Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (6): 72-82.DOI: 10.13304/j.nykjdb.2023.0903
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Haohao YU1,2(), Xiangshu DONG1, Hao ZHAO1, Zhongxian LI2, Faguang HU2, Yanan LI2, Yuqiang LOU2, Feifei HE1(
)
Received:
2023-12-08
Accepted:
2024-03-28
Online:
2025-06-15
Published:
2025-06-23
Contact:
Feifei HE
喻好好1,2(), 董相书1, 赵颢1, 李忠贤2, 胡发广2, 李亚男2, 娄予强2, 何飞飞1(
)
通讯作者:
何飞飞
作者简介:
喻好好 E-mail:y550570@163.com;
基金资助:
CLC Number:
Haohao YU, Xiangshu DONG, Hao ZHAO, Zhongxian LI, Faguang HU, Yanan LI, Yuqiang LOU, Feifei HE. Analysis of SNP Loci and Alternative Splicing Events in Coffea arabica L. Under Drought Stress[J]. Journal of Agricultural Science and Technology, 2025, 27(6): 72-82.
喻好好, 董相书, 赵颢, 李忠贤, 胡发广, 李亚男, 娄予强, 何飞飞. 干旱胁迫下小粒咖啡SNP位点与可变剪接分析[J]. 中国农业科技导报, 2025, 27(6): 72-82.
Fig. 1 Basic characteristics of SNPA: Statistics of SNP mutation types; B: Distribution of all SNP on chromosomes; C: Distribution of SNP on functional elements of the reference genome
样品Sample | 移码替换Frameshift substitution | 非移码替换Nonframeshift substitution | 同义单核苷酸突变 Synonymous SNV | 非同义单核苷酸突变 Nonsynonymous SNV | 终止密码子增加 Stopgain | 终止密码子减少 Stoploss | 未知类型Unknown |
---|---|---|---|---|---|---|---|
CK1 | 1 620 | 374 | 36 596 | 34 741 | 111 | 42 | 630 |
CK2 | 1 634 | 379 | 37 284 | 35 619 | 114 | 39 | 632 |
CK3 | 1 612 | 347 | 35 002 | 32 972 | 103 | 39 | 605 |
CK4 | 1 609 | 382 | 36 612 | 34 849 | 109 | 35 | 646 |
D1 | 1 461 | 298 | 30 708 | 28 819 | 98 | 29 | 587 |
D2 | 1 440 | 306 | 30 213 | 28 156 | 97 | 29 | 541 |
D3 | 1 550 | 295 | 30 583 | 28 769 | 103 | 33 | 600 |
D4 | 1 404 | 282 | 27 954 | 26 104 | 85 | 27 | 533 |
HD1 | 1 251 | 255 | 25 352 | 23 035 | 70 | 26 | 473 |
HD2 | 1 281 | 221 | 23 966 | 21 613 | 64 | 25 | 475 |
HD3 | 1 208 | 239 | 22 441 | 20 450 | 61 | 29 | 390 |
HD4 | 1 294 | 248 | 24 817 | 22 921 | 70 | 25 | 475 |
Table 1 Distribution of SNP variant loci types in coding region
样品Sample | 移码替换Frameshift substitution | 非移码替换Nonframeshift substitution | 同义单核苷酸突变 Synonymous SNV | 非同义单核苷酸突变 Nonsynonymous SNV | 终止密码子增加 Stopgain | 终止密码子减少 Stoploss | 未知类型Unknown |
---|---|---|---|---|---|---|---|
CK1 | 1 620 | 374 | 36 596 | 34 741 | 111 | 42 | 630 |
CK2 | 1 634 | 379 | 37 284 | 35 619 | 114 | 39 | 632 |
CK3 | 1 612 | 347 | 35 002 | 32 972 | 103 | 39 | 605 |
CK4 | 1 609 | 382 | 36 612 | 34 849 | 109 | 35 | 646 |
D1 | 1 461 | 298 | 30 708 | 28 819 | 98 | 29 | 587 |
D2 | 1 440 | 306 | 30 213 | 28 156 | 97 | 29 | 541 |
D3 | 1 550 | 295 | 30 583 | 28 769 | 103 | 33 | 600 |
D4 | 1 404 | 282 | 27 954 | 26 104 | 85 | 27 | 533 |
HD1 | 1 251 | 255 | 25 352 | 23 035 | 70 | 26 | 473 |
HD2 | 1 281 | 221 | 23 966 | 21 613 | 64 | 25 | 475 |
HD3 | 1 208 | 239 | 22 441 | 20 450 | 61 | 29 | 390 |
HD4 | 1 294 | 248 | 24 817 | 22 921 | 70 | 25 | 475 |
Fig. 2 Functional annotation of SNP variant lociA: Biological process of GO enrichment; B: Cell component of GO enrichment; C: Molecular function of GO enrichment; D: KEGG annotation
