Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (6): 113-125.DOI: 10.13304/j.nykjdb.2024.0493
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Mengzhen HUANG1(), Hao LI1(
), Huanjun HU1, Zipeng LI2, Zhongyin SHENG1, Yifan LIU1, Zhenyan XIA1, Aoyun ZHENG1
Received:
2024-06-20
Accepted:
2024-08-25
Online:
2025-06-15
Published:
2025-06-23
Contact:
Hao LI
黄梦真1(), 李皞1(
), 胡桓浚1, 李梓芃2, 盛钟尹1, 刘义凡1, 夏震言1, 郑奥运1
通讯作者:
李皞
作者简介:
黄梦真 E-mail:hmz18808665850@outlook.com;
基金资助:
CLC Number:
Mengzhen HUANG, Hao LI, Huanjun HU, Zipeng LI, Zhongyin SHENG, Yifan LIU, Zhenyan XIA, Aoyun ZHENG. Research on End-to-end Low-light Environment Black Pig Detection Technology Integrating IAT Module[J]. Journal of Agricultural Science and Technology, 2025, 27(6): 113-125.
黄梦真, 李皞, 胡桓浚, 李梓芃, 盛钟尹, 刘义凡, 夏震言, 郑奥运. 融合亮度自适应模块的端到端低光环境黑猪检测技术研究[J]. 中国农业科技导报, 2025, 27(6): 113-125.
增强模块 Enhancement module | 参数量 Params/K | 平均精度(@0.5) mAP@0.5/% | 平均精度(@0.50∶0.95) mAP@0.50∶0.95/% |
---|---|---|---|
Zero-DCE | 6.5 | 89.32 | 51.45 |
Zero-DCE++ | 7.1 | 89.46 | 51.11 |
IAT | 7.5 | 90.97 | 53.05 |
RUAS | 56.8 | 89.61 | 52.62 |
URetinexNet | 38.4 | 90.03 | 52.33 |
Table 1 Performance of different enhancement modules
增强模块 Enhancement module | 参数量 Params/K | 平均精度(@0.5) mAP@0.5/% | 平均精度(@0.50∶0.95) mAP@0.50∶0.95/% |
---|---|---|---|
Zero-DCE | 6.5 | 89.32 | 51.45 |
Zero-DCE++ | 7.1 | 89.46 | 51.11 |
IAT | 7.5 | 90.97 | 53.05 |
RUAS | 56.8 | 89.61 | 52.62 |
URetinexNet | 38.4 | 90.03 | 52.33 |
序号 No. | 亮度自适应模块 IAT | 激活函数 ReLU | 坐标注意力机制 CA | 选择核卷积注意力 SKCA | 精确率 P/% | 召回率 R/% | 平均精度(@0.5) mAP@0.5/% | 平均精度(@0.50∶0.95) mAP@0.50:0.95/% |
---|---|---|---|---|---|---|---|---|
1 | 96.25 | 80.46 | 89.68 | 52.78 | ||||
2 | √ | 95.79 | 80.98 | 90.60 | 52.83 | |||
3 | √ | √ | 95.98 | 83.03 | 90.85 | 53.08 | ||
4 | √ | √ | √ | 95.25 | 84.68 | 91.37 | 53.88 | |
5 | √ | 95.80 | 83.64 | 90.97 | 53.05 | |||
6 | √ | √ | 96.61 | 82.70 | 91.50 | 53.40 | ||
7 | √ | √ | √ | 96.80 | 83.80 | 91.80 | 54.50 | |
8 | √ | √ | √ | √ | 97.32 | 86.61 | 92.73 | 54.84 |
Table 2 Results of ablation experiments with improved strategies
序号 No. | 亮度自适应模块 IAT | 激活函数 ReLU | 坐标注意力机制 CA | 选择核卷积注意力 SKCA | 精确率 P/% | 召回率 R/% | 平均精度(@0.5) mAP@0.5/% | 平均精度(@0.50∶0.95) mAP@0.50:0.95/% |
---|---|---|---|---|---|---|---|---|
1 | 96.25 | 80.46 | 89.68 | 52.78 | ||||
2 | √ | 95.79 | 80.98 | 90.60 | 52.83 | |||
3 | √ | √ | 95.98 | 83.03 | 90.85 | 53.08 | ||
4 | √ | √ | √ | 95.25 | 84.68 | 91.37 | 53.88 | |
5 | √ | 95.80 | 83.64 | 90.97 | 53.05 | |||
6 | √ | √ | 96.61 | 82.70 | 91.50 | 53.40 | ||
7 | √ | √ | √ | 96.80 | 83.80 | 91.80 | 54.50 | |
8 | √ | √ | √ | √ | 97.32 | 86.61 | 92.73 | 54.84 |
模型 Model | 平均精度(@0.5) mAP@0.5/% | 平均精度 (@0.50∶0.95) mAP@0.50∶0.95/% | 每秒帧数 FPS | 参数量 Params/M | 计算量 FLOPs/G |
---|---|---|---|---|---|
SSD | 84.40 | 41.10 | 35.3 | 23.75 | 30.43 |
Cascade R-CNN | 86.00 | 47.40 | 34.2 | 69.15 | 205.24 |
Faster R-CNN | 85.30 | 44.60 | 42.8 | 41.36 | 178.13 |
YOLOv5 | 85.38 | 43.16 | 175.4 | 21.24 | 49.02 |
YOLOv7 | 89.68 | 52.78 | 153.8 | 36.49 | 103.20 |
DAB_DETR | 80.90 | 40.90 | 43.6 | 43.71 | 86.93 |
LADnet | 92.73 | 54.84 | 129.8 | 40.58 | 116.90 |
Table 3 Performance of different object detection algorithms
模型 Model | 平均精度(@0.5) mAP@0.5/% | 平均精度 (@0.50∶0.95) mAP@0.50∶0.95/% | 每秒帧数 FPS | 参数量 Params/M | 计算量 FLOPs/G |
---|---|---|---|---|---|
SSD | 84.40 | 41.10 | 35.3 | 23.75 | 30.43 |
Cascade R-CNN | 86.00 | 47.40 | 34.2 | 69.15 | 205.24 |
Faster R-CNN | 85.30 | 44.60 | 42.8 | 41.36 | 178.13 |
YOLOv5 | 85.38 | 43.16 | 175.4 | 21.24 | 49.02 |
YOLOv7 | 89.68 | 52.78 | 153.8 | 36.49 | 103.20 |
