中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (7): 136-146.DOI: 10.13304/j.nykjdb.2023.0034
• 动植物健康 • 上一篇
周喜新1(), 袁世林1, 杨柳2, 夏滔2, 张毅1, 范伟3(
)
收稿日期:
2023-01-16
接受日期:
2023-02-13
出版日期:
2024-07-15
发布日期:
2024-07-12
通讯作者:
范伟
作者简介:
周喜新E-mail:152924447@qq.com;
基金资助:
Xixin ZHOU1(), Shilin YUAN1, Liu YANG2, Tao XIA2, Yi ZHANG1, Wei FAN3(
)
Received:
2023-01-16
Accepted:
2023-02-13
Online:
2024-07-15
Published:
2024-07-12
Contact:
Wei FAN
摘要:
为探索长期连作状态下烟草根系分泌物内含有的化感物质组成成分,设置石英砂栽培和连作土壤栽培2种烟草培养处理,对2种烟草不同生长时期的根系分泌物进行提取,利用超高效液相色谱串联质谱(ultra-high performance liquid chromatography tandem mass spectrometry, UHPLC-MS/MS)对提取的根系分泌物进行分析,通过数据库比对、差异分析和时间聚类分析等方法筛选连作烟草根系分泌物中潜在的化感物质。结果表明,共筛选出11类潜在化感物质,分别为生物碱、萜类、胺类、有机酸、苯酸及其衍生物、脂肪酸、酚类、氨基酸和多肽、香豆素、肉桂酸及其衍生物和其他。生物碱、萜类、胺类和有机酸4类化合物相对含量占所有化合物的73.3%。L-烟碱、熊果酸、β-氨基丙腈、5-羟基吲哚乙酸、早熟素Ⅱ、单乙基己基邻苯二甲酸、己内酰胺、姜酚、L-乳酸、邻苯二甲酸二乙酯和2,3-二氢-3,5-二羟基-2-氧代-3-吲哚乙酸甲酯是连作烟草根系分泌物中相对含量较高的潜在化感物质。研究结果为烟草根系化感物质的化感作用研究及缓解烟草连作障碍方法研究提供理论基础。
中图分类号:
周喜新, 袁世林, 杨柳, 夏滔, 张毅, 范伟. 连作烟草根系分泌物鉴定及潜在化感物质的筛选研究[J]. 中国农业科技导报, 2024, 26(7): 136-146.
Xixin ZHOU, Shilin YUAN, Liu YANG, Tao XIA, Yi ZHANG, Wei FAN. Identification of Continuous Cropping Tobacco Root Exudates and Screening of Potential Allelopathic Substances[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 136-146.
图2 根系分泌物在Super Class层级不同分类中所占比重A:正离子模式;B:负离子模式
Fig. 2 Share of root secretions in the different classifications of the Super Class hierarchyA: Positive ion mode; B: Begative ion mode
图4 不同生长时期2种培养方式烟草根系分泌物的OPLS-DA模型交叉验证结果
Fig. 4 Cross-validation results of the OPLS-DA model for tobacco root secretions from two cultures at different growth periods
图5 不同生长时期两种培养方式烟草根系分泌物的差异表达火山图注:红色节点代表Q<0.05且log2FC>2的上调代谢物;蓝色节点代表Q<0.05且log2FC<-2的下调代谢物。
Fig. 5 Differential expression of tobacco root exudates between two culture methods at different growth stagesNote: Red node represents the upregulated metabolite of Q<0.05 and log2FC>2; blue node represents the downregulated metabolite with Q<0.05 and log2FC<-2.
