中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (3): 24-34.DOI: 10.13304/j.nykjdb.2023.0460
杨大兵(), 胡亮, 杜雪树, 万丙良, 夏明元, 戚华雄, 李进波(
)
收稿日期:
2023-06-14
接受日期:
2023-09-28
出版日期:
2025-03-15
发布日期:
2025-03-14
通讯作者:
李进波
作者简介:
杨大兵 E-mail:15623561404@163.com;
基金资助:
Dabing YANG(), Liang HU, Xueshu DU, Bingliang WAN, Mingyuan XIA, Huaxiong QI, Jinbo LI(
)
Received:
2023-06-14
Accepted:
2023-09-28
Online:
2025-03-15
Published:
2025-03-14
Contact:
Jinbo LI
摘要:
CRISPR/Cas9(clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9)基因编辑技术可以对特定基因进行改造,从而实现目标性状的定向改良,在作物遗传改良中具有良好的应用前景。而基于雄性不育系建立的杂交水稻育种体系是水稻杂种优势利用的重要途径,编辑水稻雄性不育基因能够定向创制新的雄性不育种质,有助于丰富杂交水稻不育系遗传资源,更好地利用水稻杂种优势。综述了CRISPR/Cas9基因编辑技术创制水稻雄性不育系的研究进展,展望了基因编辑水稻雄性不育系未来研究方向,以期为杂交水稻育种技术的创新与发展提供参考。
中图分类号:
杨大兵, 胡亮, 杜雪树, 万丙良, 夏明元, 戚华雄, 李进波. CRISPR/Cas9基因编辑技术创制水稻雄性不育系的研究进展[J]. 中国农业科技导报, 2025, 27(3): 24-34.
Dabing YANG, Liang HU, Xueshu DU, Bingliang WAN, Mingyuan XIA, Huaxiong QI, Jinbo LI. Progress in Creation of Rice Male Sterile Lines by CRISPR/Cas9 Gene Editing Technology[J]. Journal of Agricultural Science and Technology, 2025, 27(3): 24-34.
基因 Gene | 染色体 Chromosome | 功能 Function | 编码蛋白 Encoding protein | 参考文献 Reference |
---|---|---|---|---|
OsMSP1 | 1 | 大、小孢子发生相关 Related to macrosporogenesis and microsporogenesis | 富亮氨酸重复类受体蛋白激酶 Leucine-rich-repeat receptor-like kinase | [ |
TIP2 | 1 | 绒毡层降解 Tapetum degeneration | bHLH转录因子 bHLH transcription factor | [ |
OsMADS3 | 1 | 花器官发育相关 Related to floral organ development | C类花同源异型转录因子 C-class floral homeotic transcription factor | [ |
DPW2 | 1 | 花药角质层、花粉壁合成 Anther cuticle and pollen wall formation | 酰基转移酶 Acyltransferase | [ |
OsAPI5 | 2 | 绒毡层降解 Tapetum degeneration | 凋亡抑制因子 Inhibitor of apoptosis | [ |
OsMTR1 | 2 | 绒毡层和小孢子发育 Tapetum and microspore development | 分泌性糖蛋白 Secreted glycoprotein | [ |
TDR | 2 | 绒毡层降解 Tapetum degeneration | bHLH转录因子 bHLH transcription factor | [ |
PTC2 | 2 | 绒毡层细胞持续存在 Persistence of tapetum cells | AT-hook DNA结合蛋白 AT-hook DNA binding protein | [ |
CYP704B2 | 3 | 花粉壁形成 Pollen wall formation | 脂肪酸羟化酶 Fatty acid hydroxylase | [ |
DPW | 3 | 花药及花粉外壁的合成 Synthesis of anther and pollen outer wall | 脂酰基载体蛋白还原酶 Fatty acyl carrier protein reductase | [ |
OsTDF1 | 3 | 绒毡层降解 Tapetum degeneration | R2R3 MYB转录因子 R2R3 MYB transcription factor | [ |
OsDEX1 | 3 | 绒毡层降解、花粉壁发育 Tapetum degeneration and pollen wall development | 钙离子结合蛋白 Calcium-binding protein | [ |
OsDGD2β | 3 | 花粉外壁发育 Pollen outer wall development | 双内酯甘油合酶 Dialactone glycerol synthase | [ |
TIP3 | 3 | 调控乌氏体和花粉外壁形成 Regulation of Ubisch bodies and pollen wall formation | PHD指蛋白 PHD finger protein | [ |
EAT1 | 4 | 绒毡层降解 Tapetum degeneration | bHLH转录因子 bHLH transcription factor | [ |
OsACOS12 | 4 | 孢粉素合成相关 Related to sporopollenin synthesis | 酰基辅酶A合成酶 Acyl-CoA synthetase | [ |
OsABCG15 | 6 | 花粉外壁发育相关 Related to pollen outer wall development | ATP结合盒转运蛋白 ATP-binding cassette transporters | [ |
OsMADS16 | 6 | 花器官发育相关 Related to floral organ development | B类花同源异型转录因子 B-class floral homeotic transcription factor | [ |
MIL1 | 7 | 孢子母细胞减数分裂、花药壁细胞的分化 Meiosis of spore mother cells and differentiation of anther wall cells | CC型谷氧还蛋白 CC-type glutaredoxin | [ |
表1 已克隆的水稻普通核不育基因
Table 1 Cloned common genic male sterility genes in rice
基因 Gene | 染色体 Chromosome | 功能 Function | 编码蛋白 Encoding protein | 参考文献 Reference |
---|---|---|---|---|
OsMSP1 | 1 | 大、小孢子发生相关 Related to macrosporogenesis and microsporogenesis | 富亮氨酸重复类受体蛋白激酶 Leucine-rich-repeat receptor-like kinase | [ |
TIP2 | 1 | 绒毡层降解 Tapetum degeneration | bHLH转录因子 bHLH transcription factor | [ |
OsMADS3 | 1 | 花器官发育相关 Related to floral organ development | C类花同源异型转录因子 C-class floral homeotic transcription factor | [ |
DPW2 | 1 | 花药角质层、花粉壁合成 Anther cuticle and pollen wall formation | 酰基转移酶 Acyltransferase | [ |
OsAPI5 | 2 | 绒毡层降解 Tapetum degeneration | 凋亡抑制因子 Inhibitor of apoptosis | [ |
OsMTR1 | 2 | 绒毡层和小孢子发育 Tapetum and microspore development | 分泌性糖蛋白 Secreted glycoprotein | [ |
TDR | 2 | 绒毡层降解 Tapetum degeneration | bHLH转录因子 bHLH transcription factor | [ |