DAB_DETR | 80.90 | 40.90 | 43.6 | 43.71 | 86.93 |
LADnet | 92.73 | 54.84 | 129.8 | 40.58 | 116.90 |
Fig. 8 Detection effects before and after model improvementNote:The box shows the classification label of the black pig;the number represents the detection confidence,and the higher the confidence, the better the model performance.
Fig. 10 Detection effects of different modelsNote:The box shows the classification label of the black pig;the number represents the detection confidence,and the higher the confidence, the better the model performance.
1 | 宋中山, 刘越, 郑禄,等.基于改进YOLOv3的自然环境下绿色柑橘的识别算法[J].中国农机化学报,2021,42(11):159-165. |
SONG Z S, LIU Y, ZHENG L, et al.. Identification of green citrus based on improved YOLOV3 in natural environment [J]. J. Chin. Agric. Mechan., 2021, 42(11):159-165. | |
2 | LOEY M, MANOGARAN G, TAHA M H N,et al.. Fighting against COVID-19: a novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection [J/OL].Sustain. Cities Soc.,2021,65:102600 [2024-05-18]. . |
3 | 王春梅,刘欢.YOLOv8-VSC:一种轻量级的带钢表面缺陷检测算法[J].计算机科学与探索,2024,18(1):151-160. |
WANG C M, LIU H.YOLOv8-VSC:lightweight algorithm for strip surface defect detection [J]. J. Front. Comput. Sci. Technol., 2024, 18(1):151-160. | |
4 | 伊建峰,黎思成,吕珊,等.基于频域数据增强及YOLOv7的动火作业检测模型[J].计算机应用,2023,43():285-290. |
YI J F, LI S C, LYU S, et al.. Hot work detection model based on frequency domain data enhancement and YOLOv7 [J]. J. Comp. Appl., 2023, 43(S2):285-290. | |
5 | LIU W, ANGUELOV D, ERHAN D, et al.. Ssd: single shot multibox detector [C]// Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands. Springer International Publishing, 2016: 21-37. |
6 | GIRSHICK R. Fast R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2015: 1440-1448. |
7 | REN S, HE K, GIRSHICK R, et al.. Faster R-CNN: towards real-time object detection with region proposal networks [J].IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39(6): 1137-1149. |
8 | ZHENG C, ZHU X M, YANG X F, et al.. Automatic recognition of lactating sow postures from depth images by deep learning detector [J]. Comput. Electron. Agric., 2018, 147:51-63. |
9 | AHN H, SON S, KIM H, et al.. EnsemblePigDet: ensemble deep learning for accurate pig detection [J/OL]. Appl. Sci., 2021, 11(12): 5577 [2024-05-18]. . |
10 | HUANG L, XU L, WANG Y, et al.. Efficient detection method of pig-posture behavior based on multiple attention mechanism [J/OL].Comput. Intell. Neurosci., 2022, 2022: 1759542 [2024-05-18].. |
11 | LEINGARTNER M, MAURER J, FERREIN A, et al.. Evaluation of sensors and mapping approaches for disasters in tunnels [J]. J. Field. Robot., 2016, 33(8): 1037-1057. |
12 | XIAO Y, JIANG A, YE J, et al.. Making of night vision: object detection under low-illumination [J]. IEEE Access, 2020, 8: 123075-123086. |
13 | XU X, WANG S, WANG Z, et al.. Exploring image enhancement for salient object detection in low light images [J]. ACM Trans. Multimedia Comput. Commun. Appl., 2021, 17(1s): 1-19. |
14 | ZHANG S, TUO H, HU J, et al.. Domain adaptive yolo for one-stage cross-domain detection [C]// Proceedings of Asian Conference on Machine Learning. PMLR, 2021: 785-797. |
15 | WANG J, YANG P, LIU Y, et al.. Research on improved yolov5 for low-light environment object detection [J/OL]. Electronics, 2023, 12(14): 3089 [2024-05-18]. . |
16 | QIU Y, LU Y, WANG Y, et al.. IDOD-YOLOV7:image-dehazing YOLOV7 for object detection in low-light foggy traffic environments [J/OL].Sensors (Basel Switz.),2023,23(3):1347[2024-05-18]. . |
17 | WANG C Y, LIAO H Y M, WU Y H, et al.. CSPNet: a new backbone that can enhance learning capability of CNN [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2020: 390-391. |
