 475.67±17.00 ef | 369.50±6.79 f | 10 768±483 f | 3.19±0.04 a |
AW2 | 1.74±0.05 cd | 19.48±0.34 bc | 506.00±10.77 cd | 379.70±1.00 de | 12 843±233 de | 2.85±0.05 b |
AW3 | 0.98±0.17 f | 21.18±1.11 a | 567.00±7.56 a | 411.80±3.57 a | 14 629±132 a | 2.60±0.02 cd |
AW4 | 1.42±0.02 e | 20.17±0.34 b | 536.87±5.85 b | 398.70±5.18 b | 14 081±179 ab | 2.09±0.03 e |
CW1 | 2.35±0.34 a | 18.14±0.25 d | 462.33±12.27 f | 358.80±2.74 g | 10 395±517 f | 3.08±0.15 a |
CW2 | 1.97±0.10 bc | 18.78±0.30 cd | 487.33±4.57 de | 371.70±6.73 ef | 12 243±228 e | 2.72±0.05 bc |
CW3 | 1.32±0.14 e | 20.15±0.22 bc | 535.33±4.77 b | 388.60±1.19 c | 13 743±327 bc | 2.44±0.06 d |
CW4 | 1.62±0.06 de | 19.60±0.53 bc | 518.20±12.59 bc | 383.10±2.69 cd | 13 235±55 cd | 1.96±0.01 e |
W | 42.871** | 21.999** | 72.666** | 82.771** | 158.929* | 191.305** |
AC | 13.875** | 12.278** | 23.951** | 66.811** | 28.560** | 14.891** |
W×AC | 0.177 | 0.280 | 0.861 | 3.615* | 0.889 | 0.070 |
图6 不同处理下玉米各指标相关性分析注:* 和 ** 分别表示在 P<0.05和P<0.01水平相关显著。
Fig. 6 Correlations among various indexes of maize under different treatmentsNote: * and ** indicate significant correlations at P<0. 05 and P<0. 01 levels, respectively.
1 | CHE Z, WANG J, LI J S. Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China [J/OL]. Agric. Water Manage., 2021, 247: 106738 [2022-10-10]. . |
2 | NING S R, ZHOU B B, SHI J C, et al.. Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang [J/OL]. Agric. Water Manage., 2021,245: 106651[2022-10-10]. . |
3 | 王振华, 陈学庚, 郑旭荣, 等. 关于我国大田滴灌未来发展的思考[J].干旱地区农业研究,2020,38(4): 1-9, 38. |
WANG Z H, CHEN X G, ZHENG X R, et al.. Discussion of the future development of field drip irrigation in China [J]. Agric. Res. Arid Areas, 2020, 38(4): 1-9, 38. | |
4 | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021: 395-397. |
5 | SHAHZAD K, BARY A I, COLLINS D P, et al.. Carbon dioxide and oxygen exchange at the soil-atmosphere boundary as affected by various mulch materials [J/OL]. Soil Tillage Res., 2019, 194: 104335 [2022-10-10]. . |
6 | NAN W G, YUE S C, HUANG H Z, et al.. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China [J]. J. Integr. Agric., 2016, 15(2): 451-464. |
7 | ZHU Y, CAI H J, SONG L B, et al.. Aerated irrigation of different irrigation levels and subsurface dripper depths affects fruit yield, quality and water use efficiency of greenhouse tomato [J]. Sustainability, 2020, 12(7): 1-19. |
8 | LI Y, NIU W Q, ZHANG M Z, et al.. Artificial soil aeration increases soil bacterial diversity and tomato root performance under greenhouse conditions [J]. Land Degrad. Dev., 2020, 31(12): 1443-1461. |
9 | 朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉改善温室番茄根区土壤通气性[J]. 农业工程学报, 2017, 33(21): 163-172. |
ZHU Y, CAI H J, SONG L B, et al.. Oxygation improving soil aeration around tomato root zone in greenhouse [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(21): 163-172. | |