PTC2 | 2 | 绒毡层细胞持续存在 Persistence of tapetum cells | AT-hook DNA结合蛋白 AT-hook DNA binding protein | [ |
CYP704B2 | 3 | 花粉壁形成 Pollen wall formation | 脂肪酸羟化酶 Fatty acid hydroxylase | [ |
DPW | 3 | 花药及花粉外壁的合成 Synthesis of anther and pollen outer wall | 脂酰基载体蛋白还原酶 Fatty acyl carrier protein reductase | [ |
OsTDF1 | 3 | 绒毡层降解 Tapetum degeneration | R2R3 MYB转录因子 R2R3 MYB transcription factor | [ |
OsDEX1 | 3 | 绒毡层降解、花粉壁发育 Tapetum degeneration and pollen wall development | 钙离子结合蛋白 Calcium-binding protein | [ |
OsDGD2β | 3 | 花粉外壁发育 Pollen outer wall development | 双内酯甘油合酶 Dialactone glycerol synthase | [ |
TIP3 | 3 | 调控乌氏体和花粉外壁形成 Regulation of Ubisch bodies and pollen wall formation | PHD指蛋白 PHD finger protein | [ |
EAT1 | 4 | 绒毡层降解 Tapetum degeneration | bHLH转录因子 bHLH transcription factor | [ |
OsACOS12 | 4 | 孢粉素合成相关 Related to sporopollenin synthesis | 酰基辅酶A合成酶 Acyl-CoA synthetase | [ |
OsABCG15 | 6 | 花粉外壁发育相关 Related to pollen outer wall development | ATP结合盒转运蛋白 ATP-binding cassette transporters | [ |
OsMADS16 | 6 | 花器官发育相关 Related to floral organ development | B类花同源异型转录因子 B-class floral homeotic transcription factor | [ |
MIL1 | 7 | 孢子母细胞减数分裂、花药壁细胞的分化 Meiosis of spore mother cells and differentiation of anther wall cells | CC型谷氧还蛋白 CC-type glutaredoxin | [ |
基因 Gene | 染色体 Chromosome | 功能 Function | 编码蛋白 Encoding protein | 参考文献 Reference |
---|---|---|---|---|
DTM1 | 7 | 绒毡层发育、性母细胞发育 Tapetum and meiocytes development | 内质网膜蛋白 Reticulon | [ |
UDT1 | 7 | 绒毡层细胞分化 Tapetal cell differentiation | bHLH转录因子 bHLH transcription factor | [ |
DTC1 | 7 | 绒毡层降解 Tapetum degeneration | PCD调控因子 PCD regulatory factor | [ |
CYP703A3 | 8 | 花药表皮角质层、花粉外壁的发育 Development of anther cuticle and pollen outer wall | 脂肪酸羟化酶 Fatty acid hydroxylase | [ |
PTC1 | 9 | 绒毡层降解、花粉壁发育 Tapetum degeneration and Pollen wall development | PHD锌指蛋白 PHD zinc finger protein | [ |
OsGEN1 | 9 | 小孢子发育 Microspore development | RAD2/XPG核酸酶 RAD2/XPG nuclease | [ |
WDA1 | 10 | 花粉壁蜡质形成 Waxy formation of pollen wall | 碳裂合酶 Carbon lyase | [ |
OsABCG26 | 10 | 花药角质层和花粉外壁的形成 Formation of anther cuticle and pollen outer wall | ATP结合盒转运蛋白 ATP-binding cassette transporter | [ |
OsC6 | 11 | 乌氏体和花粉外壁发育 Ubisch bodies and pollen wall development | 脂质转运蛋白 Lipid transfer protein | [ |
OsGPAT3 | 11 | 花药壁发育 Pollen wall development | 甘油-3-磷酸酰基转移酶 Glycerol-3-phosphate acyltransferase | [ |
表1 已克隆的水稻普通核不育基因 (续表Continued)
Table 1 Cloned common genic male sterility genes in rice
基因 Gene | 染色体 Chromosome | 功能 Function | 编码蛋白 Encoding protein | 参考文献 Reference |
---|---|---|---|---|
DTM1 | 7 | 绒毡层发育、性母细胞发育 Tapetum and meiocytes development | 内质网膜蛋白 Reticulon | [ |
UDT1 | 7 | 绒毡层细胞分化 Tapetal cell differentiation | bHLH转录因子 bHLH transcription factor | [ |
DTC1 | 7 | 绒毡层降解 Tapetum degeneration | PCD调控因子 PCD regulatory factor | [ |
CYP703A3 | 8 | 花药表皮角质层、花粉外壁的发育 Development of anther cuticle and pollen outer wall | 脂肪酸羟化酶 Fatty acid hydroxylase | [ |
PTC1 | 9 | 绒毡层降解、花粉壁发育 Tapetum degeneration and Pollen wall development | PHD锌指蛋白 PHD zinc finger protein | [ |
OsGEN1 | 9 | 小孢子发育 Microspore development | RAD2/XPG核酸酶 RAD2/XPG nuclease | [ |
WDA1 | 10 | 花粉壁蜡质形成 Waxy formation of pollen wall | 碳裂合酶 Carbon lyase | [ |
OsABCG26 | 10 | 花药角质层和花粉外壁的形成 Formation of anther cuticle and pollen outer wall | ATP结合盒转运蛋白 ATP-binding cassette transporter | [ |
OsC6 | 11 | 乌氏体和花粉外壁发育 Ubisch bodies and pollen wall development | 脂质转运蛋白 Lipid transfer protein | [ |
OsGPAT3 | 11 | 花药壁发育 Pollen wall development | 甘油-3-磷酸酰基转移酶 Glycerol-3-phosphate acyltransferase | [ |
基因 Gene | 染色体 Chromosome | 来源 Resource | 不育类型 Sterile type | 编码蛋白 Encoding protein | 参考文献 Reference |
---|---|---|---|---|---|
pms1 | 7 | 农垦58S Nongken 58S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 长链非编码RNA Long non-coding RNA | [ |
pms2 | 3 | 32001S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 未知 Unknown | [ |
pms3/ p/tms12-1 | 12 | 农垦58S/培矮64S Nongken 58S/Peiai 64S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 长链非编码RNA/小RNA Long non-coding RNA/small RNA | [ |
pms4 | 4 | 绵9S Mian 9S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 未知 Unknown | [ |