Fig. 3 Statistics and functional analysis of differential AS events after 7 d of drought stress.A: Categorical statistics of significant differential AS events; B: Venn analysis of significant differential AS events; C: Functional annotation of genes with significant differential AS events. A3SS—Alternative 3’ splice site; A5SS—Alternative 5’ splice site; RI—Retained intron; MXE—Mutually exclusive exon; SE—Skipped exon
Fig. 4 Statistics and functional analysis of differential AS events after 14 d of drought stress.A: Categorical statistics of significant differential AS events; B: Venn analysis of significant differential AS events; C: Functional annotation of genes with significant differential AS events. A3SS—Alternative 3’ splice site; A5SS—Alternative 5’ splice site; RI—Retained intron; MXE—Mutually exclusive exon; SE—Skipped exon
Fig. 5 Differential expression and AS analysis of spliceosome related genes under different conditionsA: Venn analysis of spliceosome related genes; B: Differential expression analysis of spliceosome related genes; C: AS patterns of spliceosome related differential genes; D: Expression patterns of four spliceosome genes under different conditions. A3SS—Alternative 3’ splice site; A5SS—Alternative 5’ splice site; RI—Retained intron; MXE—Mutually exclusive exon; SE—Skipped exon
1 | 黄家雄,李贵平.中国咖啡遗传育种研究进展[J].西南农业学报,2008,21(4):1178-1181. |
HUANG J X, LI G P.Research progress of coffee breeding in China [J]. Southwest China J. Agric. Sci., 2008,21(4):1178-1181. | |
2 | DAMATTA F M, AVILA R T, CARDOSO A A,et al..Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: a review [J]. J. Agric. Food Chem., 2018,66(21):5264-5274. |
3 | 唐国勇,李昆,孙永玉,等.干热河谷不同利用方式下土壤活性有机碳含量及其分配特征[J].环境科学,2010,31(5):1365-1371. |
TANG G Y, LI K, SUN Y Y,et al..Soil labile organic carbon contents and their allocation characteristics under difierent land uses at dry-hot valley [J]. Environ. Sci., 2010,31(5):1365-1371. | |
4 | 于璐.云南地区季节性干旱特征分析[J].农业与技术,2018,38(7):149-150. |
5 | 唐立群,肖层林,王伟平.SNP分子标记的研究及其应用进展[J].中国农学通报,2012,28(12):154-158. |
TANG L Q, XIAO C L, WANG W P. Research and application progress of SNP markers [J]. Chin. Agric. Sci. Bull., 2012,28(12):154-158. | |
6 | WANG S, WONG D, FORREST K,et al..Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array [J]. Plant Biotechnol. J., 2014,12(6):787-796. |
7 | ZHANG D P, VEGA F E, INFANTE F,et al.. Accurate differentiation of green beans of Arabica and robusta coffee using nanofluidic array of single nucleotide polymorphism (SNP) markers [J]. J. AOAC Int., 2020,103(2):315-324. |
8 | MEROT-L’ANTHOENE V, TOURNEBIZE R, DARRACQ O,et al.. Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. [J]. Plant Biotechnol. J., 2019,17(7):1418-1430. |
9 | MEKBIB Y, TESFAYE K, DONG X,et al..Whole-genome resequencing of Coffea Arabica L.(Rubiaceae) genotypes identify SNP and unravels distinct groups showing a strong geographical pattern [J].BMC Plant Biol.,2022,22(1):69 [2023-11-15]. . |
10 | JOSÉ-LUIS S C, PAULINO P R, BELLO-BELLO J J, et al.. SNP markers identification by genome wide association study for chemical quality traits of coffee (Coffea spp.) germplasm [J]. Mol. Biol. Rep., 2022,49(6):4849-4859. |
