Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (5): 110-119.DOI: 10.13304/j.nykjdb.2022.0977
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Lifang SONG(), Guiping LIAO(
), Min CHEN, Yuyang HE-LUO
Received:
2022-11-11
Accepted:
2023-03-22
Online:
2024-05-15
Published:
2024-05-14
Contact:
Guiping LIAO
通讯作者:
廖桂平
作者简介:
宋丽芳E-mail:872574009@qq.com;
基金资助:
CLC Number:
Lifang SONG, Guiping LIAO, Min CHEN, Yuyang HE-LUO. Hyperspectral Estimation of Rape Leaf Water Content Based on Machine Learning[J]. Journal of Agricultural Science and Technology, 2024, 26(5): 110-119.
宋丽芳, 廖桂平, 陈敏, 何罗驭阳. 基于机器学习的油菜叶片水分含量高光谱估测[J]. 中国农业科技导报, 2024, 26(5): 110-119.
Fig. 1 Pre-treated result of original spectralA:Original spectral; B: SG smoothing pretreated; C:1st-derivative pretreated; D: SNV pretreated; E: MSC pretreated; F: 2nd-derivative pretreated
生育时期 Growth stage | 方法 Method | 训练集 Training set | 测试集 Prediction set | ||
---|---|---|---|---|---|
相关系数r | 均方根误差RMSE | 相关系数r | 均方根误差RMSE | ||
蕾薹期 Budding stage | SG平滑 SG smoothing | 0.705 | 1.293 | 0.627 | 1.534 |
MSC | 0.764 | 1.172 | 0.735 | 1.421 | |
SNV | 0.612 | 1.266 | 0.536 | 1.714 | |
一阶求导 1st-derivative | 0.575 | 1.663 | 0.524 | 1.368 | |
二阶求导 2nd-derivative | 0.323 | 2.759 | 0.317 | 1.975 | |
初花期 Initialflowering stage | SG平滑 SG smoothing | 0.625 | 1.672 | 0.601 | 2.124 |
MSC | 0.721 | 1.514 | 0.711 | 1.421 | |
SNV | 0.597 | 1.463 | 0.547 | 1.842 | |
一阶求导 1st-derivative | 0.624 | 1.453 | 0.586 | 1.265 | |
二阶求导 2nd-derivative | 0.423 | 2.312 | 0.328 | 2.226 |
Table 1 Evaluation of PLS model of leaf water content with different pretreatment methods
生育时期 Growth stage | 方法 Method | 训练集 Training set | 测试集 Prediction set | ||
---|---|---|---|---|---|
相关系数r | 均方根误差RMSE | 相关系数r | 均方根误差RMSE | ||
蕾薹期 Budding stage | SG平滑 SG smoothing | 0.705 | 1.293 | 0.627 | 1.534 |
MSC | 0.764 | 1.172 | 0.735 | 1.421 | |
SNV | 0.612 | 1.266 | 0.536 | 1.714 | |
一阶求导 1st-derivative | 0.575 | 1.663 | 0.524 | 1.368 | |
二阶求导 2nd-derivative | 0.323 | 2.759 | 0.317 | 1.975 | |
初花期 Initialflowering stage | SG平滑 SG smoothing | 0.625 | 1.672 | 0.601 | 2.124 |
MSC | 0.721 | 1.514 | 0.711 | 1.421 | |
SNV | 0.597 | 1.463 | 0.547 | 1.842 | |
一阶求导 1st-derivative | 0.624 | 1.453 | 0.586 | 1.265 | |
二阶求导 2nd-derivative | 0.423 | 2.312 | 0.328 | 2.226 |
生育时期 Growth stage | 变量数量 Variable number | 输出波长 Output wavelength/nm |
---|---|---|
蕾薹期 Budding stage | 6 | 523,561,1 390,1 481,2 316,2 491 |
初花期 Initial flowering stage | 7 | 553,645,709,754,1 000,1 650,2 444 |
Table 2 SPA feature selection wavelength
生育时期 Growth stage | 变量数量 Variable number | 输出波长 Output wavelength/nm |
---|---|---|
蕾薹期 Budding stage | 6 | 523,561,1 390,1 481,2 316,2 491 |
初花期 Initial flowering stage | 7 | 553,645,709,754,1 000,1 650,2 444 |
生育时期Growth stage | 训练集 Training set (n=315) | 预测集Prediction set (n=105) | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
蕾薹期 Budding stage | 0.895 | 1.341 | 0.832 | 1.744 |
初花期 Initial flowering stage | 0.871 | 1.585 | 0.808 | 1.725 |
Table 3 BPNN modeling and prediction effect of rape leaf water content
