Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (12): 107-114.DOI: 10.13304/j.nykjdb.2023.0243
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Yan ZHANG(), Laigang WANG, Jia HE, Yan GUO, Xiuzhong YANG, Hongli ZHANG, Ting LIU(
)
Received:
2023-03-30
Accepted:
2023-10-12
Online:
2024-12-15
Published:
2024-12-17
Contact:
Ting LIU
张彦(), 王来刚, 贺佳, 郭燕, 杨秀忠, 张红利, 刘婷(
)
通讯作者:
刘婷
作者简介:
张彦E-mail:zy12032016@163.com;
基金资助:
CLC Number:
Yan ZHANG, Laigang WANG, Jia HE, Yan GUO, Xiuzhong YANG, Hongli ZHANG, Ting LIU. Study on the Spatio-Temporal Changes of Tea Planting Area Based on Multi-Source Remote Sensing[J]. Journal of Agricultural Science and Technology, 2024, 26(12): 107-114.
张彦, 王来刚, 贺佳, 郭燕, 杨秀忠, 张红利, 刘婷. 基于多源遥感数据的茶叶种植面积时空变化研究[J]. 中国农业科技导报, 2024, 26(12): 107-114.
影像类型 Image type | 空间分辨率 spatial resolution/m | 影像数量 Number of images | 采集年份 Collecting years | 用途描述 Directions for use |
---|---|---|---|---|
Landsat5 | 30 | 11 | 2000—2010 | 识别2000年、2005年、2010年茶叶种植区 Identify tea area in 2000, 2005 and 2010 |
Landsat7 | 30 | 3 | 2000 | 配合landsat5识别2000年茶叶种植区 Identify tea area in 2000 with landsat5 |
Landsat8 | 15 | 6 | 2015—2020 | 识别2015年和2020年茶叶种植区 Identify tea area in 2015 and 2020 |
Sentinel-2 | 10 | 3 | 2015—2020 | 配合landsat8识别2015年和2020年茶叶种植区,并对结果进行精度验证 Identify tea area in 2015 and 2020 with landsat8, and verify accuracy of results |
Tab. 1 Remote sensing data statistics
影像类型 Image type | 空间分辨率 spatial resolution/m | 影像数量 Number of images | 采集年份 Collecting years | 用途描述 Directions for use |
---|---|---|---|---|
Landsat5 | 30 | 11 | 2000—2010 | 识别2000年、2005年、2010年茶叶种植区 Identify tea area in 2000, 2005 and 2010 |
Landsat7 | 30 | 3 | 2000 | 配合landsat5识别2000年茶叶种植区 Identify tea area in 2000 with landsat5 |
Landsat8 | 15 | 6 | 2015—2020 | 识别2015年和2020年茶叶种植区 Identify tea area in 2015 and 2020 |
Sentinel-2 | 10 | 3 | 2015—2020 | 配合landsat8识别2015年和2020年茶叶种植区,并对结果进行精度验证 Identify tea area in 2015 and 2020 with landsat8, and verify accuracy of results |
特征组合 Feature combination | 总体精度 Total precision/% | Kappa系数 Kappa coefficient |
---|---|---|
光谱特征 Spectral feature | 82.66 | 0.72 |
纹理特征 Texture feature | 80.41 | 0.69 |
植被指数特征 Vegetable index feature | 81.25 | 0.76 |
光谱+植被指数 Spectrum + vegetable index | 86.76 | 0.83 |
纹理+植被指数 Texture + vegetable index | 86.39 | 0.83 |
光谱+纹理 Spectrum + texture | 86.02 | 0.82 |
光谱+纹理+植被指数 Spectrum+texture+vegetable index | 89.02 | 0.90 |
Tab.2 Precision of different feature combination
特征组合 Feature combination | 总体精度 Total precision/% | Kappa系数 Kappa coefficient |
---|---|---|
光谱特征 Spectral feature | 82.66 | 0.72 |
纹理特征 Texture feature | 80.41 | 0.69 |
植被指数特征 Vegetable index feature | 81.25 | 0.76 |
光谱+植被指数 Spectrum + vegetable index | 86.76 | 0.83 |
纹理+植被指数 Texture + vegetable index | 86.39 | 0.83 |
光谱+纹理 Spectrum + texture | 86.02 | 0.82 |
光谱+纹理+植被指数 Spectrum+texture+vegetable index | 89.02 | 0.90 |
1 | 吴芹瑶,杨江帆,林程,等.中国茶叶生产布局变迁研究[J].茶叶科学,2022,42(2):290-300. |
WU Q Y, YANG J F, LIN C, et al.. Research on the changes of China’s tea production layout [J]. J. Tea Sci., 2022,42(2):290-300. | |
2 | 黄邵东,徐伟恒,吴超,等.遥感在茶园监测中的应用研究进展[J].西部林业科学,2020,49(2):1-9, 23. |
HUANG S D, XU W H, WU C, et al.. Research progress of remote sensing on tea plantation monitoring [J]. J. West China Forestry Sci., 2020,49(2):1-9, 23. | |
3 | 徐伟燕,孙睿,金志凤.基于资源三号卫星影像的茶树种植区提取[J].农业工程学报,2015, 32(S1):161-168. |
XU W Y, SUN R, JIN Z F. Extracting tea plantations based on ZY-3 satellite data [J]. Trans. Chin. Soc. Agric. Eng., 2015, 32(S1):161-168. | |
4 | 马超,杨飞,王学成.基于中尺度光谱和时序物候特征提取南方丘陵山区茶园[J].国土资源遥感,2019, 31(1):141-148. |
MA C, YANG F, WANG X C. Extracting tea plantations in southern hilly and mountainous region based on mesoscale spectrum and temporal phenological features [J]. Remote Sens. Nat. Resour., 2019,31(1):141-148. | |