11 | 何芳练,刘莉莉,蒋慧萍,等.芋全长转录组测序分析及淀粉生物合成相关基因挖掘[J].西南农业学报,2022,35(6):1252-1260. |
HE F L, LIU L L, JIANG H P, et al.. Full-length transcriptome sequences and the identification of putative genes for starch biosynthesis in Colocasia esculenta [J]. Southwest China J. Agric. Sci., 2022,35(6):1252-1260. | |
12 | 杨新森,李来一,刘彩月,等.山栏稻SNP位点与抗旱相关可变剪接鉴定及分析[J].分子植物育种,2023,21(20):6752-6759. |
YANG X S, LI L Y, LIU C Y, et al.. Identification and analysis of SNP loci and drought resistance related alternative splicing in Shanlan upland rice [J]. Mol. Plant Breed., 2023, 21(20):6752-6759. | |
13 | 胡悦,安硕,张小砣,等.盐胁迫和ABA处理下水稻基因组的可变剪接事件分析[J].复旦学报(自然科学版),2023,63(1):47-58. |
HU Y, AN S, ZHANG X T, et al.. Analysis of alternative splicing events in rice genome under salt stress and ABA treatment [J]. J. Fudan Univ. (Nat. Sci.), 2023, 63(1):47-58. | |
14 | BARCISZEWSKA-PACAK M, KNOP K, JARMOŁOWSKI A, et al.. Arabidopsis thaliana microRNA162 level is posttranscriptionally regulated via splicing and polyadenylation site selection [J]. Acta Biochim. Pol., 2016,63(4):811-816. |
15 | SEOK H Y, LEE S Y, SARKER S, et al.. Genome-wide analysis of stress-responsive genes and alternative splice variants in Arabidopsis roots under osmotic stresses [J/OL]. Int. J. Mol. Sci., 2023,24(19):14580 [2023-11-15]. . |
16 | SANYAL S K, KANWAR P, SAMTANI H, et al.. Alternative splicing of CIPK3 results in distinct target selection to propagate ABA signaling in Arabidopsis [J/OL].Front. Plant Sci., 2017, 8:11 [2023-11-15]. . |
17 | 周琳.EST:SNP分子标记技术在茶和咖啡中的开发与应用[D].南京:南京农业大学,2017. |
ZHOU L. Development and application of EST-SNP molecular markers in tea and coffee [D]. Nanjing: Nanjing Agricultural University, 2017. | |
18 | 温玉洁,赵雅杰,朱孔艳,等.向日葵抗旱自交系叶片转录组SNP位点信息挖掘[J].中国农学通报,2023,39(9):106-114. |
WEN Y J, ZHAO Y J, ZHU K Y, et al.. Information mining of SNP sites in the leaf transcriptome of sunflower drought-resistant inbred lines [J]. Chin. Agric. Sci. Bull., 2023,39(9):106-114. | |
19 | SOUSA T V, CAIXETA E T, ALKIMIM E R,et al..Early selection enabled by the implementation of genomic selection in Coffea Arabica breeding [J/OL].Front. Plant Sci.,2018,9:1934 [2023-11-15]. . |
20 | 武瑞瑞,黄家雄,杨阳,等.干旱和复水对4种咖啡叶片叶绿素荧光特性和SPAD的影响[J].热带农业科学,2019,39(10):66-74. |
WU R R, HUANG J X, YANG Y, et al.. Effect of drought stress and rehydration on chlorophyll fluorescence parameters and SPAD of leaves of four Catimor cultivars of Coffea arabica [J]. Chin. J. Trop. Agric., 2019, 39(10):66-74. | |
21 | DE AQUINO S O, DE ARAÚJO CARNEIRO F, RÊGO E C S, et al.. Functional analysis of different promoter haplotypes of the coffee (Coffea canephora) CcDREB1D gene through genetic transformation of Nicotiana tabacum [J]. Plant Cell Tissue Organ Cult., 2018,132(2):279-294. |
22 | CHENG C Y, KRISHNAKUMAR V, CHAN A P,et al..Araport11: a complete reannotation of the Arabidopsis thaliana reference genome [J]. Plant J., 2017,89(4):789-804. |