ptgms2-1 | 2 | 广占63S Guangzhan 63S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 未知 Unknown | [ |
rpms1 | 8 | 宜D1S Yi D1S | 短光敏不育 Photoperiod-sensitive male sterility under short-day condition | 未知 Unknown | [ |
rpms2 | 9 | 宜D1S Yi D1S | 短光敏不育 Photoperiod-sensitive male sterility under short-day condition | 未知 Unknown | [ |
CSA | 1 | csa突变体 csa mutant | 短光敏不育 Photoperiod-sensitive male sterility under short-day condition | R2R3类MYB转录因子 R2R3 MYB transcription factor | [ |
tms2 | 7 | Norin-PL12 | 高温敏不育 Thermo-sensitive male sterility under high temperature | 鞘脂合成相关 Related with sphingolipid synthesis | [ |
tms3 | 6 | IR32364TGMS | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms4 | 2 | TGMS-VN1 | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms5 | 2 | 安农S,株1S Annong S, Zhu 1S | 高温敏不育 Thermo-sensitive male sterility under high temperature | RNA酶Z Rnase Z | [ |
tms3650 | 3 | tms3650 | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms6 | 5 | Sokcho-MS | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms9-1 | 9 | 衡农S-1 Hengnong S-1 | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms10 | 2 | 9522S | 高温敏不育 Thermo-sensitive male sterility under high temperature | 类受体激酶 Receptor-like kinase | [ |
表2 已报道的环境敏感型水稻雄性核不育基因
Table 2 Reported environment-sensitive genic male sterile genes in rice
基因 Gene | 染色体 Chromosome | 来源 Resource | 不育类型 Sterile type | 编码蛋白 Encoding protein | 参考文献 Reference |
---|---|---|---|---|---|
pms1 | 7 | 农垦58S Nongken 58S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 长链非编码RNA Long non-coding RNA | [ |
pms2 | 3 | 32001S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 未知 Unknown | [ |
pms3/ p/tms12-1 | 12 | 农垦58S/培矮64S Nongken 58S/Peiai 64S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 长链非编码RNA/小RNA Long non-coding RNA/small RNA | [ |
pms4 | 4 | 绵9S Mian 9S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 未知 Unknown | [ |
ptgms2-1 | 2 | 广占63S Guangzhan 63S | 长光敏不育 Photoperiod-sensitive male sterility under long-day condition | 未知 Unknown | [ |
rpms1 | 8 | 宜D1S Yi D1S | 短光敏不育 Photoperiod-sensitive male sterility under short-day condition | 未知 Unknown | [ |
rpms2 | 9 | 宜D1S Yi D1S | 短光敏不育 Photoperiod-sensitive male sterility under short-day condition | 未知 Unknown | [ |
CSA | 1 | csa突变体 csa mutant | 短光敏不育 Photoperiod-sensitive male sterility under short-day condition | R2R3类MYB转录因子 R2R3 MYB transcription factor | [ |
tms2 | 7 | Norin-PL12 | 高温敏不育 Thermo-sensitive male sterility under high temperature | 鞘脂合成相关 Related with sphingolipid synthesis | [ |
tms3 | 6 | IR32364TGMS | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms4 | 2 | TGMS-VN1 | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms5 | 2 | 安农S,株1S Annong S, Zhu 1S | 高温敏不育 Thermo-sensitive male sterility under high temperature | RNA酶Z Rnase Z | [ |
tms3650 | 3 | tms3650 | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms6 | 5 | Sokcho-MS | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms9-1 | 9 | 衡农S-1 Hengnong S-1 | 高温敏不育 Thermo-sensitive male sterility under high temperature | 未知 Unknown | [ |
tms10 | 2 | 9522S | 高温敏不育 Thermo-sensitive male sterility under high temperature | 类受体激酶 Receptor-like kinase | [ |
基因 Gene | 染色体 Chromosome | 来源 Resource | 不育类型 Sterile type | 编码蛋白 Encoding protein | 参考文献 Reference |
---|---|---|---|---|---|
Ugp1 | 9 | Ugp1共抑制植株 Cosuppression plants of Ugp1 | 高温敏不育 Thermo-sensitive male sterility under high temperature | UGP酶 UGPase | [ |
tms18 | 10 | 中花11不育突变体 Zhonghua 11 sterile mutant | 高温敏不育 Thermo-sensitive male sterility under high temperature | GMC脱氢酶 GMC dehydrogenase | [ |
rtms1 | 10 | J207S | 低温敏不育 Thermo-sensitive male sterility under low temperature | 未知 Unknown | [ |
tms6 (t) | 10 | G20S | 低温敏不育 Thermo-sensitive male sterility under low temperature | 未知 Unknown | [ |
RTMS10 | 10 | 雁农S Yannong S | 低温敏不育 Thermo-sensitive male sterility under low temperature | 未知 Unknown | [ |
OsOSC12 /OsPTS1 | 8 | osc12突变体 osc12 mutant | 湿度敏感不育 Humidity-sensitive male sterility | 三萜合酶 Triterpene synthase | [ |
