中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (7): 182-189.DOI: 10.13304/j.nykjdb.2024.0048
• 生物制造 资源生态 • 上一篇
朱强1(), 车宗贤1,2(
), 崔恒2, 张久东2, 包兴国2
收稿日期:
2024-01-18
接受日期:
2024-04-22
出版日期:
2025-07-15
发布日期:
2025-07-11
通讯作者:
车宗贤
作者简介:
朱强 E-mail:1219045306@qq.com;
基金资助:
Qiang ZHU1(), Zongxian CHE1,2(
), Heng CUI2, Jiudong ZHANG2, Xingguo BAO2
Received:
2024-01-18
Accepted:
2024-04-22
Online:
2025-07-15
Published:
2025-07-11
Contact:
Zongxian CHE
摘要:
为研究西北灌区最佳绿肥替代氮肥比例,设置不施肥、当地传统施肥、85%氮肥氮+15%绿肥氮、70%氮肥氮+30%绿肥氮、55%氮肥氮+45%绿肥氮和40%氮肥氮+60%绿肥氮共6个处理,采用静态暗箱-气相色谱法监测小麦生育期土壤温室气体排放,对麦田温室气体和土壤全氮含量进行分析。结果表明,随着绿肥替代量增加,相比较当地传统施肥各绿肥处理N2O排放通量逐渐减少,土壤全氮含量逐渐增加,绿肥处理N2O排放通量均显著低于当地传统施肥,其中以40%氮肥氮+60%绿肥氮处理最低,比当地传统施肥减少39.2%,各处理均为CH4的“汇”,55%氮肥氮+45%绿肥氮处理吸收量最高,结合2023年小麦产量数据,70%氮肥氮+30%绿肥氮处理产量最高,为4 136 kg·hm-2,70%氮肥氮+30%绿肥氮处理全球增温潜势较当地传统施肥显著降低30.6%。由此可见,绿肥替代30%氮肥处理效果最佳,具有较高的经济效益和友好的环境效应。研究结果为当地农民科学环保施用肥料提供理论依据。
中图分类号:
朱强, 车宗贤, 崔恒, 张久东, 包兴国. 绿肥替代氮肥对麦田温室气体的影响[J]. 中国农业科技导报, 2025, 27(7): 182-189.
Qiang ZHU, Zongxian CHE, Heng CUI, Jiudong ZHANG, Xingguo BAO. Effect of Green Manure Replacing Nitrogen Fertilizer on Greenhouse Gases in Wheat Fields[J]. Journal of Agricultural Science and Technology, 2025, 27(7): 182-189.
处理 Treatment | 化学氮肥 Chemical nitrogen fertilizer | P2O5 | 绿肥 Green manure |
---|---|---|---|
CK | 0 | 0 | 0 |
100C | 225 | 150 | 0 |
85C+15G | 191 | 146 | 1 125 |
70C+30G | 158 | 142 | 2 250 |
55C+45G | 124 | 138 | 3 375 |
40C+60G | 90 | 134 | 4 500 |
表 1 不同处理施肥量 (kg·hm-2)
Table 1 Fertilizer application rate of different treatments
处理 Treatment | 化学氮肥 Chemical nitrogen fertilizer | P2O5 | 绿肥 Green manure |
---|---|---|---|
CK | 0 | 0 | 0 |
100C | 225 | 150 | 0 |
85C+15G | 191 | 146 | 1 125 |
70C+30G | 158 | 142 | 2 250 |
55C+45G | 124 | 138 | 3 375 |
40C+60G | 90 | 134 | 4 500 |
处理Treatment | 株高 Plant height/cm | 穗长 Ear length/cm | 结实小穗数 Fertile spikelet number | 不孕小穗数 Number of infertile spikes | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|---|
CK | 52.42±1.90 c | 6.02±0.47 b | 9.88±0.52 b | 3.09±0.19 a | 48.91±1.18 ab | 2 530.00±340.27 b |
100C | 60.21±2.11 b | 7.68±0.40 a | 12.67±0.47 a | 2.61±0.55 ab | 51.35±1.72 a | 3 307.33±133.57 ab |
85C+15G | 63.33±1.36 ab | 8.09±0.17 a | 13.30±0.13 a | 2.05±0.08 b | 45.39±0.98 ab | 4 052.67±387.73 a |
70C+30G | 62.46±1.90 ab | 8.09±0.17 a | 13.95±0.06 a | 2.05±0.11 b | 44.56±1.99 ab | 4 136.00±534.51 a |
