中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (2): 13-23.DOI: 10.13304/j.nykjdb.2023.0654
马雪晴1,2(), 冀傲冉1,3, 郑娇莉1(
), 曹春霞1, 龚艳1, 黄大野1, 王蓓蓓1
收稿日期:
2023-09-01
接受日期:
2023-10-18
出版日期:
2025-02-15
发布日期:
2025-02-14
通讯作者:
郑娇莉
作者简介:
马雪晴 E-mail: mxq20222022@163.com;
基金资助:
Xueqing MA1,2(), Aoran JI1,3, Jiaoli ZHENG1(
), Chunxia CAO1, Yan GONG1, Daye HUANG1, Beibei WANG1
Received:
2023-09-01
Accepted:
2023-10-18
Online:
2025-02-15
Published:
2025-02-14
Contact:
Jiaoli ZHENG
摘要:
目前,耕地土壤面临连作障碍、盐碱化、土壤污染等问题,严重威胁作物产量和粮食安全,植物根际促生菌(plant growth-promoting rhizobacteria, PGPR)具有提高作物产量、抵御病害、修复土壤等作用,具有良好的应用前景。然而,根际促生菌在实际应用过程中存在作用机制不明确、应用技术不成熟及效果不稳定等问题,严重限制其应用。系统梳理了根际促生菌的分类、促生作用机制、在作物上的应用效果及应用技术的研究进展,分析了该领域目前存在的问题,并探讨了今后植物根际促生菌的发展方向,以期为植物根际促生菌的应用和研究提供新的思路和理论支撑。
中图分类号:
马雪晴, 冀傲冉, 郑娇莉, 曹春霞, 龚艳, 黄大野, 王蓓蓓. 植物根际促生菌促生机制及其应用研究进展[J]. 中国农业科技导报, 2025, 27(2): 13-23.
Xueqing MA, Aoran JI, Jiaoli ZHENG, Chunxia CAO, Yan GONG, Daye HUANG, Beibei WANG. Research Progress on Growth-promoting Mechanism and Application of Plant Growth-promoting Rhizobacteria[J]. Journal of Agricultural Science and Technology, 2025, 27(2): 13-23.
1 | 张瑞福. 根际微生物:农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9):1-2. |
2 | KLOEPPER J W, SCHROTH M N. Plant growth-promoting rhizobacteria on radishes. In procee-dings of the 4th international conference on plant pathogenic bacteria [C]// Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. France: Angers, 1979: 879-882. |
3 | TABASSUM B, KHAN A, TARIQ M, et al.. Bottlenecks in commercialisation and future prospects of PGPR [J]. Appl. Soil Ecol., 2017, 121:102-117. |
4 | GRAY E J, SMITH D L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes [J]. Soil Biol. Biochem., 2005, 37(3):395-412. |
5 | FADIJI A E, BABALOLA O O, SANTOYO G, et al..The potential role of microbial biostimulants in the amelioration of climate change-associated abiotic stresses on crops [J/OL]. Front. Microbiol., 2022, 12:829099 [2023-08-01]. . |
6 | VEJAN P, ABDULLAH R, KHADIRAN T, et al.. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review [J/OL]. Molecules, 2016, 21(5): 573 [2023-08-01]. . |
7 | 袁仁文, 刘琳, 张蕊, 等. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020, 36(2):26-35. |
YUAN R W, LIU L, ZHANG R, et al.. The interaction mechanism between plant rhizosphere secretion and soil microbe: a review [J]. Chin. Agric. Sci. Bull., 2020, 36(2):26-35. | |
8 | ZBORALSKI A, FILION M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. [J]. Comput. Struct. Biotech., 2020, 18:3539-3554. |
9 | SANTOYO G, URTIS-FLORES C A, LOEZA-LARA P D, et al.. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR) [J/OL]. Biology, 2021, 10(6): 475 [2023-08-01]. . |
10 | KNIGHTS H E, JORRIN B, HASKETT T L, et al.. Deciphering bacterial mechanisms of root colonization [J]. Environ. Microbiol. Rep., 2021, 13(4):428-444. |
11 | OLEŃSKA E, MAŁEK W, WÓJCIK M, et al.. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review [J/OL]. Sci. Total Environ., 2020, 743: 140682 [2023-08-01]. . |
12 | 徐鹏霞, 韩丽丽, 贺纪正, 等. 非共生生物固氮微生物分子生态学研究进展[J]. 应用生态学报, 2017, 28(10):3440-3450. |
XU P X, HAN L L, HE J Z, et al.. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes [J]. Chin. J. Appl. Ecol., 2017, 28(10):3440-3450. | |