培养时间 Cultivation time/d | 代谢物名称 Metabolite name | 相对含量 Relative content |
---|---|---|
30 | 利克香豆素 Liqcoumarin | 0.018 1 |
β-水芹烯 β-phellandrene | 0.174 6 | |
(+)-α-蒈烯 (+)-α-carene | 0.025 5 | |
γ-萜品烯 γ-terpinene | 0.020 4 | |
L-谷氨酸 L-glutamic acid | 0.004 7 | |
N-γ-谷氨酰-S-丙基半胱氨酸 N-γ-glutamyl-S-propylcysteine | 0.014 0 |
表1 不同时期土培烟草根系分泌物上调的化合物
Table 1 Compounds upregulated by root exudates of soil tobacco at different times
培养时间 Cultivation time/d | 代谢物名称 Metabolite name | 相对含量 Relative content |
---|---|---|
30 | 利克香豆素 Liqcoumarin | 0.018 1 |
β-水芹烯 β-phellandrene | 0.174 6 | |
(+)-α-蒈烯 (+)-α-carene | 0.025 5 | |
γ-萜品烯 γ-terpinene | 0.020 4 | |
L-谷氨酸 L-glutamic acid | 0.004 7 | |
N-γ-谷氨酰-S-丙基半胱氨酸 N-γ-glutamyl-S-propylcysteine | 0.014 0 |
化合物类别 Compound class | 代谢物名称 Metabolite name | 分子式 Molecular formula | 相对含量 Relative content |
---|---|---|---|
香豆素 Coumains | 利克香豆 Liqcoumarin | C12H10O4 | 0.002 1 |
2,3-环氧黄曲霉毒素B1 2,3-epoxyaflatoxin B1 | C17H12O7 | 0.010 6 | |
东莨菪内酯 Scopoletin | C10H8O4 | 0.007 7 | |
脂肪酸 Fatty acid | 1,11-十一烷二羧酸 1,11-undecanedicarboxylic acid | C13H24O4 | 0.012 9 |
15-脱氧-D-12,14-PGJ2 15-deoxy-d-12,14-PGJ2 | C20H28O3 | 0.010 5 | |
20-羟基-PGF2a 20-hydroxy-PGF2a | C20H34O6 | 0.026 9 | |
5,6-二氢乙二醇 5,6-DHET | C20H34O4 | 0.012 1 | |
16-羟基十六烷酸 16-hydroxy hexadecanoic acid | C16H32O3 | 0.019 4 | |
二十二碳五烯酸 Docosapentaenoic acid (22n-3) | C22H34O2 | 0.005 9 | |
前列腺素I2 Prostaglandin I2 | C20H32O5 | 0.007 9 | |
3-羟基癸酸 3-hydroxydecanoic acid | C10H20O3 | 0.008 7 | |
13-L-氢过氧亚油酸 13-L-hydroperoxylinoleic acid | C18H32O4 | 0.007 4 |
表2 轮作烟草根系分泌物潜在化感物质
Table 2 Potential allelopathic substances in tobacco root exudates in crop rotation
化合物类别 Compound class | 代谢物名称 Metabolite name | 分子式 Molecular formula | 相对含量 Relative content |
---|---|---|---|
香豆素 Coumains | 利克香豆 Liqcoumarin | C12H10O4 | 0.002 1 |
2,3-环氧黄曲霉毒素B1 2,3-epoxyaflatoxin B1 | C17H12O7 | 0.010 6 | |
东莨菪内酯 Scopoletin | C10H8O4 | 0.007 7 | |
脂肪酸 Fatty acid | 1,11-十一烷二羧酸 1,11-undecanedicarboxylic acid | C13H24O4 | 0.012 9 |
15-脱氧-D-12,14-PGJ2 15-deoxy-d-12,14-PGJ2 | C20H28O3 | 0.010 5 | |
20-羟基-PGF2a 20-hydroxy-PGF2a | C20H34O6 | 0.026 9 | |
5,6-二氢乙二醇 5,6-DHET | C20H34O4 | 0.012 1 | |
16-羟基十六烷酸 16-hydroxy hexadecanoic acid | C16H32O3 | 0.019 4 | |
二十二碳五烯酸 Docosapentaenoic acid (22n-3) | C22H34O2 | 0.005 9 | |
前列腺素I2 Prostaglandin I2 | C20H32O5 | 0.007 9 | |
3-羟基癸酸 3-hydroxydecanoic acid | C10H20O3 | 0.008 7 | |
13-L-氢过氧亚油酸 13-L-hydroperoxylinoleic acid | C18H32O4 | 0.007 4 |
1 | BAIS H P, WEIR T L, PERRY L G, et al.. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annu. Rev. Plant Biol., 2006, 57(1): 233-266. |
2 | 刘帅,黄坤,陈乐,等.烟草根系分泌物及其化感作用研究进展[J].亚热带农业研究,2018,14(1):61-65. |
LIU S, HUANG K, CHEN L, et al.. Research progress on tobacco root exudates and their allelopathy [J]. Subtrop. Agric. Res., 2018,14(1):61-65. | |