55C+45G | 64.79±1.18 ab | 8.18±0.24 a | 13.21±0.45 a | 2.21±0.19 ab | 42.74±2.96 b | 3 694.00±45.03 a |
40C+60G | 66.04±1.31 a | 8.65±0.23 a | 14.02±0.53 a | 1.79±0.11 b | 43.51±3.26 b | 3 944.00±219.39 a |
表 2 绿肥替代氮肥下小麦的农艺性状及产量
Table 2 Agronomic traits and yield of wheat with green manure as a substitute for nitrogen fertilizer
处理Treatment | 株高 Plant height/cm | 穗长 Ear length/cm | 结实小穗数 Fertile spikelet number | 不孕小穗数 Number of infertile spikes | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|---|
CK | 52.42±1.90 c | 6.02±0.47 b | 9.88±0.52 b | 3.09±0.19 a | 48.91±1.18 ab | 2 530.00±340.27 b |
100C | 60.21±2.11 b | 7.68±0.40 a | 12.67±0.47 a | 2.61±0.55 ab | 51.35±1.72 a | 3 307.33±133.57 ab |
85C+15G | 63.33±1.36 ab | 8.09±0.17 a | 13.30±0.13 a | 2.05±0.08 b | 45.39±0.98 ab | 4 052.67±387.73 a |
70C+30G | 62.46±1.90 ab | 8.09±0.17 a | 13.95±0.06 a | 2.05±0.11 b | 44.56±1.99 ab | 4 136.00±534.51 a |
55C+45G | 64.79±1.18 ab | 8.18±0.24 a | 13.21±0.45 a | 2.21±0.19 ab | 42.74±2.96 b | 3 694.00±45.03 a |
40C+60G | 66.04±1.31 a | 8.65±0.23 a | 14.02±0.53 a | 1.79±0.11 b | 43.51±3.26 b | 3 944.00±219.39 a |
图 1 绿肥替代氮肥的土壤全氮含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 1 Total soil nitrogen content from green manure as a substitute for nitrogen fertilizerNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图 2 绿肥替代氮肥下的麦田N2O排放注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 2 N2O emissions from wheat fields under green manure substitution for nitrogen fertilizerNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图 3 绿肥替代氮肥下的麦田CH4排放注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 3 CH4 emissions from wheat fields under green manure substitution for nitrogen fertilizerNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
处理 Treatment | 温室气体累计排放量Greenhouse gas cumulative emission | 全球增温潜势Global warming potential | |
---|---|---|---|
N2O | CH4 | ||
CK | 0.43±0.08 d | -0.08±0.03 a | 126.18±23.08 d |
100C | 1.13±0.02 a | -0.3±0.08 ab | 329.87±6.15 a |
85C+15G | 0.97±0.03 b | -0.17±0.05 ab | 286.09±7.32 b |
70C+30G | 0.78±0.06 c | -0.12±0.05 a | 229.00±17.41 c |
55C+45G | 0.72±0.03 c | -0.40±0.07 b | 205.02±9.83 c |
40C+60G | 0.67±0.01 c | -0.21±0.13 ab | 199.70±6.95 c |
表 3 不同处理下全球增温潜势 (kg·hm-2)
Table 3 Global warming potential under different treatments
处理 Treatment | 温室气体累计排放量Greenhouse gas cumulative emission | 全球增温潜势Global warming potential | |