13 | IGIEHON N O, BABALOLA O O. Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture [J/OL]. Int. J. Environ. Res. Public Health, 2018, 15(4):574 [2023-08-01]. . |
14 | 董萌, 施龙清, 解振兴, 等. 水稻根系内生固氮菌的分离鉴定及其促生作用研究[J]. 西北农林科技大学学报(自然科学版), 2023, 51(1):31-39. |
DONG M, SHI L Q, XIE Z X, et al.. Isolation, identification and growth promotion of endophytic nitrogen fixing bacteria from rice roots [J]. J. Northwest A&F Univ. (Nat. Sci.), 2023, 51(1):31-39. | |
15 | 杨婷婷, 谢显秋, 闫佳维, 等. 固氮菌DX120E复配菌剂对甘蔗的促生长效应[J/OL]. 分子植物育种, 2023[2023-08-01].. |
YANG T T, XIE X Q, YAN J W, et al.. Promoting growth effects of compound Azotobacter DX120E on sugarcane [J/OL]. Mol. Plant Breed., 2023 [2023-08-01]. . | |
16 | 张艺灿, 刘凤之, 王海波. 根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料, 2020(2):1-9. |
ZHANG Y C, LIU F Z, WANG H B. Research progress on plant-growth-promoting mechanisms of phosphate-solubilizing rhizosphere microbes [J]. Soil Fert. Sci. China, 2020(2):1-9. | |
17 | 杨腊英, 郭立佳, 周游, 等. 多功能解磷真菌的筛选与解磷活性评价[J]. 热带作物学报, 2023, 44(8):1662-1670. |
YANG L Y, GUO L J, ZHOU Y, et al.. Screening of multifunctional phosphate-solubilizing fugus and evaluation of phosphate-solubilizing activity [J]. Chin. J. Trop. Crops, 2023, 44(8):1662-1670. | |
18 | RAWAT P, DAS S, SHANKHDHAR D, et al.. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake [J]. J. Soil Sci. Plant Nutr., 2021, 21(1):49-68. |
19 | 张华香, 徐晓婷, 郑云婷, 等. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(4):43-49. |
ZHANG H X, XU X T, ZHENG Y T, et al.. Roles of phosphate-solubilizing microorganisms in the passivation and phytoremediation of heavy metal contaminated soil [J]. Biotechnol. Bull., 2023, 39(4):43-49. | |
20 | 储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望[J]. 中国科学:生命科学, 2021, 51:1415-1423. |
CHU C C, WANG Y, WANG E T. Improving theutilization efficiency ofnitrogen, phosphorus andpotassium: current situation andfuture perspectives [J]. Sci. Sin. Vitae, 2021, 51:1415-1423. | |
21 | 李新新, 高新新, 陈星, 等. 一株高效解钾菌的筛选、鉴定及发酵条件的优化[J]. 土壤学报, 2014, 51(2):381-388. |
LI X X, GAO X X, CHEN X, et al.. Isolation and identification of an efficient strain of potassium-dissolving bacteria and opatimization of its incubation condition [J]. Acta Pedol. Sin.,2014, 51(2):381-388. | |
22 | OLANIYAN F T, ALORI E T, ADEKIYA A O, et al.. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics [J/OL]. Ann. Microbiol., 2022, 72(1): 45 [2022-08-01]. . |
23 | 陈腊, 李可可, 米国华, 等. 解钾促生菌的筛选鉴定及对东北黑土区玉米的促生效应[J]. 微生物学通报, 2021, 48(5):1560-1570. |
CHEN L, LI K K, MI G H, et al.. Screening and identification of potassium-solubilizing bacteria and their promoting effects on maize in black soil of Northeast China [J]. Microbiol. China, 2021, 48(5):1560-1570. | |
24 | SUN F, OU Q, WANG N, et al.. Isolation and identification of potassium-solubilizing bacteria from Mikania micrantha rhizospheric soil and their effect on M. micrantha plants [J/OL]. Glob. Ecol. Conserv., 2020, 23:e01141 [2022-08-01]. . |
25 | CHEN Y, YE J, KONG Q. Potassium-solubilizing activity of Bacillus aryabhattai S K1-7 and its growth-promoting effect on Populus alba L. [J/OL]. Forests, 2020, 11(12), 1348 [2022-08-01]. . |