3 | VIVES-PERIS V, DE OLLAS C, GOMEZ-CADENAS A, et al.. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Rep., 2020, 39(1): 3-17 |
4 | 蔡莹,于晓菲.植物根系分泌物的生态效应研究[J].环境生态学,2022,4(9):9-16. |
CAI Y, YU X F. Study on the ecological effects of plant root exudates [J]. Environ. Ecol., 2022,4(9):9-16. | |
5 | MILLER D A. Allelopathy in forage crop systems [J]. Agron. J., 1996, 88(6): 854-859. |
6 | XING Y, ZHANG L H, SHI C P, et al.. The extraction, isolation and identification of exudates from the roots of Flaveria bidentis [J]. J. Integr. Agric., 2014, 13(1): 105-114. |
7 | KATO-NOGUCHI H. Allelopathy and allelochemicals of imperata cylindrica as an invasive plant species [J/OL]. Plants, 2022, 11(19): 2551 [2022-12-20]. https:doi.org/10.3390/plants11192551. |
8 | DENG J J, ZHANG S X, HU J W, et al.. Toxic effects of phthalate esters in tobacco root exudates on seed germination and seedling growth [J]. Pedosphere, 2017, 27(6): 1073-1082. |
9 | 时鹏,张继光,王正旭,等.烟草连作障碍的症状机理及防治措施[J].安徽农业科学,2011,39(1):120-122, 124. |
SHI P, ZHANG J G, WANG Z X, et al.. Symptoms, mechanism and controlling measures of tobacco continuous cropping obstacles [J]. J. Anhui Agric. Sci., 2011,39(1):120-122, 124. | |
10 | APARICIO V, COSTA J L. Soil quality indicators under continuous cropping systems in the Argentinean Pampas [J]. Soil Tillage Res., 2007, 96(1-2): 155-165. |
11 | 晋艳,杨宇虹,段玉琪,等.烤烟轮作、连作对烟叶产量质量的影响[J].西南农业学报, 2004,17():267-271. |
JIN Y, YANG Y H, DUAN Y Q, et al.. Effect of rotational cropping and continuous cropping on yield and quality of flue-cured tobacco [J]. Southwest China J. Agric. Sci., 2004, 17(S1): 267-271. | |
12 | WANG J, TIAN T, WANG H, et al.. Chitosan-coated compound fertilizer application and crop rotation alleviate continuous cotton cropping obstacles by modulating root exudates [J/OL]. Rhizosphere, 2022, 23:100581 [2022-12-20]. . |
13 | TAN Y, CUI Y, LI H, et al.. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices [J]. Microbiol. Res., 2017, 194: 10-19. |
14 | LI W, KNOPS J J M H, ZUO X, et al.. Carbon and nitrogen cycling are resistant to fire in nutrient-poor grassland [J]. Soil Sci. Soc. Am. J., 2014, 78(3): 825-831. |
15 | 王劲松,樊芳芳,郭珺,等.不同作物轮作对连作高粱生长及其根际土壤环境的影响[J].应用生态学报,2016,27(7):2283-2291. |
WANG J S, FAN F F, GUO J, et al.. Effect of different crop rotations on growth of continuous cropping sorghum and its rhizosphere soil micro-environment [J]. Chin. J. Appl. Ecol., 2016, 27(7): 2283-2291. | |
16 | ASADUZZAMAN M, ASAO T. Autotoxicity in beans and their allelochemicals [J]. Sci. Hortic., 2012, 134: 26-31. |
17 | CANARINI A, MERCHANT A, DIJKSTRA F A. Drought effects on Helianthus annuus and glycine max metabolites: from phloem to root exudates [J]. Rhizosphere, 2016, 2: 85-97. |