---|---|---|---|
N2O | CH4 | ||
CK | 0.43±0.08 d | -0.08±0.03 a | 126.18±23.08 d |
100C | 1.13±0.02 a | -0.3±0.08 ab | 329.87±6.15 a |
85C+15G | 0.97±0.03 b | -0.17±0.05 ab | 286.09±7.32 b |
70C+30G | 0.78±0.06 c | -0.12±0.05 a | 229.00±17.41 c |
55C+45G | 0.72±0.03 c | -0.40±0.07 b | 205.02±9.83 c |
40C+60G | 0.67±0.01 c | -0.21±0.13 ab | 199.70±6.95 c |
[1] | 桑文秀.不同土地利用类型土壤温室气体排放及其环境影响因子[D].上海:华东师范大学,2021. |
SANG W X. Soil greenhouse gas emissions from multiple landuse types and the environmental influencing factors [D]. Shanghai: East China Normal University, 2021. | |
[2] | IPCC. Climate Change 2014:Synthesis Report [M]. Geneva, Switzerland, IPCC, 2014. |
[3] | GERBER J S, CARLSON K M, MAKOWSKI D, et al.. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management [J]. Glob. Change Biol., 2016,22(10):3383-3394. |
[4] | LIU S W, LIN F, WU S, et al.. Ameta-analysis of fertilizer-induced soil NO and combined with NO+N2O emissions [J]. Glob. Change Biol., 2017,23(6):2520-2532. |
[5] | 王聪,沈健林,郑亮,等.猪粪化肥配施对双季稻田 CH4和N2O排放及其全球增温潜势的影响[J].环境科学,2014,35(8):3120-3127. |
WANG C, SHEN J L, ZHENG L,et al..Effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions and their global warming potentials in paddy fields with double-rice cropping [J]. Environ. Sci., 2014,35(8):3120-3127. | |
[6] | 谢立勇,许婧,郭李萍.水肥管理对稻田 CH4排放及其全球增温潜势影响的评估[J].中国生态农业学报,2017,25(7):958-967. |
XIE L Y, XU J, GUO L P, et al.. Impact of water/fertilizer management on methane emission in paddy fields and on global warming potential [J]. Chin. J. Eco-Agric., 2017,25(7):958-967. | |
[7] | 谢立勇,叶丹丹,张贺,等.旱地土壤温室气体排放影响因子及减排增汇措施分析[J].中国农业气象,2011,32(4):481-487. |
XIE L Y, YE D D, ZHANG H, et al.. Review of influence factors on greenhouse gases emission from upland soils and relevant adjustment practices [J]. Chin. J. Agrometeorol., 2011,32(4):481-487. | |
[8] | 祝清震,武广伟,陈立平,等.小麦宽苗带撒播器弹籽板结构设计与优化[J].农业工程学报,2019,35(1):1-11. |
ZHU Q Z, WU G W, CHEN L P, et al.. Structural design and optimization of seed separated plate of wheat wide-boundary sowing device [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(1):1-11. | |
[9] | 袁旭,张家安,常飞杨,等. 我国肥料施用现状及化肥减量研究进展[J].农业与技术, 2022,42(18):20-24. |
[10] | 王慧,卜容燕,韩上,等.有机肥配施氮肥对直播油菜产量及养分吸收利用的影响[J].中国土壤与肥料,2021(6):156-165. |