26 | AHMED E, HOLMSTRÖM S J M. Siderophores in environmental research: roles and applications [J]. Microb. Biotechnol., 2014, 7(3):196-208. |
27 | 殷奥杰, 王齐, 葛淼淼, 等. 微生物铁载体的应用研究进展[J]. 环境保护与循环经济, 2021, 41(7):20-24, 69. |
28 | GHOSH S K, BERA T, CHAKRABARTY A M. Microbial siderophore-a boon to agricultural sciences [J/OL]. Biol. Control, 2020, 144:104214 [2023-08-01]. . |
29 | TIMOFEEVA A M, GALYAMOVA M R, SEDYKH S E. Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture [J/OL]. Plants, 2022, 11, 3065 [2023-08-01]. . |
30 | 武雯雯, 薛林贵, 张璐, 等. 一株产嗜铁素耐镉菌的分离及其对黑麦草种子萌发的作用[J/OL]. 微生物学通报, 2021, 48(6):1895-1906. |
WU W W, XUE L G, ZHANG L, et al.. Isolation of a siderophore-producing and cadmium-resistant bacteria and its effect on seed germination of ryegrass [J/OL]. Microbiol. China, 2021, 48(6):1895-1906. | |
31 | JIN C W, LI G X, YU X H, et al.. Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere [J]. Ann. Bot-London., 2010, 105(5):835-841. |
32 | 李韵雅. 高产铁载体根际促生菌的筛选及其在土壤修复方面的潜在应用[D]. 无锡:江南大学, 2019. |
LI Y Y. Screening of siderophore-high-yield plant growth promoting rhizobacteria and its potential application in soil remediation [D]. Wuxi: Jiangnan University, 2019. | |
33 | 王亚军, 冯炬威, 李雅倩, 等. 高产铁载体菌Burkholderia vietnamiensis YQ9促生特性研究及其对重金属胁迫条件下种子萌发的影响[J]. 环境科学学报, 2022, 42(2):430-437. |
WANG Y J, FENG J W, LI Y Q, et al.. Studies on growth-promoting properties of an efficient siderophore producing bacterium, Burkholderia vietnamiensis YQ9, and its effects on seed germination under heavy metal stress [J]. Acta. Sci. Circumst., 2022, 42(2):430-437. | |
34 | KUMAR A, PATEL J S, MEENA V S, et al.. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture [J/OL]. Biocatal. Agric. Biotech., 2019, 20:101271 [2023-08-01]. . |
35 | 徐科玉. 高产吲哚乙酸微生物菌株的筛选、发酵及其促生效果[D]. 石家庄:河北科技大学, 2022. |
XU K Y. Screening and fermentation of a high-IAA-yield microbial strain and its growth-promoting effection [D]. Shijiazhuang: Hebei University of Science & Technology, 2022. | |
36 | 李培根, 要雅倩, 宋吉祥, 等. 马铃薯根际产IAA芽孢杆菌的分离鉴定及促生效果研究[J]. 生物技术通报, 2020, 36(9):109-116. |
LI P G, YAO Y Q, SONG J X, et al.. Isolation and identification of IAA-producing bacillus sp on potato rhizosphere and its growth-promoting effect [J]. Biotechnol. Bull., 2020, 36(9):109-116. | |
37 | 卢华丹. Pseudomonas putida Rs-198的IAA合成途径探究及其与氮磷钾肥料协同促生特性研究[D]. 石河子:石河子大学, 2020. |
LU H D. Study on IAA synthesis pathway of Pseudomonas putida Rs-198 and its synergistic properties with NPK fertilizer [D]. Shihezi: Shihezi University, 2020. | |
38 | FIGUEREDO E F, CRUZ T A D, ALMEIDA J R D, et al.. The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system [J/OL]. Microbiol. Res., 2023, 266:127218 [2023-08-01]. . |
39 | 姬彦飞, 董欣欣, 田野, 等. 根际促生菌的生防机理及用作生防制剂的潜能[J]. 中国农学通报, 2021, 37(14):141-149. |
JI Y F, DONG X X, TIAN Y, et al.. PGPR: the biological control mechanism and potential as biological control agent [J]. Chin. Agric. Sci. Bull., 2021, 37(14):141-149. | |
40 | WANG H, LIU R, YOU M P, et al.. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): role of bacterial diversity [J/OL]. Microorganisms, 2021, 9(9):1988 [2023-08-01]. . |