生育时期Growth stage | 训练集 Training set (n=315) | 预测集Prediction set (n=105) | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
蕾薹期 Budding stage | 0.895 | 1.341 | 0.832 | 1.744 |
初花期 Initial flowering stage | 0.871 | 1.585 | 0.808 | 1.725 |
生育时期 Growth stage | 训练集 Training set (n=315) | 预测集 Prediction set (n=105) | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
蕾薹期 Budding stage | 0.905 | 1.113 | 0.857 | 1.791 |
初花期 Initial flowering stage | 0.888 | 1.433 | 0.827 | 1.521 |
Table 4 SVR modeling and prediction effect of rape leaf water content
生育时期 Growth stage | 训练集 Training set (n=315) | 预测集 Prediction set (n=105) | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
蕾薹期 Budding stage | 0.905 | 1.113 | 0.857 | 1.791 |
初花期 Initial flowering stage | 0.888 | 1.433 | 0.827 | 1.521 |
1 | 白桂萍,谢雄泽,谢捷,等.中国油菜生产布局时空演变及影响因素浅析[J].中国油脂,2022,48(4):1-6. |
BAI G P, XIE X Z, XIE J, et al.. Analysis on the temporal and spatial evolution and influencing factors of | |
oilseed rape production layout in China [J]. China Oils Fats,2022,48(4):1-6. | |
2 | 黄杰.气候变化对中国油菜生产布局的影响研究[D].武汉:华中农业大学,2019. |
HUANG J. Study on the impact of climate change on the distribution of Chinese rape production [D]. Wuhan: Huazhong Agricultural University, 2019. | |
3 | 冷博峰,李先容,陈雪婷,等.2008-2019年中国油菜生产性状变化趋势[J].中国油料作物学报,2021, 43 (2):171-185. |
LENG B F, LI X R, CHEN X T, et al.. Variation trend of rapeseed production in china from 2008 to 2019 [J]. Chin. J. Oil Crop Sci., 2021,43(2):171-185. | |
4 | 张玮,王鑫梅,潘庆梅,等.干旱胁迫下雷竹叶片叶绿素的高光谱响应特征及含量估算[J].生态学报, 2018, 38 (18):6677-6684. |
ZHANG W, WANG X M, PAN Q M, et al.. Hyperspectral response characteristics and chlorophyll content estimation of Phyllostachys violascens leaves under drought stress [J]. Acta Ecol. Sin., 2018,38(18):6677-6684. | |
5 | 张海威,张飞,张贤龙,等.光谱指数的植被叶片含水量反演[J].光谱学与光谱分析,2018,38(5):1540-1546. |
ZHANG H W, ZHANG F, ZHANG X L, et al.. Inversion of vegetation leaf water content based on spectral index [J]. Spectrosc. Spect. Anal., 2018,38(5):1540-1546. | |
6 | 梁亮,张连蓬,林卉,等.基于导数光谱的小麦冠层叶片含水量反演[J].中国农业科学,2013,46(1):18-29. |
LIANG L, ZHANG L P, LIN H, et al.. Estimating canopy leaf water content in wheat based on derivative spectral [J]. Sci. Agric. Sin., 2013,46(1):18-29. | |
7 | ZHANG Q X, LI Q B, ZHANG G J. Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection [J]. J. Spectroscopy.,2012,27(2):93-105. |
8 | DINESH K M, NITIN B, et al.. Rethinking on the methodology for assessing global water and food challenges [J]. Inter. J. Water Resour. Dev., 2020,36(2-3):325-342. |
9 | 瞿益民,唐合年,葛妹兰,等.油菜需水量试验分析[J].江苏水利,2005,(10):20-21, 23. |
QU Y M, TANG H N, GE M L, et al.. Analysis of rape water requirement test [J]. Jiangsu Water Resour., 2005,(10):20-21, 23. | |
10 | 黄纯倩,朱晓义,张亮,等.干旱和高温对油菜叶片光合作用和叶绿素荧光特性的影响[J].中国油料作物学报,2017,39(3):342-350. |
HUANG C Q, ZHU X Y, ZHANG L, et al.. Effects of drought and high temperature on photosynthesis and chlorophyll fluorescence characteristics of rapeseed leaves [J]. Chin. J. Oil Crop Sci., 2017,39(3):342-350. | |