WANG H, BU R Y, HAN S, et al.. The effects of chemical fertilizer combined with organic fertilizer on the yields,nutrient uptake and utilization of direct-seeding rapeseed [J]. Soils Fert. Sci. China, 2021 (6):156-165. | |
[11] | 晏军,王伟义,李斌,等.秸秆还田下化肥减施对苏北地区水稻产量与氮素吸收利用的影响[J].中国土壤与肥料,2021(5):74-82. |
YAN J, WANG W Y, LI B, et al.. Effects of straw returning and fertilizer reduction on rice yield,nitrogen uptake and utilization in northern Jiangsu [J]. Soil Fert. Sci. China, 2021(5):74-82. | |
[12] | 崔恒,车宗贤,张久东,等.长期翻压绿肥河西绿洲灌区小麦的氮肥减施潜力[J].植物营养与肥料学报,2023,29(3):403-413. |
CUI H, CHE Z X, ZHANG J D, et al.. Potentials of chemical fertilizer reduction for wheat production in Hexi Oasis irrigation area under long-term application of green manure [J]. Plant Nutr. Fert. Sci., 2023,29(3):403-413. | |
[13] | 张久东,包兴国,曹卫东,等.长期施用绿肥减施化肥对毛叶苕子产草量和土壤肥力的影响[J].中国土壤与肥料,2017(6):66-70. |
ZHANG J D, BAO X G, CAO W D, et al.. Effect of long-term application of green manure and reducing fertilizer on Vicia villosa Roth yield and soil fertility [J]. Soil Fert. Sci. China, 2017(6):66-70. | |
[14] | 苟志文,殷文,徐龙龙,等.绿洲灌区复种豆科绿肥条件下小麦稳产的减氮潜力[J].植物营养与肥料学报,2020,26(12):2195-2203. |
GOU Z W, YIN W, XU L L, et al.. Potential of nitrogen reduction for maintaining wheat grain yield under multiple cropping with leguminous green manure in irrigated oasis [J]. J. Plant Nutr. Fert., 2020,26(12):2195-2203. | |
[15] | 毛小红.基于15N同位素技术麦后复种绿肥减施氮肥效应研究[D]. 西宁:青海大学, 2022. |
MAO X H. Based on 15N isotope technology, the effect of re-seeding green fertilizer after wheat reduced fertilizer application was studied [D]. Xi’ning: Qinghai University, 2022. | |
[16] | 张学良,张宇亭,刘瑞,等.绿肥不同还田方式对土壤温室气体排放的影响[J].草业学报,2021,30(5):25-33. |
ZHANG X L, ZHANG Y T, LIU R, et al.. Effects of green manure return regimes on soil greenhouse gas emissions [J].Acta Pratac. Sin., 2021,30(5):25-33. | |
[17] | 殷熙悦,殷文,樊志龙,等. 绿肥还田及减施氮肥对绿洲灌区小麦产量和土壤CO2、N2O排放的影响[J].甘肃农业大学学报,2022,57(1):48-55. |
YIN X Y, YIN W, FAN Z L, et al..Effects of returning green manure and reducing nitrogen fertilizer application on yield and soil CO2 and N2O emissions of wheat field in oasis irrigation area [J]. J. Gansu Agric. Univ., 2022,57(1):48-55. | |
[18] | 刘瑾.施氮对旱作农田土壤温室气体排放的影响因素研究[D].杨凌:西北农林科技大学,2022. |
LIU J. Influence factors of nitrogen fertilization on soil greenhouse gas emissions in wheat field [D]. Yangling:Northwest A&F University, 2022. | |