41 | SANTOYO G, URTIS-FLORES C A, LOEZA-LARA P D, et al.. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR) [J/OL]. Biology, 2021, 10(6):475 [2023-08-01]. . |
42 | ZEBELO S, SONG Y, KLOEPPER J W, et al.. Rhizobacteria activates (+)- δ -cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua): rhizobacteria affects gossypol biosynthesis [J]. Plant Cell Environ., 2016, 39(4):935-943. |
43 | HOSSEINI A, HOSSEINI M, SCHAUSBERGER P. Plant growth-promoting rhizobacteria enhance defense of strawberry plants against spider mites [J/OL]. Front. Plant Sci., 2022, 12, 783578 [2023-08-01]. . |
44 | 杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5):104-109. |
YANG M, GAO T, LI Y J, et al.. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics [J]. Biotechnol. Bull., 2020, 36(5):104-109. | |
45 | 赵倩, 李军民, 雷庭, 等. 嗜酸性PGPR菌株CLB-17的筛选、鉴定及其对烟草青枯病菌的生防活性[J]. 植物保护学报, 2022, 49(2):528-538. |
ZHAO Q, LI J M, LEI T, et al.. Screening, identification and evaluation of acidophilic Bacillus subtilis CLB-17 for biocontrol of Ralstonia solanacearum causing tobacco wilt [J]. J. Plant Prot., 2022, 49(2):528-538. | |
46 | 刘艳霞, 陶正朋, 李想, 等. 抗青枯病型根际促生菌(PGPR)菌群构建及其生物防控机制[J]. 微生物学报, 2023, 63(3):1099-1114. |
LIU Y X, TAO Z P, LI X, et al.. Construction of bacterial wilt-resistant and plant growthpromoting rhizobacteria (PGPR) and the mechanism of biocontrol [J]. Acta. Microbiol. Sin., 2023, 63(3):1099-1114. | |
47 | THEOCHARIS A, BORDIEC S, FERNANDEZ O, et al.. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures [J]. Mol. Plant Microbe. Interact, 2012, 25(2):241-249. |
48 | BEIRINCKX S, VIAENE T, HAEGEMAN A, et al.. Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions [J/OL]. Microbiome, 2020, 8(1):54 [2023-08-01]. . |
49 | ZUBAIR M, HANIF A, FARZAND A, et al.. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat [J/OL]. Microorganisms, 2019, 7(9):337 [2023-08-01]. . |
50 | SARKAR J, CHAKRABORTY B, CHAKRABORTY U. Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury [J]. J. Plant Growth Regul., 2018, 37(4):1396-1412. |
51 | 王秋平, 常萌, 卢磊. 根际促生菌重金属胁迫下缓解植物应激的研究进展[J]. 黑龙江农业科学, 2020(5):118-122. |
WANG Q P, CHANG M, LU L. Research progress of plant stress alleviation under heavy metal stress by plant growth promoting rhizobacteria [J]. Heilongjiang Agric. Sci.,2020(5):118-122. | |
52 | ZAINAB N, AMNA Z, KHAN A A, et al.. PGPR-Mediated plant growth attributes and metal extraction ability of Sesbania sesban L. in industrially contaminated soils [J/OL]. Agronomy, 2021, 11(9):1820 [2023-08-01]. . |
53 | MUSHTAQ Z, LIAQUAT M, NAZIR A, et al.. Potential of plant growth promoting rhizobacteria to mitigate chromium contamination [J/OL]. Environ. Technol. Inno., 2022, 28:102826 [2023-08-01]. . |
54 | KANG J P, HUO Y, YANG D U, et al.. Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng [J]. J. Ginseng Res., 2021, 45(3):442-449. |
55 | CHIAPPERO J, CAPPELLARI L D R, SOSA ALDERETE L G, et al.. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content [J/OL]. Ind. Crop. Prod., 2019, 139:111553[2023-08-01]. . |
56 | YASMIN H, RASHID U, HASSAN M N, et al.. Volatile organic compounds produced by pseudomonas pseudoalcaligenes alleviated drought stress by modulating defense system in maize (Zea mays L.) [J]. Physiol. Plantarum, 2021, 172(2):896-911. |