11 | MAMNABI S, NASROLLAHZADEH S, GHASSEMI-GOLEZANI K, et al.. Improving yield-related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions [J]. J. Saudi Biol. Sci.,2020,27(3)797-804. |
12 | 刘晓静,陈国庆,王良,等.不同生育时期冬小麦叶片相对含水量高光谱监测[J].麦类作物学报, 2018, 38(7):854-862. |
LIU X J, CHEN G Q, WANG L, et al.. Monitoring leaf relative water content of winter wheat based on hyperspectral index at different growth stages [J]. J. Triticeae Crops, 2018,38(7):854-862. | |
13 | 徐庆,马驿,蒋琦,等.水稻叶片含水量的高光谱遥感估算[J].遥感信息,2018,33(5):1-8. |
XU Q, MA Y, JIANG Q, et al.. Estimation of rice leaf water content based on hyperspectral remote sensing [J]. Remote Sens. Inform., 2018,33(5):1-8. | |
14 | 马岩川.基于高光谱遥感的棉花冠层水氮参数估算[D].北京:中国农业科学院,2020. |
MA Y C. Estimation of water and nitrogen parameters of cotton at canopy scale based on hyperspectral remote sensing [D].Beijing: Chinese Academy of Agricultural Sciences,2020. | |
15 | 王浩云,李晓凡,李亦白,等.基于高光谱图像和3D-CNN的苹果多品质参数无损检测[J].南京农业大学学报,2020,43(1):178-185. |
WANG H Y, LI X F, LI Y B, et al.. Non-destructive detection of apple multi-quality parameters based on hyperspectral imaging technology and 3D-CNN [J]. J. Nanjing Agric. Univ., 2020,43(1):178-185. | |
16 | 代秋芳,廖臣龙,李震,等.基于CARS-CNN的高光谱柑橘叶片含水率可视化研究[J].光谱学与光谱分析, 2022,42(9):2848-2854. |
DAI Q F, LIAO Q L, LI Z, et al.. Hyperspectral visualization of citrus leaf moisture content based on CARS-CNN [J]. Spectrosc. Spect. Anal., 2022,42(9):2848-2854. | |
17 | 潘庆梅,张劲松,张俊佩,等.不同品种核桃叶片含水量与高光谱反射率的相关性差异分析[J].林业科学研究, 2019,32(6):1-6. |
PAN Q M, ZHANG J S, ZHANG J P, et al.. Analysis of correlation and differences between leaf moisture and hyperspectral reflectance among different walnut varieties [J]. Forest Res.,2019,32(6):1-6. | |
18 | 张晓东,毛罕平,左志宇,等.干旱胁迫下油菜含水率的高光谱遥感估算研究[J].安徽农业科学, 2011, 39(30):18451-18452, 18487. |
ZHANG X D, MAO H P, ZUO Z Y, et al.. Study on estimation model for rape moisture content under water stress based on hyperspectral remote sensing [J]. J. Anhui Agric. Sci.,2011,39(30):18451-18452, 18487. | |
19 | 张晓东,李立,毛罕平,等.基于PCA-BP多特征融合的油菜水分胁迫无损检测[J].江苏大学学报(自然科学版),2016,37(2):174-182. |
ZHANG X D, LIP, MAO H P, et al.. Nondestructive testing method for rape water stress with multiple feature information fusion based on PCA-BP method [J]. J. Jiangsu Univ. (Nat. Sci.), 2016,37(2):174-182. | |
20 | 仝春艳,马驿,杨振忠,等.基于角度指数的油菜叶片等效水厚度估算研究[J].核农学报,2019,33(1):187-198. |
TONG C Y, MA Y, YANG Z Z, et al.. Estimation of equivalent water thickness of rapeseed leaves based on angle index [J]. J. Nucle. Agric. Sci., 2019,33(1):187-198. | |
21 | 张君,蔡振江,张东方,等.基于机器学习与光谱技术的油菜叶片含水率估测研究[J].河北农业大学学报, 2021,44(6):122-127. |
ZHANG J, CAI Z J, ZHANG D F, et al.. Estimation of water content in rape leaves by spectral reflectance combined with machine learning [J]. J. Hebei Agric. Univ., 2021,44(6):122-127. | |
22 | 潘月,曹宏鑫,齐家国,等.基于高光谱和数据挖掘的油菜植株含水率定量监测模型[J].江苏农业学报, 2022,38(6):1550-1558. |
PAN Y, CAO H X, QI J G, et al.. Quantitative monitoring models of plant water content in rapeseed based on hyperspectrum and related data mining [J]. J. Jiangsu Agric. Sci., 2022,38(6):1550-1558. | |