23 | ZHANG Z F, XIAO B Z. Comparative alternative splicing analysis of two contrasting rice cultivars under drought stress and association of differential splicing genes with drought response QTLs [J/OL]. Euphytica, 2018,214(4):73 [2023-11-15]. . |
24 | LI S X, YU X, CHENG Z H, et al.. Large-scale analysis of the cassava transcriptome reveals the impact of cold stress on alternative splicing [J]. J. Exp. Bot., 2020,71(1):422-434. |
25 | XU Y Y, ZENG A S, SONG L X,et al..Comparative transcriptomics analysis uncovers alternative splicing events and molecular markers in cabbage (Brassica oleracea L.) [J].Planta, 2019,249(5):1599-1615. |
26 | LEE H J, EOM S H, LEE J H, et al.. Genome-wide analysis of alternative splicing events during response to drought stress in tomato (Solanum lycopersicum L.) [J]. J. Hortic. Sci. Biotechnol., 2020, 95(3):286-293. |
27 | MARQUEZ Y, BROWN J W, SIMPSON C,et al..Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis [J]. Genome Res., 2012,22(6):1184-1195. |
28 | THATCHER S R, DANILEVSKAYA O N, MENG X,et al.. Genome-wide analysis of alternative splicing during development and drought stress in maize [J]. Plant Physiol., 2015,170(1):586-599. |
29 | YANG H, LI P, JIN G H, et al.. Temporal regulation of alternative splicing events in rice memory under drought stress [J]. Plant Divers., 2022,44(1):116-125. |
30 | PANG H B, WU Y M, LIU Z R,et al..Genome-wide differences of alternative splicing between Oryza sativa ssp.indica and Oryza sativa ssp.Japonica [J/OL].Acta Physiol.Plantarum,2023,45(2):37 [2023-11-15]. . |
31 | SONG L, PAN Z, CHEN L,et al.. Analysis of whole transcriptome RNA-seq data reveals many alternative splicing events in soybean roots under drought stress conditions [J/OL].Genes (Basel),2020,11(12):E1520 [2023-11-15]. . |
32 | FENG J L, LI J J, GAO Z X,et al.. SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis [J]. Mol. Plant, 2015,8(7):1038-1052. |
33 | LAN Y G, ZHANG K M, HE T,et al.. Systematic analysis of the serine/arginine-rich protein splicing factors (SRs) and focus on salt tolerance of PtSC27 in Populus trichocarpa [J]. Plant Physiol. Biochem., 2022,173:97-109. |
34 | WENG X, ZHOU X X, XIE S Q,et al..Identification of cassava alternative splicing-related genes and functional characterization of MeSCL30 involvement in drought stress [J]. Plant Physiol. Biochem., 2021,160:130-142. |
[1] | Xinwei XUE, Dan LIU, Shi ZHANG, Wenyu HAN, Ankang MU, Zhikun YU, Fan YANG, Yahui WEN, Jialin ZHANG, Yongping ZHANG, Xianrui WANG. Comprehensive Evaluation and Screening of Drought Resistance of 86 Millet Germplasm Resources During Germination Period [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 39-51. |
[2] | ling QIN, Yanke WANG, Erying CHEN, Yanbing YANG, Feifei LI, Mengyuan ZHANG, Yanan GUAN. Analysis of Physiological Characteristics About ABA Alleviating Foxtail Millet Seedling Stage Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 36-44. |
[3] | Yixin CHEN, Xiubo YANG, Shijun TIAN, Cong WANG, Zhiying BAI, Cundong LI, Ke ZHANG. Response of GhCOMT28 to Drought Stress in Gossypium hirsutum [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 45-56. |