5 | 杨艳魁,陈芸芝,吴波,等.基于高分二号影像结合纹理信息的茶园提取[J].江苏农业科学, 2019, 47(2):210-214. |
YANG Y K, CHEN Y Z, WU B, et al.. Tea extraction based on GF-2 image combined with texture information [J]. Jiangsu Agric. Sci., 2019, 47(2):210-214. | |
6 | 张世超,王常颖,李劲华,等.一种面向对象结合变差函数的高分辨率遥感影像茶种植区自动提取方法[J].遥感信息, 2020,36(1):126-136. |
ZHANG S C, WANG C Y, LI J H, et al.. An object-oriented and variogram based method for automatic extraction of tea planting area from high resolution remote sensing imagery [J]. Remote Sens. Inform., 2020,36(1):126-136. | |
7 | DIHKAN M, GUNEROGLU N, KARSLI F, et al.. Remote sensing of tea plantations using an SVM classifier and pattern-based accuracy assessment technique [J]. Int. J. Remote Sens., 2013, 34(23):8549-8565. |
8 | 孟浩然,李存军,郑翔宇,等.综合光谱纹理和时序信息的油茶遥感提取研究[J].光谱学与光谱分析,2023,43(5):1589-1597. |
MENG H R, LI C J, ZHENG X Y, et al.. Research on extraction of camellia oleifera by integrating spectral, texture and time sequence remote sensing information [J]. Spectroscopy Spectral Anal.,2023,43(5):1589-1597. | |
9 | 刁亚芹,韩莹,李兆富.2000年以来天目湖流域茶园分布变化及趋势模拟[J].湖泊科学,2013,25(6):799-808. |
DIAO Y Q, HAN Y, LI Z F. Spatio-temporal change of tea plantation since 2000 and model-based prediction in the Tianmuhu reservoir watershed [J]. J. Lake Sci., 2013, 25(6):799-808. | |
10 | 郑鹏,林海荣,占昕,等.基于CA-Markov模型的安溪县茶叶种植区动态变化[J].生态学杂志, 2018,37(9):2776-2785. |
ZHENG P, LIN H R, ZHAN X, et al.. Dynamics of tea planting areas in Anxi county based on CA-Markov model [J]. Chin. J. Ecol., 2018,37(9):2776-2785. | |
11 | 陈慧,江洪,蒋世豪.面向对象最优分割尺度下的茶园提取[J].测绘与空间地理信息,2020,43(12):17-20. |
CHEN H, JIANG H, JIANG S H. Tea plantation extraction under object-oriented optimal segmentation scale [J]. Geomatics Spatial Inform. Technol., 2020,43(12):17-20. | |
12 | 张清改.新中国成立70年来信阳茶发展的基本历程与主要经验[J].农业考古, 2020(2):247-253. |
ZHANG Q G, The basic course and main experience of Xinyang tea development in the 70 years since the founding of new China [J]. Agric. Archaeol., 2020(2):247-253. | |
13 | 杨晨曦.基于随机森林算法的信阳茶叶种植区提取及其时空变化分析[D].信阳:信阳师范学院,2022. |
YANG C X. Extraction of Xinyang tea planting area based on random forest algorithm and its temporal and spatial variation analysis [D]. Xinyang: Xinyang Normal University, 2022. | |
14 | 李雪柔,陈飞燕,林爱文,等.基于随机森林回归的茶园扩张驱动机制分析[J].生态与农村环境学报,2020, 36(1) :44-52. |
LI X R, CHEN F Y, LIN A W, et al.. Driving mechanism of tea plantation expansion using a random forest regression model [J]. J. Ecol. Rural Environ., 2020, 36(1):44-52. | |
15 | 高金萍,于慧娜,王月婷,等.环境减灾二号A/B卫星在森林树种识别中的应用[J].航天器工程,2022,31(3):187-194. |
GAO J P, YU H N, WANG Y T, et al.. Application of HJ-2A/B satellites in field of forest tree species identification [J]. Spacecraft Eng., 2022,31(3):187-194. | |
16 | 董灵波,梁凯富,张一帆,等.基于Landsat 8时间序列数据的翠岗林场森林类型划分[J].应用生态学报,2022,33(9):2339-2346. |
DONG L B, LIANG K F, ZHANG Y F, et al.. Classification of forest types in Cuigang forest farm based on time series data of Landsat 8 [J]. Chin. J. Appl. Ecol., 2022, 33(9):2339-2346. | |
17 | 林娜,王伟,王斌.基于随机森林和Landsat8 OLI影像的脐橙果园种植信息提取[J].地理空间信息,2020,19(11):96-100. |
LIN N, WANG W, WANG B. Navel orange orchard plantation information extraction based on random forest and Landsat 8 OLI images [J]. Geospatial Inform., 2020,19(11):96-100. | |
18 | 王介勇, 刘彦随. 1990年至2005年中国粮食产量重心演进格局及其驱动机制[J].资源科学,2009,31(7):1188-1194. |
WANG J Y, LIU Y S. The changes of grain output center of gravity and its driving forces in China since 1990 [J]. Resour. Sci., 2009,31(7):1188-1194. | |
19 | ZHU J, PAN Z W, WANG H, et al.. An improved multi-temporal and multi-feature tea plantation identification method using Sentinel-2 imagery [J/OL]. Sensors, 2019, 19(9):2087 [2024-03-04]. . |