57 | 王琪, 胡哲, 富薇, 等. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3):163-175. |
WANG Q, HU Z, FU W, et al.. Regulation of Burkholderia sp. GD17 on the drought tolerance of cucumber seedlings [J]. Biotechnol. Bull., 2023, 39(3):163-175. | |
58 | EGAMBERDIEVA D, WIRTH S, BELLINGRATH-KIMURA S D, et al.. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils [J/OL]. Front. Microbiol., 2019, 10:2791 [2023-08-01]. . |
59 | DIAGNE N, NDOUR M, DJIGHALY P I, et al.. Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.) [J/OL]. Front. Sustain. Food Syst., 2020, 4:601004[2023-08-01]. . |
60 | SHULTANA R, TAN KEE ZUAN A, YUSOP M R, et al.. Effect of salt-tolerant bacterial inoculations on rice seedlings differing in salt-tolerance under saline soil conditions [J/OL]. Agronomy, 2020, 10(7):1030 [2023-08-01]. . |
61 | 梁洪榜, 赵丽, 周云鹏, 等. 盐碱地应用根际促生菌对土壤改良、作物产量与品质的影响——基于Meta分析[J]. 土壤, 2022, 54(6):1257-1264. |
LIANG H B, ZHAO L, ZHOU Y P, et al.. Effects of rhizosphere growth-promoting bacteria on soil improvement, crop yield and quality in saline-alkali land——a Meta-analysis [J]. Soils, 2022, 54(6):1257-1264. | |
62 | ZHAO X, YUAN X, XING Y, et al.. A Meta-analysis on morphological, physiological and biochemical responses of plants with PGPR inoculation under drought stress [J]. Plant Cell Environ., 2023, 46(1):199-214. |
63 | 赵树栋, 陈建坤, 黄才成, 等. 植物根际促生菌对高原早熟禾根际土壤氮素及固氮微生物的影响[J]. 草原与草坪, 2022, 42(4):133-138. |
ZHAO S D, CHEN J K, HUANG C C, et al.. Effects of plant growth-promoting rhizobacteria on nitrogen and nitrogen-fixing microorganisms in rhizosphere soil of Poa alpigena [J]. Grassland Turf, 2022, 42(4):133-138. | |
64 | 贺字典, 高玉峰, 王燕, 等. 植物根际促生菌(PGPR)解磷菌的筛选及其对番茄促生作用的研究[J]. 西南农业学报, 2020, 33(12):2891-2896. |
HE Z D, GAO Y F, WANG Y, et al.. Study on phosphate-solubilizing strain selection of plant growth promoting rhizobacteria and its effect on tomato growth promotion [J]. Southwest China J. Agric. Sci., 2020, 33(12):2891-2896. | |
65 | 李永赟, 曾宗梁, 杨军伟, 等. 烤烟根际烟碱降解细菌的多样性及其促生特性分析[J]. 微生物学通报, 2021, 48(10):3632-3641. |
LI Y Y, ZENG Z L, YANG J W, et al.. Analysis on the diversity and plant growth-promoting characteristics of bacteria in rhizosphere of flue-cured tobacco [J]. Microbiol. China, 2021, 48(10):3632-3641. | |
66 | 王丽丽, 杨谦. 接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤[J]. 江苏农业科学, 2016, 44(5):526-529. |
67 | FUNES PINTER M I, SALOMON M V, BERLI F, et al.. Plant growth promoting rhizobacteria alleviate stress by AsIII in grapevine [J]. Agric. Ecosyst. Environ., 2018, 267:100-108. |
68 | 王英丽, 林庆祺, 李宇, 等. 产铁载体根际菌在植物修复重金属污染土壤中的应用潜力[J]. 应用生态学报, 2013, 24(7):2081-2088. |
WANG Y L, LIN Q Q, LI Y, et al.. Application potential of siderophore-producing rhizobacteria in phytoremediation of heavy metals-contaminated soils: a review [J]. Chin. J. Appl. Ecol., 2013, 24(7):2081-2088. | |
69 | 王东升, 王立立, 李取生, 等. 产铁载体菌对龙葵修复土壤Cd污染的促进效应[J]. 环境工程学报, 2018, 12(8):2311-2319. |
WANG D S, WANG L L, LI Q S, et al.. Enhancing effect of siderophore-producting bacteria on remediation of cadmiumcontaminated soil by Solanum nigrum L. [J]. Chin. J. Environ. Eng., 2018, 12(8):2311-2319. | |