hms1 | 3 | hms1突变体 hms1 mutant | 湿度敏感不育 Humidity-sensitive male sterility | β-酮脂酰辅酶A合酶 β-ketoacyl CoA synthase | [ |
OsGL1-4 | 2 | osgl1-4突变体 osgl1-4 mutant | 湿度敏感不育 Humidity-sensitive male sterility | 花粉中长链烷烃的代谢 VLC alkanes biosynthesis | [ |
表2 已报道的环境敏感型水稻雄性核不育基因 (续表Continued)
Table 2 Reported environment-sensitive genic male sterile genes in rice
基因 Gene | 染色体 Chromosome | 来源 Resource | 不育类型 Sterile type | 编码蛋白 Encoding protein | 参考文献 Reference |
---|---|---|---|---|---|
Ugp1 | 9 | Ugp1共抑制植株 Cosuppression plants of Ugp1 | 高温敏不育 Thermo-sensitive male sterility under high temperature | UGP酶 UGPase | [ |
tms18 | 10 | 中花11不育突变体 Zhonghua 11 sterile mutant | 高温敏不育 Thermo-sensitive male sterility under high temperature | GMC脱氢酶 GMC dehydrogenase | [ |
rtms1 | 10 | J207S | 低温敏不育 Thermo-sensitive male sterility under low temperature | 未知 Unknown | [ |
tms6 (t) | 10 | G20S | 低温敏不育 Thermo-sensitive male sterility under low temperature | 未知 Unknown | [ |
RTMS10 | 10 | 雁农S Yannong S | 低温敏不育 Thermo-sensitive male sterility under low temperature | 未知 Unknown | [ |
OsOSC12 /OsPTS1 | 8 | osc12突变体 osc12 mutant | 湿度敏感不育 Humidity-sensitive male sterility | 三萜合酶 Triterpene synthase | [ |
hms1 | 3 | hms1突变体 hms1 mutant | 湿度敏感不育 Humidity-sensitive male sterility | β-酮脂酰辅酶A合酶 β-ketoacyl CoA synthase | [ |
OsGL1-4 | 2 | osgl1-4突变体 osgl1-4 mutant | 湿度敏感不育 Humidity-sensitive male sterility | 花粉中长链烷烃的代谢 VLC alkanes biosynthesis | [ |
1 | 李红,谢卡斌.植物CRISPR基因组编辑技术的新进展[J].生物工程学报,2017,33(10):1700-1711. |
LI H, XIE K B. Recent progresses in CRISPR genome editing in plants [J]. Chin. J. Biotechnol., 2017, 33(10):1700-1711. | |
2 | 袁隆平.杂交水稻的育种战略设想[J].杂交水稻,1987(1):1-3. |
3 | D’ERFURTH I, JOLIVET S, FROGER N, et al.. Turning meiosis into mitosis [J/OL]. PLoS Biol., 2009, 7(6):e1000124 [2023-05-10]. . |
4 | MIEULET D, JOLIVET S, RIVARD M, et al.. Turning rice meiosis into mitosis [J]. Cell Res., 2016, 26(11): 1242-1254. |
5 | KHANDAY I, SKINNER D, YANG B, et al.. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds [J]. Nature, 2019, 565(7737):91-95. |
6 | KELLIHER T, STARR D, RICHBOURG L, et al.. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction [J]. Nature, 2017, 542(7639):105-109. |
7 | MARUTHACHALAM R, CHAN S W L. Haploid plants produced by centromere-mediated genome elimination [J]. Nature, 2010, 464(7288):615-618. |
8 | ZHONG Y, LIU C X, QI X L, et al.. Mutation of ZmDMP enhances haploid induction in maize [J]. Nat. Plants, 2019, 5(6):575-580. |
9 | WANG C, LIU Q, SHEN Y, et al.. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes [J]. Nat. Biotechnol., 2019, 37(3):283-286. |
10 | XUE Z Y, XU X, ZHOU Y, et al.. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice [J/OL]. Nat. Commun., 2018, 9:604 [2023-05-10]. . |
11 | CHEN H Q, ZHANG Z G, NI E D, et al.. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa) [J]. New Phytol., 2020, 225(5):2077-2093. |
12 | HUI S Z, LI H J, MAWIA A M, et al.. Production of aromatic three-line hybrid rice using novel alleles of BADH2 [J]. Plant Biotechnol. J., 2022, 20(1):59-74. |
13 | 马西青,方才臣,邓联武,等.水稻隐性核雄性不育基因研究进展及育种应用探讨[J].中国水稻科学,2012,26(5):511-520. |
MA X Q, FANG C C, DENG L W, et al.. Research progress and breeding application of recessive genic male sterility in rice [J]. Chin. J. Rice Sci., 2012, 26(5):511-520. | |
14 | 颜龙安,张俊才,朱成,等.水稻显性雄性不育基因鉴定初报[J].作物学报,1989,15(2):174-181. |
YAN L A, ZHANG J C, ZHU C, et al.. The preliminary evaluation of a dominant male sterile gene in rice [J]. Acta. Agron. Sin., 1989, 15(2):174-181. | |
15 | 黄显波,田志宏,邓则勤,等.水稻三明显性核不育基因的初步鉴定[J].作物学报,2008,34(10):1865-1868. |
HUANG X B, TIAN Z H, DENG Z Q, et al.. Preliminary identification of a novel Sanming dominant male sterile gene in rice (Oryza sativa L.) [J]. Acta. Agron. Sin., 2008, 34(10):1865-1868. | |
16 | JIANG H C, LU Q, QIU S Q, et al.. Fujian cytoplasmic male sterility and the fertility restorer gene OsRf19 provide a promising breeding system for hybrid rice [J/OL]. Proc. Natl. Acad. Sci. USA, 2022, 119(34):e2208759119 [2023-05-10]. . |
17 | NONOMURA K, MIYOSHI K, EIGUCHI M, et al.. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice [J]. Plant Cell, 2003, 15:1728-1739. |