[19] | KIM S Y, GUTIERREZ J, KIM P J.Considering winter cover crop selection as green manure to control methane emission during rice cultivation in paddy soil [J]. Agric. Ecosyst. Environ., 2012,161:130-136. |
[20] | 吴茜虞,续勇波,雷宝坤,等. 粪肥替代对稻田土壤氮素、有机质及氮素吸收利用率的影响[J].西南农业学报,2023,36(10):2217-2223. |
WU X Y, XU Y B, LEI B K, et al.. Effects of manure substitution for chemical fertilizers on soil nitrogen, organic matter content and rice yield in paddy field [J]. Southwest China J. Agric. Sci., 2023, 36(10):2217-2223. | |
[21] | 胡诚,宋家咏,李晶,等.长期定位施肥土壤有效磷与速效钾的剖面分布及对作物产量的影响[J].生态环境学报,2012,21(4):673-676. |
HU C, SONG J Y, LI J, et al.. Profile distribution of soil available phosphorus and available potassium concentrations and crop grain yields in long-term fertilization experiment [J].Ecol. Environ. Sci., 2012,21(4):673-676. | |
[22] | 马忠明,王平,陈娟,等.适量有机肥与氮肥配施方可提高河西绿洲土壤肥力及作物生产效益[J].植物营养与肥料学报,2016,22(5):1298-1309. |
MA Z M, WANG P, CHEN J, et al.. Combined long-term application of organic materials with nitrogen fertilizer in suitable amount could improve soil fertility and crop production profit in Hexi Oasis of Gansu province [J]. J. Plant Nutr. Fert., 2016,22(5):1298-1309. | |
[23] | 黄明,吴金芝,李友军,等.耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响[J].中国农业科学,2021,54(24):5206-5219. |
HUANG M, WU J Z, LI Y J, et al.. Effects of tillage practices and nitrogen fertilizer application rates on grain yield, protein content in winter wheat and soil nitrate residue in dryland [J].Sci. Agric. Sin., 2021,54(24):5206-5219. | |
[24] | 张文霞,李盼,殷文,等. 麦后复种绿肥及配施不同水平氮肥对小麦产量、品质及氮素利用的影响[J].中国农业科学.2023,56(17):3317-3330. |
ZHANG W X, LI P, YIN W, et al.. Effects of multiple green manure sfter wheat combined with different levels of nitrogen fertilization on wheat yield, grain quality, and nitrogen utilization [J]. Sci. Agric. Sin., 2023, 56(17):3317-3330. | |
[25] | 吴科生,车宗贤,包兴国,等.长期翻压绿肥对提高灌漠土土壤肥力和作物产量的贡献[J].植物营养与肥料学报,2022,28(6):1134-1144. |
WU K S, CHE Z X, BAO X G, et al.. Contribution of long-term application of green manure to soil fertility and crop yield in irrigated desert soil [J]. J. Plant Nutr. Fert., 2022,28(6):1134-1144. | |
[26] | 陈语,杨世梅,张涛,等. 紫花苜蓿绿肥还田与氮肥减施对贵州黄壤温室气体排放和玉米产量的影响[J].江苏农业科学,2023,53(15):238-244. |
[27] | 江鹏,周国朋,韩梅,等.麦秸与毛叶苕子共同调控青海高原土壤温室气体排放的作用机制[J].植物营养与肥料学报,2023,29(4):651-663. |
JIANG P, ZHOU G P, HAN M, et al.. Mechanism of co-incorporating wheat straw and hairy vetch in controlling greenhouse gas emissions in Qinghai Plateau of China [J].J. Plant Nutr. Fert., 2023,29(4):651-663. | |