18 | YUN J, CUI C, ZHANG S, et al.. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea [J/OL]. Food Chem., 2021, 360(11): 130033[2022-12-20]. . |
19 | 孙颖,李江,雷小林,等.胡颓子根系分泌物中潜在化感物质分析[J].中南林业科技大学学报,2020,40(3):8-12, 52. |
SUN Y, LI J, LEI X L, et al.. Analysis of potential allelochemicals in root exudation of Elaeagnus pungens [J]. J. Cent. South Univ. For. Technol., 2020,40(3):8-12, 52. | |
20 | KONG C H, XUAN T D, KHANH T D, et al.. Allelochemicals and signaling chemicals in plants [J/OL]. Molecules, 2019, 24(15): 2737[2022-12-20]. . |
21 | YANG R Y, MEI L X, TANG J J, et al.. Allelopathic effects of invasive Solidago canadensis L. on germination and growth of native Chinese plant species [J]. Allelopathy J., 2007, 19(1): 241-248. |
22 | 师小平,陈银萍,闫志强,等.植物化感作用研究进展[J].生物技术通报,2020,36(6):215-222. |
SHI X P, CHEN Y P, YAN Z Q, et al.. Research progress on plant allelopathy [J]. Biotechnol. Bull., 2020,36(6):215-222. | |
23 | JIAJUN D, ZHANG Y L, JIWEI H U, et al.. Autotoxicity of phthalate esters in tobacco root exudates: effects on seed germination and seedling growth [J]. Pedosphere, 2017, 27(6): 1073-1082. |
24 | 孙敬国,王昌军,孙光伟,等.连作年限对植烟根际土壤化感物质积累的影响——以湖北黄棕壤烟田为例[J].土壤,2021,53(1):148-153. |
SUN J G, WANG C J, SUN G W, et al.. Effect of tobacco continuous cropping on allelochemicals accumulation in rhizosphere soil—a case study of yellow brown soil of Hubei [J]. Soil, 2021, 53(1): 148-153. | |
25 | 刘苹,赵海军,唐朝辉,等.连作对不同抗性花生品种根系分泌物和土壤中化感物质含量的影响[J].中国油料作物学报,2015,37(4):467-474. |
LIU P, ZHAO H J, TANG C H, et al.. Effects of continuous cropping on root exudates of different resistance peanut (Arachis hypogaea L.) varieties and allelochemicals content in soil [J]. Chin. J. Oil Crop Sci., 2015, 37(4): 467-474. | |
26 | 于会泳,申国明,高欣欣.烟草根系分泌物的GC-MS检测[J].中国烟草学报,2013,19(4):64-72. |
YU H Y, SHEN G M, GAO X X. Determination of tobacco root exudates by GC-MS [J]. Acta Tab. Sin., 2013, 19(4): 64-72. | |
27 | LARA-NÚÑEZ A, SÁNCHEZ-NIETO S, LUISA ANAYA A, et al.. Phytotoxic effects of Sicyos deppei (Cucurbitaceae) in germinating tomato seeds [J]. Physiol. Plant., 2009, 136(2): 180-192. |
28 | ASAO T, HASEGAWA K, SUEDA Y, et al.. Autotoxicity of root exudates from taro [J]. Sci. Hortic., 2003, 97(3-4): 389-396. |
29 | DENG J J, ZHANG Y L, HU J W, et al.. Autotoxicity of phthalate esters in tobacco root exudates: effects on seed germination and seedling growth [J]. Pedosphere, 2017, 27(6): 1073-1082. |
30 | WANG C M, CHEN H T, LI T C, et al.. The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris [J]. J. Chem. Ecol., 2014, 40(1): 90-98. |
31 | SELVI B, KADAMBAN D. Allelopathic effect of ursolic acid on growth and physiology of green gram cultivar KM-2 [J]. Int. J. Plant Sci. (Muzaffarnagar), 2009, 4(2): 578-581. |