18 | FU Z Z, YU J, CHENG X W, et al.. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development [J]. Plant Cell, 2014, 26:1512-1524. |
19 | ZHANG L, MAO D H, XING F, et al.. Loss of function of OsMADS3 via the insertion of a novel retrotransposon leads to recessive male sterility in rice (Oryza sativa) [J]. Plant Sci., 2015, 238:188-197. |
20 | XU D W, SHI J X, RAUTENGARTEN C, et al.. Defective Pollen Wall 2 (DPW2) encodes an acyl transferase required for rice pollen development [J]. Plant Physiol., 2017, 173(1):240-255. |
21 | LI X W, GAO X Q, WEI Y, et al.. Rice apoptosis inhibitor5 coupled with two DEAD-Box adenosine 5’-triphosphate-dependent RNA helicases regulates tapetum degeneration [J]. Plant Cell, 2011, 23(4):1416-1434. |
22 | TAN H X, LIANG W Q, HU J P, et al.. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice [J]. Dev. Cell, 2012, 22(6):1127-1137. |
23 | DENG H F, SONG Y X, CHEN S F, et al.. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development [J]. Plants, 2015, 241:157-166. |
24 | UZAIR M, XU D, SCHREIBER L, et al.. persistent tapetal cell2 is required for normal tapetal programmed cell death and pollen wall patterning [J]. Plant Physiol., 2020, 182(2):962-976. |
25 | LI H, PINOT F, SAUVEPLANE V, et al.. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice [J]. Plant Cell, 2010, 22(1):173-190. |
26 | SHI J, TAN H X, YU X H, et al.. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase [J]. Plant Cell, 2011, 23(6):2225-2246. |
27 | CAI C F, ZHU J, LOU Y, et al.. The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis [J]. Sci. Bull., 2015, 60:1073-1082. |
28 | YU J, MENG Z L, LIANG W Q, et al.. A rice Ca2+ binding protein is required for tapetum function and pollen formation [J]. Plant Physiol., 2016, 172(3):1772-1786. |
29 | BASNET R, HUSSAIN N, SHU Q. OsDGD2β is the sole digalactosyldiacylglycerol synthase gene highly expressed in anther, and its mutation confers male sterility in rice [J/OL]. Rice, 2019, 12(1):66 [2023-05-10]. . |
30 | YANG Z F, SUN L P, ZHANG P P, et al.. TDR interacting protein 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice [J]. Plant J., 2019, 99(5):844-861. |
31 | NIU N, LIANG W, YANG X, et al.. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice [J/OL]. Nat. Commun., 2013, 4:1445 [2023-05-10]. . |
32 | LI Y L, LI D D, GUO Z L, et al.. OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase 5, plays an important role in pollen exine formation and anther development in rice [J/OL]. BMC Plant Biol., 2016, 16:256 [2023-05-10]. . |
33 | NIU B X, HE F R, HE M, et al.. The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice [J]. J. Integr. Plant Biol., 2013, 55(8):710-720. |
34 | YUN D P, LIANG W Q, DRENI L, et al.. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice [J]. Mol. Plant, 2013, 6(3):743-756. |
35 | HONG L L, TANG D, ZHU K M, et al.. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin [J]. Plant Cell, 2012, 24:577-588. |
36 | YI J, KIM S R, LEE D Y, et al.. The rice gene defective tapetum and meiocytes 1 (DTM1) is required for early tapetum development and meiosis [J]. Plant J., 2012, 70(2):256-270. |
37 | JUNG K, HAN M, LEE Y, et al.. Rice undeveloped tapetum1 is a major regulator of early tapetum development [J]. Plant Cell, 2005, 17:2705-2722. |
38 | YI J, MOON S, LEE Y, et al.. Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration [J]. Plant Physiol., 2016, 170:1611-1623. |
39 | YANG X F, WU D X, SHI J P, et al.. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine [J]. J. Integr. Plant Biol., 2014, 56(10):979-994. |
40 | LI H, YUAN Z, VIZCAY-BARRENA G, et al.. persistent tapetal cell1 encodes a PHD-Finger protein that is required for tapetal cell death and pollen development in rice [J]. Plant Physiol., 2011, 156:615-630. |
41 | WANG C, HIGGINS J, HE Y, et al.. Resolvase OsGEN1 mediates DNA repair by homologous recombination [J]. Plant Physiol., 2017, 173(2):1316-1329. |