[1] | Lu LIU, Wei QI, Yuefeng GUO, Xiaxia FAN, Jiuwei CHI. Effect of Stumping on Leaf Functional Traits of Caragana korshinskii in Ecologically Fragile Area of Otog Banner [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 61-68. |
[2] | Xialing LIU, Zhaoyan CUI, Hang YE, Xiaoqiang WANG, Li ZHENG. High Standard Farmland Construction Based on Multi-source Spatio-temporal Point Cloud Fusion Technology [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 80-92. |
[3] | Peihan JIANG, Xiaonan YANG, Chenxu YANG, Aijun ZHANG. Estimation of Nitrogen Content in Millet Canopy Based on Multi Parameter Partial Least Squares Model [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 91-101. |
[4] | Yutao SHI, Huizhen XIE, Shulin ZHENG, Guanhua YU, Feiquan WANG, Li LI, Bo ZHANG, Yuanhua LI, Shengcai LUO. Analysis of Biochemical Characteristics and Superoxide Anion Radical Scavenging Activity of Tea Polysaccharides of Local Tea Germplasms in Wuyishan [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 65-76. |
[5] | Yike XU, Shuang LI, Changle LIU, Peiwen KOU, Xiaochun SUN, Wenjing HUANG. Study on Agronomic Characters and Photosynthetic Physiological Characteristics of Pinellia ternata from Different Producing Areas [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 77-89. |
[6] | Gang ZHAO, Shuying WANG, Shangzhong LI, Jianjun ZHANG, Yi DANG, Lei WANG, Xingmao LI, Wanli CHENG, Gang ZHOU, Shengli NI, Tinglu FAN. Effects of Precipitation on Yield and Water Consumption of Winter Wheat in Loess Plateau in Recent 40 Years [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 164-173. |
[7] | Hong ZHANG, Weiguo LI, Xiaodong ZHANG, Bihui LU, Chengcheng ZHANG, Wei LI, Tinghuai MA. Extraction of Winter Wheat Planting Area Based on Fusion Features of HJ-1 and GF-1 Image [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 109-119. |
[8] | Zhen CHENG, Jianlong NIU, Yuting MA, weiyang LIU, Xuewei JIANG, Xueqi LIANG, Hongqiang DONG. Dynamic Changes of Cotton Phenological Stages in Alar Reclamation Area of Southern Xinjiang from 1990 to 2020 [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 206-214. |
[9] | Tianjun TANG, Yang CHEN, Jun HU, Haotian JIANG. Research on Tobacco Precise Recognition Method Based on UAV Image Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 145-157. |
[10] | Na CHA, Baohe LIU, Zhen ZHANG, Long LI, Yanjiao WANG, Liguo WANG, Feifei SU. Study on Carbon Sink Function of Road Area of Typical Grassland Under Different Restoration Years in Inner Mongolia [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 207-216. |
[11] | Xiao CHEN, Fuqing YU, Jian LU, Yazhou ZHAO, Jiandong AN. Current Situation and Strategy of Honeybee Genetic Resources Protection in China [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 1-7. |
[12] | Shulin ZHENG, Yutao SHI, Feiquan WANG, Bangqiang WU, Yuanhua LI, Bo ZHANG, Naixing YE. Analysis and Comprehensive Evaluation of Content of Mineral Elements in Flowers of Different Tea Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 178-188. |
[13] | Lu MENG, Jingwen FAN, Xinyu SAI, Lusheng ZENG, Xiangyun SONG, Dejie CUI. Effects of Lime on Soil Improvement and Plant Growth in Apple Orchards [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 197-204. |
[14] | Linjiang YIN, Wei LI, Weiquan ZHAO, Zulun ZHAO, Sisi LYU, Xiaoqiong SUN. Research on Characteristics and Coverage Extraction of Rice Multi-phase Vegetation Index [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 83-98. |
[15] | Jun CHEN, Qi ZHANG, Mengyu YANG, Zhenyang YUAN. Effects of Growing Grass on Microclimate Environment and Apple Leaves in Apple Orchard [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 158-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||