[4] | Zhenyu XUE, Kangkang ZHANG, Yuanyuan ZHANG, Qiangqiang YAN, Lirong YAO, Hong ZHANG, Yaxiong MENG, Erjing SI, Baochun LI, Xiaole MA, Huajun WANG, Juncheng WANG. Screening and Functional Gene Detection of High-quality and Drought-resistant Wheat Germplasms [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 35-49. |
[5] | Qianya WEI, Xinqi LIN, Lamei LIANG, Zhongwei QIN, Yingzhi LI. Effects of Melatonin on Seed Germination and Seedling Growth of Chaotian Pepper Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 46-57. |
[6] | Yuan HE, Xiaotong GU, Liqing FENG, Huijun DUAN, Yongsheng TAO. Screening and Evaluation of Drought Resistance Index for Maize Hybrids During Seedling and Germination Stages [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 30-40. |
[7] | Rui TIAN, Hua ZHANG, Meihong HUANG, Zhenqi SHAO, Xihuan LI, Caiying ZHANG. Mining of Candidate Genes and Genetic Loci Conferring Drought Tolerance in Soybean [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 69-82. |
[8] | Yancheng WANG, Jiyue ZHANG, Shuaiqi FENG, Xue LIANG, Zhen ZHANG, Weiwei DONG, Wenxiu JI. Effects of Exogenous PGPR Combined with Organic Fertilizers on Soil Properties and Stress Resistance of Ginseng Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 196-202. |
[9] | Shuang WANG, Yixing HOU, Linjiao FENG, Qianqian LU, Long ZHOU. Effect of Drought Stress on Anatomical Structure of Leaves in Table Grape Varieties [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 40-49. |
[10] | Yilong ZHANG, Xiaofan SUN, Shuo LI, Peiying LI, Zongjiu SUN. Physiological Response of Different Drought-resistant Cynodon dactylon Germplasm to Drought [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 59-70. |
[11] | Liangting TANG, Shihui HUANG, Xi NIU, Sheng LI, Jiafu WANG, Xueqin RAN. Effects of Estrus Cycle on Expression of Ovarian Biological Clock-related Genes of Xiang Pig [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 67-84. |
[12] | Qing LU, Ting LIANG, Weiwei WANG, Dezhou WANG, Xian WU, Xiaoyan WANG, Yimiao TANG. Cloning and Expression Analysis of Wheat Heat Shock Protein Gene TaHSP90-1 [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 44-54. |
[13] | Lili WANG, Congpei YIN, Feng LI, Zhimin YANG, Fangming LIU, Baisong LIN, Xiaojing LIU, Haijun LIU, Jing SUN, Dongdong SHAN, Jianghui CUI, Zhenqing ZHANG. Microbial Community Structure of Potato Rhizosphere Soil and Its Response to Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 58-69. |
[14] | Fangling WANG, Mingyue ZHANG, Yaru ZHOU, Qinglin GUAN, Xinyan LI, Qiu ZHONG, Mingqin ZHAO. Effect of TS-PAA Water Retaining Agent on Growth and Photosynthetic Characteristics of Cigar under Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 162-172. |
[15] | Jiangyan LI, Xianhua ZHANG, Xiaoqiang YUAN. Drought Resistance Index Screening and Drought Resistance Evaluation of Dactylisglomerata Germplasm Resources During Seedling [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 84-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||