18 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 13713-13722. |
19 | GUO C, LI C, GUO J, et al.. Zero-reference deep curve estimation for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vvision and Pattern Recognition. IEEE, 2020: 1780-1789. |
20 | LI C, GUO C, LOY C C.Learning to enhance low-light image via zero-reference deep curve estimation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2022, 44(8):4225-4238. |
21 | CUI Z, LI K, GU L, et al.. You only need 90K parameters to adapt light: a light weight transformer for image enhancement and exposure correction [J/OL]. 2022, 5: 14871 [2024-05-18]. . |
22 | LIU R S, MA L, ZHANG J A,et al..Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 10561-10570. |
23 | WU W, WENG J, ZHANG P, et al.. Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 5901-5910. |
24 | WOO S, PARK J, LEE J Y,et al.. CBAM:convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision (ECCV). 2018: 3-19. |
25 | LI X, WANG W, HU X, et al.. Selective kernel networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 510-519. |
26 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 7132-7141. |
27 | HAYOU S, DOUCETt A, ROUSSEAU J. On the impact of the activation function on deep neural networks training [C]// International Conference on Machine Learning. PMLR, 2019: 2672-2680. |
28 | JIANG P, ERGU D, LIU F, et al.. A review of Yolo algorithm developments. [J]. Proc. Comput. Sci., 2022, 199: 1066-1073. |
[1] | Jialiang YUAN, Runnan LIAN, Wuping ZHANG. Accurate Identification and Grading Method for Daylily Flower Buds [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 103-112. |
[2] | Xiaofei XIONG, Xiuqin WANG, Cuizhen ZHUANG, Jiaxian GUO, Xinrui XIE, Jianwei WU, Qifeng LI. Research on Diagnostic Method of Citrus Anthracnose Based on Image ROI Fusion Feature [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 83-92. |
[3] | Jun TIE, Jie ZHAO, Lu ZHENG, Lifeng WU, Bowen HONG. Application of Improved YOLOv5 Model in Citrus Recognition in Natural Environment [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 111-120. |
[4] | Ruifeng LI, Yunfu YANG, Yongfa YANG, Yongshun YU. Rose Flower Detection and Feature Extraction Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 106-113. |
[5] | Mingbo LI, Yule LIU, Zhimin MU, Junwang GUO, Yong WEI, Dongyue REN, Jishen JIA, Zezhong WEI, Yuhong LI. Tomato Fruit Recognition Based on YOLOX-L-TN Model [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 97-105. |
[6] | Shirui HUANG, Tianyi WANG, Tao WEN, Jianglong ZHOU. Crop Insect Identification Based on Improved YOLOv7 [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 107-116. |
[7] | Mingkang PENG, Yu CUI, Qiyuan XUE, Yunzhen YIN, Zhe YIN, Wuping ZHANG, Fuzhong LI. Weed Identification and Location for Crop at Seedling Stage Based on Enhancing and Fine-tuning Weather Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 125-134. |
[8] | Yue ZHAO, Yong WEI, Huiyong SHAN, Zhimin MU, ZHANGJianxin, Haiyun WU, Hui ZHAO, Jianlong HU. Wheat Ear Detection Method Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 96-105. |
[9] | SHI Ruiyao, TIAN Youwen*, LAI Xingtao, GU Wenjun. Development of Apple Intelligent On-line Inspection and Classification System Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2018, 20(3): 80-86. |
[10] | JIANG Yan-na1, XIAO Bo-xiang2, GUO Xin-yu1,2, YANG Bao-zhu1,2*. Video-based Method for Plant Animation Synthesis [J]. , 2015, 17(1): 115-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||