10 | 李江, 潘艳川, 缴锡云, 等. 加气灌溉对麦秸秆还田后土壤还原性与水稻生长的影响[J]. 农业机械学报, 2021, 52(9): 250-259. |
LI J, PAN Y C, JIAO X Y, et al.. Effects of aerated irrigation on rice growth and soil reducibility under wheat straw returning conditions [J]. Trans. Chin. Soc. Agric. Mach., 2021, 52(9): 250-259. | |
11 | LI Y, NIU W Q, DYCK M, et al.. Yields and nutritional of greenhouse tomato in response to different soil aeration volume at two depths of subsurface drip irrigation [J/OL]. Sci. Rep., 2016, 6(1): 39307 [2022-10-10]. . |
12 | BEN-NOAH I, FRIEDMAN S P. Aeration of clayey soils by injecting air through subsurface drippers: lysimetric and field experiments [J]. Agric. Water Manage., 2016, 176:222-233. |
13 | PENDERGAST L, BHATTARAI S P, MIDMORE D J. Evaluation of aerated subsurface drip irrigation on yield, dry weight partitioning and water use efficiency of a broad-acre chickpea (Cicer arietinum L.) in a vertosol [J]. Agric. Water Manage., 2019, 217: 38-46. |
14 | 曹雪松, 李和平, 郑和祥, 等. 加气灌溉对根区土壤肥力质量与作物生长的影响[J].干旱地区农业研究, 2020, 38(1): 183-189. |
CAO X S, LI H P, ZHENG H X, et al.. Effect of aerated irrigation on crop growth and soil fertility quality in root zone [J]. Agric. Res. Arid Areas, 2020, 38(1): 183-189. | |
15 | 庞婕, 韩其晟, 周爽, 等. 水气互作对温室番茄生长、产量和水分利用效率的影响[J].灌溉排水学报,2022,41(1):87-94. |
PANG J, HAN Q S, ZHOU S, et al.. The Integrative effects of irrigation and aeration on growth and water use efficiency of greenhouse tomato [J]. J. Irrig. Drain., 2022,41(1):87-94. | |
16 | 杨海军, 仵峰, 方海平, 等. 基于加气水滴灌的土壤环境调节机理研究[J].物理学报, 2019, 68(1): 94-106. |
YANG H J, WU F, FANG H P, et al.. Mechanism of soil environmental regulation by aerated drip irrigation [J]. Acta Phys. Sin., 2019, 68(1): 94-106. | |
17 | 翟超, 周和平, 赵健. 北疆膜下滴灌玉米年际需水量及耗水规律[J]. 中国农业科学, 2017, 50(14): 2769-2780. |
ZHAI C, ZHOU H P, ZHAO J. Experimental study on inter-annual water requirement and water consumption of drip irrigation maize in north of Xinjiang [J]. Sci. Agric. Sin., 2017, 50(14): 2769-2780. | |
18 | 孟玉, 王振华, 李文昊, 等. 降解膜覆盖对滴灌玉米土壤水温变化及其生长的影响[J]. 西北农业学报, 2021, 30(2): 192-202. |
MENG Y, WANG Z H, LI W H, et al.. Effects of degradable film mulching on soil hydrothermal variation and growth of maize under drip irrigation [J]. Acta Agric. Bor-Occid. Sin., 2021, 30(2): 192-202. | |
19 | BU L D, LIU J L, ZHU L, et al.. The effects of mulching on maize growth, yield and water use in a semi-arid region [J]. Agric. Water Manage., 2013, 123: 71-78. |
20 | 吴梅, 张金珠, 王振华, 等. 加气滴灌和可降解膜覆盖对玉米生长发育及水分利用的影响[J].中国生态农业学报, 2022, 30(9): 1425-1438. |
WU M, ZHANG J Z, WANG Z H, et al.. Effects of aerated drip irrigation and degradable film mulching on growth and water use of maize [J]. Chin. J. Ecol. Agric., 2022, 30(9): 1425-1438. | |
21 | 王鹏勃, 李建明, 丁娟娟, 等. 水肥耦合对温室袋培番茄品质、产量及水分利用效率的影响[J]. 中国农业科学, 2015, 48(2): 314-323. |