42 | JUNG K, HAN M, LEE D, et al.. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development [J]. Plant Cell, 2006, 18(11):3015-3032. |
43 | CHANG Z Y, CHEN Z F, YAN W, et al.. An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice [J]. Plant Sci., 2016, 253:21-30. |
44 | ZHANG D, LIANG W, YIN C, et al.. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice [J]. Plant Physiol., 2010, 154(1):149-162. |
45 | MEN X, SHI J X, LIANG W Q, et al.. Glycerol-3-phosphate acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice [J]. J. Exp. Bot., 2017, 68(3):513-526. |
46 | ZHANG Y F, LI Y L, ZHONG X, et al.. Mutation of glucose-methanol-choline oxidoreductase leads to thermosensitive genic male sterility in rice and Arabidopsis [J]. Plant Biotechnol. J., 2022, 20(10):2023-2035. |
47 | 张华丽,陈晓阳,黄建中,等.中国两系杂交稻光温敏核不育基因的鉴定与演化分析[J].中国农业科学,2015,48(1):1-9. |
ZHANG H L, CHEN X Y, HUANG J Z, et al.. Identification and transition analysis of photo- /thermo-sensitive genic male sterile genes in two-line hybrid rice in China [J]. Sci. Agric. Sin., 2015, 48(1):1-9. | |
48 | FAN Y R, YANG J Y, MATHIONI S M, et al.. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice [J]. Proc. Natl. Acad. Sci. USA, 2016, 113:15144-15149. |
49 | ZHANG Q, SHEN B Z, DAI X K, et al.. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice [J]. Proc. Natl. Acad. Sci. USA, 1994, 91:8675-8679. |
50 | DING J H, LU Q, OUYANG Y, et al.. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice [J]. Proc. Natl. Acad. Sci. USA, 2012, 109:2654-2659. |
51 | ZHOU H, LIU Z L, CHEN L T, et al.. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA [J]. Cell Res., 2012, 2:649-660. |
52 | HUANG T Y, WANG Z, HU Y G, et al.. Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice (Oryza sativa) [J]. Rice Sci., 2008, 15(2):153-156. |
53 | XU J J, WANG B H, WU Y H, et al.. Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.) [J]. Theor. Appl. Genet., 2011, 122:365-372. |
54 | PENG H F, ZHANG Z F, WU B, et al.. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L.) [J]. Theor. Appl. Genet., 2008, 118:77-83. |
55 | ZHANG H, LIANG W, YANG X, et al.. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development [J]. Plant Cell, 2010, 22:672-689. |
56 | CHUEASIRI C, CHUNTHONG K, PITNJAM K, et al.. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development [J/OL]. PLoS One, 2014, 9(9):e106386 [2023-05-10]. . |
57 | SUBUDHI P, BORKAKATI R, VIRMANI S, et al.. Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis [J]. Genome, 1997, 40(2):188-194. |
58 | DONG N, SUBUDHI P, LUONG P, et al.. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques [J]. Theor. Appl. Genet., 2000, 100:727-734. |
59 | ZHOU H, ZHOU M, YANG Y Z, et al.. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice [J]. Nat. Commun., 2014, 5:4884-4892. |
60 | 唐杰,龙湍,吴春瑜,等.水稻光温敏雄性不育突变体tms3650的鉴定和基因定位[J].中国水稻科学,2023,37(1):45-54. |
TANG J, LONG T, WU C Y, et al.. Identification and gene mapping of a new photo-thermo-sensitive male sterile mutant tms3650 in Rice [J]. Chin. J. Rice Sci., 2023, 37(1):45-54. | |
61 | LEE D S, CHEN L J, SUH H S. Genetic characterization and fine mapping of a novel thermos-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.) [J]. Theor. Appl. Genet., 2005, 111:1271-1277. |
62 | QI Y B, LIU Q L, ZHANG L, et al.. Fine mapping and candidate gene analysis of the novel thermos-sensitive genic male sterility tms9-1 gene in rice [J]. Theor. Appl. Genet., 2014, 127:1173-1182. |
63 | YU J P, HAN J J, KIM H Y, et al.. Two rice receptor-like kinases maintain male fertility under changing temperatures [J]. Proc. Natl. Acad. Sci. USA, 2017, 114:12327-12332. |
64 | CHEN R Z, ZHAO X, SHAO Z, et al.. Rice UDP-glucose pyrophosphorylase1is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility [J]. Plant Cell, 2007, 19:847-861. |
65 | JIA J H, ZHANG D S, LI C Y, et al.. Molecular mapping of the reverse thermos-sensitive genic male-sterile gene (rtms1) in rice [J]. Theor. Appl. Genet., 2001, 103:607-612. |
66 | LIU X, LI X H, ZHANG X, et al.. Genetic analysis and mapping of a thermosensitive genic male sterility gene, tms6(t), in rice (Oryza sativa L.) [J]. Genome, 2010, 53:119-124. |