[28] | ZHENG Y, HUANG R, WANG B Z, et al.. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil [J].Biogeosciences, 2014,11(12): 3353-3368. |
[29] | BODELIER P L E, LAANBROEK H J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments [J]. FEMS Microbiol. Ecol., 2004,47(3):265-277. |
[30] | LASHOF D A, AHUJA D R.Relative contributions of greenhouse gas emissions to global warming [J]. Nature, 1990,344:529-531. |
[31] | LEE H H, KIM S U, HAN H R, et al.. Mitigation of global warming potential and greenhouse gas intensity in arable soil with green manure as source of nitrogen [J/OL]. Environ. Pollut., 2021,288:117724 [2023-12-16]. . |
[1] | 呼斯乐, 包玉龙, 图布新巴雅尔null, 陶际峰, 郭恩亮. 基于无人机高光谱和集成学习的春小麦叶绿素含量反演[J]. 中国农业科技导报, 2025, 27(6): 93-103. |
[2] | 史硕, 冯宇, 李亮, 孟瑞, 章延泽, 杨秀荣. 印度梨形孢介导小麦抗纹枯病的转录组分析及关键基因筛选[J]. 中国农业科技导报, 2025, 27(5): 133-145. |
[3] | 马蓓, 公杰, 杜银柯, 甘雨薇, 程蓉, 朱波, 易丽霞, 马锦绣, 高世庆. 小麦花粉孔发育相关TaINP1基因鉴定及表达分析[J]. 中国农业科技导报, 2025, 27(4): 22-35. |
[4] | 薛振宇, 张康康, 张元元, 闫强强, 姚立蓉, 张宏, 孟亚雄, 司二静, 李葆春, 马小乐, 王化俊, 汪军成. 优质抗旱小麦种质的筛选及功能基因检测[J]. 中国农业科技导报, 2025, 27(1): 35-49. |
[5] | 孙宪印, 牟秋焕, 米勇, 吕广德, 亓晓蕾, 孙盈盈, 尹逊栋, 王瑞霞, 吴科, 钱兆国, 赵岩, 高明刚. 基于GT双标图对小麦新品系的分类评价[J]. 中国农业科技导报, 2024, 26(7): 14-24. |
[6] | 鲍新跃, 陈红敏, 王伟伟, 唐益苗, 房兆峰, 马锦绣, 汪德州, 左静红, 姚占军. 小麦TaCOBL-5基因克隆及表达分析[J]. 中国农业科技导报, 2024, 26(6): 11-21. |
[7] | 赵刚, 王淑英, 李尚中, 张建军, 党翼, 王磊, 李兴茂, 程万莉, 周刚, 倪胜利, 樊廷录. 黄土旱塬区近40年降水对冬小麦耗水和产量的影响[J]. 中国农业科技导报, 2024, 26(3): 164-173. |
[8] | 张宏, 李卫国, 张晓东, 卢必慧, 张琤琤, 李伟, 马廷淮. 基于HJ-1星和GF-1号影像融合特征提取冬小麦种植面积[J]. 中国农业科技导报, 2024, 26(2): 109-119. |
[9] | 张景云, 关峰, 石博, 万新建. 小麦根系分泌物对苦瓜幼苗生长及土壤生物学环境的影响[J]. 中国农业科技导报, 2024, 26(2): 181-190. |
[10] | 李双, 王爱英, 焦浈, 池青, 孙昊, 焦涛. 盐胁迫下不同抗性小麦幼苗生理生化特性及转录组分析[J]. 中国农业科技导报, 2024, 26(2): 20-32. |
[11] | 刘海霞, 张寅辉, 庄蕾, 郭梦娇, 赵李, 吴美娟, 侯健, 李甜, 刘红霞, 张学勇, 郝晨阳. 基于关联分析挖掘小麦SDS沉降值相关候选基因及KASP标记开发[J]. 中国农业科技导报, 2024, 26(12): 18-29. |
[12] | 胡墨明, 孟琰珺, 苗淑媛, 胡西宁, 许晴, 马红珍, 王鹏飞, 刘国芹, 康国章. 小麦淀粉合成关键基因TaAGPL1功能标记的开发[J]. 中国农业科技导报, 2024, 26(11): 43-55. |
[13] | 田鹏, 宋洁, 李霞, 王裕智, 武棒棒. 不同粒色小麦籽粒中叶酸及衍生物含量分析[J]. 中国农业科技导报, 2024, 26(11): 56-65. |
[14] | 岳洁茹, 秦志列, 侯起岭, 苑少华, 郝小聪, 杨吉芳, 白秀成, 赵昌平, 张风廷, 孙辉. BS型小麦光温敏雄性不育系柱头外露规律研究[J]. 中国农业科技导报, 2024, 26(10): 22-29. |
[15] | 王韵弘, 苗琪, 李俊超, 王红叶, 张济世, 崔振岭. 田间管理措施对滨海盐渍地区中低产田生产力的影响[J]. 中国农业科技导报, 2024, 26(1): 163-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||