WANG P B, LI J M, DING J J, et al.. Effect of water and fertilizer coupling on quality, yield and water use efficiency of tomato cultivated by organic substrate in bag [J]. Sci. Agric. Sin., 2015, 48(2): 314-323. | |
22 | 胡建强, 赵经华, 马英杰, 等. 不同灌水定额对膜下滴灌玉米的生长、产量及水分利用效率的影响[J].水资源与水工程学报, 2018, 29(5): 249-254. |
HU J Q, ZHAO J H, MA Y J, et al.. Effects of different irrigation quota on growth, yield and water use efficiency of drip irrigation maize under mulch [J]. J. Water Resour. Water Eng., 2018, 29(5): 249-254. | |
23 | 雷宏军, 肖哲元, 肖让, 等. 水、肥、气耦合滴灌对温室番茄生长和品质的影响[J].干旱地区农业研究,2020,38(5):168-175. |
LEI H J, XIAO Z Y, XIAO R, et al.. Effect of water-fertilizer-gas coupled drip irrigation on greenhouse tomato growth and fruit quality [J]. Agric. Res. Arid Areas, 2020,38(5):168-175. | |
24 | ABUARAB M, MOSTAFA E, IBRAHIM M. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil [J]. J. Adv. Res., 2013, 4(6): 493-499. |
25 | 于珍珍. 水肥气耦合调控土壤环境对玉米生长影响的研究[D]. 大庆: 黑龙江八一农垦大学, 2020. |
YU Z Z. Study on the effect of water, fertilizer and gas coupling on soil growth and control of maize growth [D]. Daqing: Heilongjiang Bayi Agricultural University, 2020. | |
26 | 郑孟静, 翟立超, 申海平, 等. 种植密度对河北夏玉米生理成熟后茎秆抗倒能力及产量的影响[J]. 核农学报, 2022, 36(7): 1434-1445. |
ZHENG M J, ZHAI L C, SHEN H P, et al.. Effects of planting density on stem lodging resistance and grain yield of summer maize after physiological maturity in Hebei [J]. J. Nucl. Agric. Sci., 2022, 36(7): 1434-1445. | |
27 | DU Y, ZHANG Q, CUI B, et al.. Aerated irrigation improves tomato yield and nitrogen use efficiency while reducing nitrogen application rate [J/OL]. Agric. Water Manage., 2020, 235: 106152 [2022-10-10]. . |
28 | ENNAHLI S, EARL H J. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress [J]. Crop Sci., 2005, 45(6):2374-2382. |
29 | 张健利, 王振华, 宗睿, 等. 水气互作对滴灌加工番茄生长及品质的影响[J]. 江苏农业学报, 2022, 38(2): 453-461. |
ZHANG J L, WANG Z H, ZONG R, et al.. Effects of water and air interaction on growth and quality of drip-irrigated processing tomato [J]. Jiangsu J. Agric. Sci., 2022, 38(2): 453-461. | |
30 | OUYANG Z, TIAN J C, YAN X F, et al.. Effects of different concentrations of dissolved oxygen on the growth,photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganism [J/OL]. Agric. Water Manage., 2021, 245: 106579 [2022-10-10]. . |
31 | 徐晨, 李前, 赵洪祥, 等. 灌溉定额对半干旱区春玉米生长发育的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(10): 41-51, 62. |
XU C, LI Q, ZHAO H X, et al.. Effects of irrigation quota on growth of spring maize with drip irrigation in semi-arid region [J]. J. Northwest A&F Univ. (Nat.Sci.), 2019, 47(10): 41-51, 62. | |
32 | 李元, 牛文全, 吕望, 等. 加气灌溉改善大棚番茄光合特性及干物质积累[J]. 农业工程学报, 2016, 32(18): 125-132. |
LI Y, NIU W Q, LYU W, et al.. Aerated irrigation improving photosynthesis characteristics and dry matter accumulation of greenhouse tomato [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(18): 125-132. | |