32 | SCHANDRY N, BECKER C. Allelopathic plants: models for studying plant-interkingdom interactions [J]. Trends Plant Sci., 2020, 25(2): 176-185. |
33 | MURPHY K M, EDWARDS J, LOUIE K B, et al.. Bioactive diterpenoids impact the composition of the root-associated microbiome in maize (Zea mays) [J]. Sci. Rep., 2021, 11(1): 1-13. |
34 | LI Z, FU J, ZHOU R, et al.. Effects of phenolic acids from ginseng rhizosphere on soil fungi structure, richness and diversity in consecutive monoculturing of ginseng [J]. Saudi J. Biol. Sci., 2018, 25(8): 1788-1794. |
35 | 李庆凯,刘苹,赵海军,等.玉米根系分泌物对连作花生土壤酚酸类物质化感作用的影响[J]. 中国农业科技导报,2020,22(3):119-130 . |
LI Q K, LIU P, ZHAO H J, et al.. Effects of maize root exudates on allelopathy of phenolic acids in soil of continuous cropping peanut [J]. J. Agric. Sci. Technol., 2020,22(3):119-130. | |
36 | 白羽祥,朱媛,杨焕文,等.烟草酚酸和有机酸对黑胫病菌生长的影响[J].西南农业学报,2017,30(6):1364-1368. |
BAI Y X, ZHU Y, YANG H W, et al.. Effect of phenolic and organic acid on growth of Phytophora parasitica var. nicotiana [J]. Southwest China J. Agric. Sci., 2017, 30(6): 1364-1368. | |
37 | 刘艳霞,李想,蔡刘体,等.烟草根系分泌物酚酸类物质的鉴定及其对根际微生物的影响[J].植物营养与肥料学报,2016,22(2):418-428. |
LIU Y X, LI X, CAI L T, et al.. Identification of phenolic acids in tobacco root exudates and their role in the growth of rhizosphere microorganisms [J]. J. Plant Nutr. Fert., 2016, 22(2): 418-428. |
[1] | 赵娅红, 胡骞予, 夏融, 王志江, 谢永辉, 叶贤文, 余磊, 齐颖, 羊绍武, 薛至勤, 吴治兴, 黄飞燕, 韩天华. 生物炭肥对易感根结线虫病烤烟根际菌群和理化性质的影响[J]. 中国农业科技导报, 2024, 26(4): 206-214. |
[2] | 张景云, 关峰, 石博, 万新建. 小麦根系分泌物对苦瓜幼苗生长及土壤生物学环境的影响[J]. 中国农业科技导报, 2024, 26(2): 181-190. |
[3] | 王潇然, 李笑语, 孙慧, 于海东, 石永春. 硼胁迫下烟草叶片转录组分析[J]. 中国农业科技导报, 2023, 25(8): 53-64. |
[4] | 吴香, 李娟, 曹艳, 程艳荣, 闫旭宇, 李玲. 植物根系分泌物响应镉胁迫的研究进展[J]. 中国农业科技导报, 2023, 25(7): 12-20. |
[5] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[6] | 李小玲, 周武先, 蒋小刚, 李大荣, 黄大野, 张美德. 微生物菌肥对川党参连作障碍及紫纹羽病的防控效果[J]. 中国农业科技导报, 2023, 25(3): 119-131. |
[7] | 刘云飞, 韦凤杰, 夏茂林, 于兆锦, 夏昊, 衣春宇, 常剑波, 姬小明. 新型复合水凝胶对镉胁迫烟草幼苗的缓解效应[J]. 中国农业科技导报, 2023, 25(3): 188-197. |
[8] | 赵曾强, 张国丽, 马盼盼, 李有忠, 王志军, 谢宗铭, 孙国清. 海岛棉类受体胞质激酶基因GbRLCK10在抗病中的作用[J]. 中国农业科技导报, 2023, 25(3): 57-65. |
[9] | 张豫丹, 王卫民, 倪博, 马晓寒, 李俊领, 许自成, 贾玮, 史久长. 烟草秸秆绿原酸提取工艺优化及其抑菌效果研究[J]. 中国农业科技导报, 2023, 25(1): 119-127. |
[10] | 贾睿琪, 郭子昂, 姚晨, 李璞, 腊贵晓, 陆夏梓, 郭虹妤, 李烜桢. 低磷胁迫对小麦镉吸收的影响[J]. 中国农业科技导报, 2022, 24(8): 154-160. |
[11] | 杨莉, 于俐, 孙卓, 张桐毓, 张阳, 杨利民. 人参根系分泌物中有机酸及皂苷对人参病原菌与生防菌的化感差异研究[J]. 中国农业科技导报, 2022, 24(6): 145-155. |
[12] | 肖雨沁, 雷晓, 张明金, 张远盖, 唐珊, 姬鸿飞, 王川, 马翠玲, 景延秋. 三种芽孢杆菌菌剂对烤烟育苗效果的影响[J]. 中国农业科技导报, 2022, 24(5): 85-92. |
[13] | 陈福慧, 申乃坤, 姜明国, 王一兵. 作物重茬连作障碍中自毒物质的研究进展[J]. 中国农业科技导报, 2022, 24(10): 125-132. |
[14] | 刘利佳, 徐志强, 何佳, 丁永乐, 孙聚涛. 哈茨木霉菌诱导烟草抗黑胫病代谢差异的研究[J]. 中国农业科技导报, 2021, 23(8): 91-105. |
[15] | 张璐翔1,陈思蒙1,郑聪2,金伊楠1,韩艺3,许自成1,黄五星1,邵惠芳1*. 脱驯化时长对烟草幼苗抗旱性的影响[J]. 中国农业科技导报, 2021, 23(2): 57-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||