67 | NI J L, WANG D Z, NI D H, et al.. Characterization and fine mapping of RTMS10, a semi-dominant reverse thermos-sensitive genic male sterile locus in rice [J]. J. Integr. Agric., 2022, 21(2):316-325. |
68 | YU B, LIU L T, WANG T. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice [J]. Plant Cell Environ., 2019, 42(12):3340-3354. |
69 | CHANG Z Y, CHEN Z F, WANG N, et al.. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(49):14145-14150. |
70 | ZHOU H, HE M, LI J, et al.. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system [J/OL]. Sci. Rep., 2016, 6:37395 [2023-05-10]. . |
71 | 何溟.水稻工程温敏核雄性不育系的创建[D].广州:华南农业大学,2017. |
HE M. Development of genetic engineered thermo-sensitive genetic male sterile rice lines using the CRISPR/Cas9 system [D]. Guangzhou: South China Agricultural University, 2017. | |
72 | BARMAN H, SHENG Z, FIAZ S, et al.. Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system [J/OL]. BMC Plant Biol., 2019, 19:109 [2023-05-10]. . |
73 | 吴明基,林艳,刘华清,等.利用CRISPR/Cas9技术创制水稻温敏核不育系[J].福建农业学报,2018,33(10):1011-1015. |
WU M J, LIN Y, LIU H Q, et al.. Development of thermo-sensitive male sterile rice with CRISPR/Cas9 technology [J]. J. Fujian Agric. Sci., 2018, 33(10):1011-1015. | |
74 | 覃玉芬,廖山岳,郭新颖,等.利用 CRISPR/Cas9基因编辑系统创制新型水稻温敏雄性核不育系[J].分子植物育种,2023,21(5):1551-1561. |
QIN Y F, LIAO S Y, GUO X Y, et al.. Generation of a new thermo-sensitive genic male sterile line by using CRISPR/Cas9 gene editing system [J]. Mol. Plant Breeding, 2023, 21(5):1551-1561. | |
75 | 宋成军.利用基因编辑技术对水稻品质和育性相关性状的遗传改良研究[D].成都:四川农业大学,2018. |
SONG C J. Genetic improvement of several important agronomic traits in rice using genome editing techniques [D]. Chengdu: Sichuan Agricultural University, 2018. | |
76 | 黄忠明,周延彪,唐晓丹,等. 基于CRISPR/Cas9 技术的水稻温敏不育基因tms5突变体的构建[J].作物学报,2018,44(6):844-851. |
HUANG Z M, ZHOU Y B, TANG X D, et al.. Construction of tms5 mutants in rice based on CRISPR/Cas9 technology [J]. Acta. Agron. Sin., 2018, 44(6):844-851. | |
77 | 杜茜,费云燕,王芳权,等.敲除TMS5基因获得温敏不育粳稻新材料[J].中国水稻科学,2019,33(5):429-435. |
DU X, FEI Y Y, WANG F Q, et al.. Thermo-sensitive male sterile line created by editing TMS5 gene in japonica rice [J]. Chin. J. Rice Sci., 2019, 33(5):429-435. | |
78 | CHEN Y, SHAHID M, WU J, et al.. Thermo-sensitive genic male sterile lines of neo-tetraploid rice developed through gene editing technology revealed high levels of hybrid vigor [J/OL]. Plants, 2022, 11(11):1390 [2023-05-10]. . |
79 | LI S F, SHEN L, HU P, et al.. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing [J]. J. Integr. Plant Biol., 2019, 61(12):1201-1205. |
80 | 梁敏敏,张华丽,陈俊宇,等.利用CRISPR/Cas9技术创制抗稻瘟病香型早籼温敏核不育系[J].中国水稻科学,2022,36(3):248-258. |
LIANG M M, ZHANG H L, CHEN J Y, et al.. Developing fragrant early indica TGMS line with blast resistance by using CRISPR/Cas9 technology [J]. Chin. J. Rice Sci., 2022, 36(3):248-258. | |
81 | 农春晓.水稻光温敏不育系湘陵628S的开花期定向改良和粳型光温敏不育系创建[D].武汉:华中农业大学,2019. |
NONG C X. Direct genetic improvement of heading date for rice photo-thermo-sensitive genic male sterile line XL628S and development of japonica thermo-sensitive genic male sterile lines [D]. Wuhan: Huazhong Agricultural University, 2019. | |
82 | 林艳,刘华清,付艳萍,等.利用TALEN技术编辑水稻光温敏核不育基因PMS3 [J].福建农业学报,2019,34(4):381-386. |
LIN Y, LIU H Q, FU Y P, et al.. TALEN-mediated editing of photoperiod-temperature-sensitive male sterility PMS3 gene in rice [J]. J. Fujian Agric. Sci., 2019, 34(4):381-386. | |
83 | ZHANG H, XU C X, HE Y, et al.. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production [J]. Proc. Natl. Acad. Sci. USA, 2013, 110:76-81. |
84 | LI Q L, ZHANG D B, CHEN M J, et al.. Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther Using CRISPR/Cas9 [J]. J. Genet. Genomics, 2016, 43:415-419. |
85 | WU Y Z, FOX T W, TRIMNELL M R, et al.. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops [J]. Plant Biotechnol. J., 2016, 14:1046-1054. |
86 | 余东.第三代杂交水稻ptc1普通核不育系种子繁殖体系构建及应用[D].长沙:湖南农业大学,2020. |