33 | 刘健, 姚宁, 吝海霞, 等. 冬小麦物候期对土壤水分胁迫的响应机制与模拟[J].农业工程学报, 2016, 32(21): 115-124. |
LIU J, YAO N, LIN H X, et al.. Response mechanism and simulation of winter wheat phenology to soil water stress [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(21): 115-124. | |
34 | 张美桃, 杨培岭, 任树梅, 等. 灌溉水盐分及灌水量对土壤水盐分布与春玉米生长的影响[J]. 水土保持学报, 2022, 36(4): 290-298. |
ZHANG M T, YANG P L, REN S M, et al.. Effects of irrigation water salinity and irrigation amount on soil water and salt distribution and spring maize growth [J]. J. Soil Water Conserv., 2022, 36(4): 290-298. | |
35 | 王风姣, 王振华, 李文昊. 灌水量及可降解膜覆盖对滴灌玉米土壤呼吸及产量的影响[J]. 干旱地区农业研究, 2019, 37(5): 1-8, 21. |
WANG F J, WANG Z H, LI W H. Effects of irrigation amount and degradable membrane mulching on soil respiration and yield of drip-irrigated corn [J]. Agric. Res. Arid Areas, 2019, 37(5): 1-8, 21. | |
36 | 于珍珍, 王宏轩, 邹华芬, 等. 加气灌溉下红壤土呼吸速率变化及其与土壤水氧的关系[J]. 热带作物学报, 2022, 43(1): 110-118. |
YU Z Z, WANG H X, ZOU H F, et al.. Changes of red soil respiration rate under aerated irrigation and its relationship with soil water and oxygen [J]. Chin. J. Trop. Crops, 2022, 43(1): 110-118. | |
37 | MBONIMPA M, AUBERTIN M, AACHIB M, et al.. Diffusion and consumption of oxygen in unsaturated cover materials [J]. Can. Geotech. J., 2003, 40: 916-932. |
[1] | 孙宪印, 牟秋焕, 米勇, 吕广德, 亓晓蕾, 孙盈盈, 尹逊栋, 王瑞霞, 吴科, 钱兆国, 赵岩, 高明刚. 基于GT双标图对小麦新品系的分类评价[J]. 中国农业科技导报, 2024, 26(7): 14-24. |
[2] | 秦宇坤, 陈俊英, 张丽娟. 赣北棉区棉花干物质积累特征和产量对减氮措施的响应[J]. 中国农业科技导报, 2024, 26(6): 191-199. |
[3] | 彭守华, 许铭铭, 尉继强, 梁丽君, 叶全, 迟晓元, 张少峰, 董向丽. 生物菌肥FBR1不同施用方式对花生生长发育及产量的影响[J]. 中国农业科技导报, 2024, 26(6): 200-205. |
[4] | 刘忠祥, 周文期, 李永生, 王晓娟, 杨彦忠, 连晓荣, 何海军, 周玉乾. 玉米矮秆突变体20F421的表型鉴定及遗传分析[J]. 中国农业科技导报, 2024, 26(6): 22-29. |
[5] | 曹炎, 杨艳涛, 王国刚. 我国玉米生产与消费时空格局演变及匹配性分析[J]. 中国农业科技导报, 2024, 26(5): 1-10. |
[6] | 陈雨欣, 赵红梅, 杨卫君, 杨梅, 郭颂, 宋世龙, 惠超. 生物质炭对土壤微生物碳源利用及春小麦产量的影响[J]. 中国农业科技导报, 2024, 26(5): 174-183. |
[7] | 徐佳睿, 王逸茹, 赵绍赓, 李坤, 郑军. 玉米木质素合成途径基因ZmCCoAOMT1功能研究及转录组分析[J]. 中国农业科技导报, 2024, 26(5): 30-43. |
[8] | 高丽敏, 顾泽辰, 贡雪菲, 崔联明, 郭东森, 周影, 王琳, 魏启舜. 果园生草对中国果树-土壤系统生产性能影响的Meta分析[J]. 中国农业科技导报, 2024, 26(4): 184-194. |
[9] | 韩秀丽, 李嘉伟, 张杰, 郭艳杰, 张丽娟, 吉艳芝. 生物有机肥替代化肥对葡萄生长与土壤肥力的影响[J]. 中国农业科技导报, 2024, 26(4): 195-205. |
[10] | 安东升, 严程明, 刘洋, 赵宝山, 孔冉, 苏俊波, 徐志军. 甘蔗间作系统生产力分析及适宜品种筛选[J]. 中国农业科技导报, 2024, 26(4): 37-45. |
[11] | 赵亚凤, 王孟雪, 王德帅, 王冬冬, 李园, 胡峻峰. 基于CP-DeepLabv3+的玉米根系图像分割[J]. 中国农业科技导报, 2024, 26(3): 110-116. |
[12] | 吴占清, 陈威, 赵展, 许海良, 李豪远, 彭星星, 陈东旭, 张明月. 玉米GRAS基因家族的全基因组鉴定及生物信息学分析[J]. 中国农业科技导报, 2024, 26(3): 15-25. |
[13] | 阿什日轨, 张荣萍, 周宁宁, 冯婷煜, 周林, 马鹏, 阿尔力色, 廖雪环, 张坷塬. 硅钙钾镁肥和密度对水稻产量形成的影响[J]. 中国农业科技导报, 2024, 26(3): 155-163. |
[14] | 赵刚, 王淑英, 李尚中, 张建军, 党翼, 王磊, 李兴茂, 程万莉, 周刚, 倪胜利, 樊廷录. 黄土旱塬区近40年降水对冬小麦耗水和产量的影响[J]. 中国农业科技导报, 2024, 26(3): 164-173. |
[15] | 李忠义, 唐红琴, 董文斌, 韦彩会, 何铁光. 稻秸-紫云英联合还田对水稻光合特性及产量品质的影响[J]. 中国农业科技导报, 2024, 26(2): 171-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||