23 | 杨冬风,李爱传,刘金明,等.耦合平均影响值-连续投影算法优化种子活力近红外检测模型[J].光谱学与光谱分析,2022,42(10):3135-3142. |
YANG D F, LI A C, LIU J M, et al.. Optimization of seed vigor near-infrared detection by coupling mean impact value with successive projection algorithm [J]. Spectrosc. Spect. Anal., 2022,42(10):3135-3142. | |
24 | 张楠楠,张晓,王城坤,等.基于高光谱和连续投影算法的棉花叶面积指数估测[J].农业机械学报, 2022, 53(S1):257-262. |
ZHANG N N, ZHANG X, WANG C Q, et al.. Cotton LAI estimation based on hyperspectral and successive projection algorithm [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(S1):257-262. | |
25 | 赵静远,熊智新,宁井铭,等.小波变换结合连续投影算法优化茶叶中咖啡碱的近红外分析模型[J].分 析科学学报,2021,37(5):611-617. |
ZHAO J Y, XIONG Z X, NING J M, et al.. Wavelet tranform combined with SPA to optimize the near-infrared analysis model of caffeine in tea [J]. J. Anal. Sci., 2021,37(5):611-617. | |
26 | 郭阳,史勇,郭俊先,等.近红外光谱技术结合反向区间偏最小二乘算法-连续投影算法预测哈密瓜可溶性固形物含量[J].食品与发酵工业,2022,48(2):248-253. |
GUO Y, SHI Y, GUO J X, et al.. Prediction of soluble solids content in hami melon by combining near-infrared spectroscopy and BiPLS-SPA technology [J]. Food Ferment. Indust.,2022,48(2):248-253. | |
27 | 李锦卫.基于计算机视觉的水稻、油菜叶色—氮营养诊断机理与建模[D].长沙:湖南农业大学,2010. |
LI J W. Studies on the diagnosis mechanism and modeling of leaf color-nitrogen nutrition in rice and rapeseed plant by computer vision [D]. Changsha: Hunan Agricultural University,2010. | |
28 | 谢素华,杨明高.人民渠平原灌区油菜需水量及需水规律研究[J].四川水利,2001,(1):33-35. |
29 | 冯鹏.油菜高产灌溉技术[J].农业开发与装备,2011, 6:39. |
30 | 谢素华,杨明高,张清.油菜需水量及需水规律的研究[J].四川水利,1996,2:24-25. |
31 | 王巧娟. 关中地区夏大豆—冬油菜的水分产量效应及灌溉制度模型模拟研究[D].杨凌:西北农林科技大学,2022. |
WANG Q J. Study on water yield effect of summer soybean winter rape and Simulation of irrigation schedule model in Guanzhong Area [D].Yangling: Northwest Agriculture Forestry University, 2022. | |
32 | 李岚涛.冬油菜氮素营养高光谱特异性及定量诊断模型构建与推荐追肥研究[D].武汉:华中农业大学,2018. |
LI L T. Research on hyperspectral characteristics, quantitative diagnostic models, and topdressing for winter oilseed rape nitrogen status [D]. Wuhan: Huazhong Agricultural University, 2018. | |
33 | THOMAS J R, NAMKEN L N, OERTHER G F, et al.. Estimating leaf water content by reflectance measurements [J]. J. Agron.,1971,63(6):845-847. |
34 | SHIBAYAMA M, AKIYAMA T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopiesin relation to LAI and above-ground dryphytomass [J]. Remote Sens. Env.,1989,27(2):119-127. |
35 | SHIBAYAMA M, TAKAHASHI W, MORINAGA S, et al.. Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer [J].Remote Sens. Env.,1993,45(2):117-126. |
36 | 黄敬峰,王福民,王秀珍.水稻高光谱遥感实验研究[M].杭州:浙江大学出版社,2010:1-315. |
[1] | Haijun ZHANG, Juan ZHANG, Yinan JIA, Jianglong WANG, Li FENG. Effect of Different Frame Type on Aroma Components and Berry Quality of ‘Nantaihutezao’ [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 201-213. |
[2] | Fengxia BIAN, Kaige LIU, Xinmin RONG. Development and Verification of Prediction Model for Grape Downy Mildew Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 126-137. |