YU D. Construction and application of seeds propagation system for spontaneous genic male sterile line in the third generation hybrid rice [D]. Changsha: Hunan Agricultural University, 2020. | |
87 | 陈惠妹.利用基因组编辑技术创制水稻不育系材料[D].福州:福建师范大学,2016. |
CHEN H M. Creating male sterile lines of rice using the genome editing technologies [D]. Fuzhou: Fujian Normal University, 2016. | |
88 | PAK H, WANG H Y, KIM Y S, et al.. Creation of male-sterile lines that can be restored to fertility by exogenous methyl jasmonate for the establishment of a two-line system for the hybrid production of rice (Oryza sativa L.) [J]. Plant Biotechnol. J., 2021, 19:365-374. |
89 | 陈日荣,周延彪,王黛君,等.利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5 [J].作物学报,2020,46(8):1157-1165. |
CHEN R R, ZHOU Y B, WANG D J, et al.. CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice [J]. Acta Agron. Sin., 2020, 46(8):1157-1165. | |
90 | 王芳权,范方军,夏士健,等.水稻光温敏核不育基因tms5与pms3的互作效应[J].作物学报,2020,46(3):317-329. |
WANG F Q, FAN F J, XIA S J, et al.. Interactive effects of the photoperiod-/thermo-sensitive genic male sterile genes tms5 and pms3 in rice [J]. Acta Agron. Sin., 2020, 46(3):317-329. | |
91 | 郑卓,孙慧敏.一种安全性温敏核不育系高效选育方法、两系杂交水稻: CN107466845A [P]. 2017-07-15. |
92 | 李训贞,陈良碧,周庭波.新型低温不育水稻(N-10s, N-13s)育性的初步鉴定[J].湖南师范大学自然科学学报(自然科学版),1991,14(2):376-378, 382. |
LI X Z, CHEN L B, ZHOU T B. Preliminary observation of fertility changes in the new type low temperature sensitive male sterile rice N-10s and N-13s [J]. J. Hunan Norm. Univ. (Nat. Sci.), 1991, 14(2): 376-378, 382. | |
93 | 吴厚雄,李必湖,向阳,等.低温敏核不育水稻go543S育性对温,光的反应[J].生态学报,2003,23(3):463-470. |
WU H X, LI B H, XIANG Y, et al.. Effects of temperature and photoperiod on the fertility of low temperature sensitive genic male sterile rice [J]. Acta Ecol. Sin., 2003, 23(3):463-470. | |
94 | 徐孟亮,张俊,龚曼,等.一个反向水稻两用核不育系育性对温度与光周期的反应[J].湖南师范大学自然科学学报(自然科学版),2010,33(4):85-88. |
XU M L, ZHANG J, GONG M, et al.. Response of fertility of a new reverse P(T)GMS line to temperature and photoperiod in rice [J]. J. Hunan Norm. Univ. (Nat. Sci.), 2010, 33(4):85-88. | |
95 | 江建华,倪金龙,吴爽,等.聚合水稻温敏核不育基因和反温敏核不育基因创制永久核不育系[J].中国水稻科学,2017,31(4):371-378. |
JIANG J H, NI J L, WU S,et al.. Development of permanent genic male sterile line by pyramiding thermos-sensitive male sterile genes and reverse temperature induced genic male sterile genes in rice (Oryza sativa L.) [J]. Chin. J. Rice Sci., 2017, 31(4):371-378. | |
96 | QI X, ZHANG C, ZHU J, et al.. Genome editing enables next-generation hybrid seed production technology [J]. Mol. Plant 2020, 13(9):1262-1269. |
[1] | 沈乐丞, 温志刚, 廖涵, 刘贤标, 蒋耀聪, 张远聪, 刘婷, 王玫. 叶面喷施不同硒肥对水稻硒含量及硒形态和稻米组分的影响[J]. 中国农业科技导报, 2025, 27(3): 206-215. |
[2] | 孙志康, 李力群, 郝捷, 吴晗, 吴娜, 郑超, 季嫱, 李选文, 陈晨. CRISPRCas系统在枯草芽孢杆菌基因组编辑中的研究进展[J]. 中国农业科技导报, 2025, 27(2): 24-32. |
[3] | 熊橙梁, 张庆富, 姚未远, 夏滔, 许庆平, 周喜新, 张毅, 陈丽鹃, 杨柳. 添加不同类型水稻秸秆对植烟连作土壤微生物群落的影响[J]. 中国农业科技导报, 2025, 27(1): 233-240. |
[4] | 魏荣华, 尹明, 王文生, 崔彦茹. 基于BSA-seq发掘水稻抽穗期相关QTLs及候选基因[J]. 中国农业科技导报, 2024, 26(9): 12-24. |
[5] | 孙亮, 徐益, 蔡沁, 郭靖豪, 赵灿, 郭保卫, 邢志鹏, 霍中洋, 张洪程, 胡雅杰. 中微量元素对水稻产量和品质的影响研究进展[J]. 中国农业科技导报, 2024, 26(8): 9-19. |
[6] | 刘大为, 秦锋, 廖骞, 王修善, 谢方平, 李铁辉. 南方籼稻热风干燥特性及其工艺参数优化[J]. 中国农业科技导报, 2024, 26(8): 93-102. |
[7] | 岳伟, 王晖, 陈曦, 占新春, 阮新民. 安徽省稻米品质综合评价方法研究[J]. 中国农业科技导报, 2024, 26(6): 141-147. |
[8] | 陈明迪, 胡桂花, 张海文, 王旺田. 水稻RR基因家族生物信息学及表达模式分析[J]. 中国农业科技导报, 2024, 26(5): 20-29. |
[9] | 曾建光, 刘桃李, 孙林娟, 袁定阳, 黄钰博, 金晨钟, 谭炎宁. 水稻矮秆迟抽穗突变体d534的性状及其对赤霉素的敏感性分析[J]. 中国农业科技导报, 2024, 26(3): 7-14. |
[10] | 张艺, 何军, 张宝龙, 张才军, 甘学华. 蓄雨型间歇灌溉模式下缓释肥对水稻生长、产量及水分利用的影响[J]. 中国农业科技导报, 2024, 26(10): 195-205. |
[11] | 岳洁茹, 秦志列, 侯起岭, 苑少华, 郝小聪, 杨吉芳, 白秀成, 赵昌平, 张风廷, 孙辉. BS型小麦光温敏雄性不育系柱头外露规律研究[J]. 中国农业科技导报, 2024, 26(10): 22-29. |
[12] | 钱政, 杨孙哲, 张国卿, 郭紫微, 张林朋, 万家兴, 杨红云. 基于卷积神经网络的水稻氮素营养诊断[J]. 中国农业科技导报, 2023, 25(9): 113-121. |
[13] | 李慧君, 张伟健, 吴伟健, 李高洋, 陈艺杰, 黄枫城, 黄永相, 蔺中, 甄珍. 种植海水稻对滨海盐土化学性质和微生物群落影响[J]. 中国农业科技导报, 2023, 25(9): 147-156. |
[14] | 邵社刚, 李婷, 柳勇, 林兰稳, 张东, 倪栋, 李俊杰, 朱立安. 外源菌剂对稻秆腐解及微生物群落结构的影响[J]. 中国农业科技导报, 2023, 25(9): 166-177. |
[15] | 单莉莉. 孕穗期低温对水稻叶片生理、产量的影响及外源褪黑素缓解效应[J]. 中国农业科技导报, 2023, 25(9): 23-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||