[3] | Shijian BAI, Jinge HU, Jiuyun WU, Wen ZHANG, Hui XIE, Ronghua ZHAO, Guang CHEN, Junshe CAI. Effects of Rootstocks on the Growth Characteristics and Fruit Quality of ‘Crimson Seedless’ Grapes in Turpan Region [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 76-87. |
[4] | Qianqian LU, Abuduwaili Abulimiti, Yixing HOU, Zhihui LI, Shuang WANG, Long ZHOU. Research of the Photosynthetic Characteristics of 7 Table Grape Varieties Under Compound Salt-alkali Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 63-76. |
[5] | Shuang WANG, Yixing HOU, Linjiao FENG, Qianqian LU, Long ZHOU. Effect of Drought Stress on Anatomical Structure of Leaves in Table Grape Varieties [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 40-49. |
[6] | Yinan JIA, Guangdi ZHANG, Haoyu ZHANG, Chang XU, Kunming ZHANG, Jianglong WANG, Xiaojian HOU. Study on Fruit Quality of ‘Muscat Hamburg’ Grape Applied by Silicon Fertilizer in Root Zone [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 215-223. |
[7] | Yinan JIA, Zhongwu WAN, Chang XU, Guangdi ZHANG, Jianglong WANG, Kunming ZHANG, Xiaojian HOU, Wenyi BAO, Yu WANG, Weijun CHEN. Analysis of ‘Daqing Grape’ Quality Index Based on Big-trellis in Open Field Cultivation [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 44-57. |
[8] | Mingdi CHEN, Xingru CHENG, Bo XU, Haiwen ZHANG, Wangtian WANG, Youhua WANG. Analysis of Global Transgenic Oilseed Rape Patent Information and Technology Outlook [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 8-19. |
[9] | Xin LU, Guiping LIAO, Fan LIU. Inversion Model of Oleic Acid Content in Rape Seeds Based on Hyperspectral Imaging Technology [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 92-99. |
[10] | Lingwen HU, Zhongfa ZHOU, Linjiang YIN, Meng ZHU, Denghong HUANG. Rape Identification at Seedling Stage Based on UAV RGB Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 116-128. |
[11] | Quanquan WEI, Ying GAO, Jiulan GOU, Meng ZHANG, Yong RAO, Bin YANG, Di FAN, Wenhao FENG, Huagui XIAO. Effects of Different Sowing Rates and Sowing Methods on the Nutrient Absorption, Utilization and Yield of Winter Rapeseed in Yellow Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 182-191. |
[12] | Fan ZHANG, Yue GU, Chen CAO, Baohua LIU. Effect of Rape Straw Fiber on Pore Characteristics of Cement Mortar [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 189-195. |
[13] | Heping WAN, Hao ZHANG, Yi YU, Jingdong CHEN, Changli ZENG, Lun ZHAO, Jing WEN, Jinxiong SHEN, Tingdong FU. Study and Application of Salt and Alkali Tolerance in Rapeseed [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 59-67. |
[14] | Yanfang ZHU, Yaodong BAI, Yuanyuan WANG, Yubin LI, Qilong MA, Yan HAO, Mingxin ZHAO. Effect of Shading on Fruit Shrinkage of Wine Grape ‘Syrah’ [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 54-62. |
[15] | SUN Mengyao, XU Lanjun, LI Xiaolong, LI Chuanyou, CHEN Hua, ZHANG Chuanshuai, LIU Xingtao. Influences of Different Water-saving Methods on Water Utilization, Distribution and Yield of Rape [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 138-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||