70 | LI Z, ALAMI M M, TANG H, et al.. Applications of Streptomyces jingyangensis T. and Bacillus mucilaginosus A. improve soil health and mitigate the continuous cropping obstacles for Pinellia ternata (Thunb.) Breit [J/OL]. Ind. Crop. Prod., 2022, 180:114691 [2023-08-01]. . |
71 | MUFTI R, BANO A. PGPR-induced defense responses in the soybean plant against charcoal rot disease [J]. Eur. J. Plant Pathol., 2019, 155(3):983-1000. |
72 | 王飞, 李雪梦, 杨瑾, 等. 3株丹参根际促生细菌的筛选、鉴定及作用评价[J]. 河南农业科学, 2022, 51(12):81-89. |
WANG F, LI X M, YANG J, et al.. Screening, identification and effect evaluation of three plant growth-promoting rhizobacteria from Salvia miltiorrhiza [J]. J. Henan Agric. Sci., 2022, 51(12):81-89. | |
73 | CHEBOTAR V K, CHIZHEVSKAYA E P, VOROBYOV N I, et al.. The quality and productivity of strawberry (Fragaria ananassa Duch.) improved by the inoculation of PGPR Bacillus velezensis BS89 in field experiments [J/OL]. Agronomy, 2022, 12(11):2600 [2023-08-01]. . |
74 | 朱滕滕, 何学莲, 勉小娟, 等. 硒砂瓜根际促生菌筛选鉴定及其促生效应研究[J]. 干旱地区农业研究, 2023, 41(2):221-229. |
ZHU T T, HE X L, MIAN X J, et al.. Growth-promoting bacteria screening from Selenium watermelon rhizosphere and their growth promoting effects [J]. Agric. Res. Arid Areas, 2023, 41(2):221-229. | |
75 | 吕朝阳, 王威, 杨淼泠, 等. 根际促生菌S1菌株的分离鉴定及促生效果[J]. 安徽农业科学, 2022, 50(20):81-85, 107. |
LYU C Y, WANG W, YANG M L, et al.. Isolation and identification of plant growth promoting rhizobacteria S1 and determination of its effect on growth promotion [J]. J. Anhui Agric. Sci., 2022, 50(20):81-85, 107. | |
76 | 万水霞, 王静, 李帆, 等. 玉米根际高效溶磷菌的筛选、鉴定及促生效应研究[J]. 生物技术通报, 2020, 36(5):98-103. |
WAN S X, WANG J, LI F, et al.. Screening and identification of phosphate solubilizing bacteria from maize rhizosphere soil and its growth promoting effect [J]. Biotechnol. Bull., 2020, 36(5):98-103. | |
77 | 王艳平, 李萍, 吴文强, 等. 生物有机肥和微生物菌剂对北京山区连作茶菊生长及土壤肥力的影响[J]. 中国土壤与肥料,2023(12):107-113. |
WANG Y P, LI P, WU W Q, et al.. Effects of bio-organic fertilizer and microbial agent on the growth of tea chrysanthemum and soil fertility under continuous cropping cultivation system in the mountainous area of beijing [J]. Soil Fert. Sci. China, 2023(12):107-113. | |
78 | 王东丽, 郑笑影, 刘阳, 等. 微生物菌剂协同有机肥对矿区复垦植物生长与养分的影响[J]. 生态学杂志, 2023, 42(8):1928-1935. |
WANG D L, ZHENG X Y, LIU Y, et al.. Effects of organic fertilizer application combined with bacterial agent on the growth and nutrient of reclaimed plants in mining area [J]. Chin. J. Ecol., 2023, 42(8):1928-1935. | |
79 | 郭巨先, 欧阳碧珊, 李桂花, 等. 微生物有机肥对连作菜薹生长及土壤性质的影响[J]. 中国农业科技导报, 2023, 25(2):182-191. |
GUO J X, OUYANG B S, LI G H, et al.. Effect of bio-organic fertilizers on quality and soil of continuous crop Chinese flowering cabbage [J]. J. Agric. Sci. Technol., 2023, 25(2):182-191. | |
80 | 梁辉, 王勇, 陈玉蓝, 等. PGPR菌剂对植烟土壤理化性状及phoD基因群落结构的影响[J]. 中国烟草科学, 2022, 43(5):61-67. |
LIANG H, WANG Y, CHEN Y L, et al.. Effects of PGPR inoculants on physical and chemical properties of tobacco planting soil and composition of bacterial community containing phoD [J]. Chin. Tob. Sci., 2022, 43(5):61-67. | |
81 | 郑培峰, 姜小蕾, 翟彦霖, 等. PGPR对莠去津污染土壤中结缕草生长及生理的影响[J]. 中国农学通报, 2022, 38(5):124-131. |
ZHENG P F, JIANG X L, ZHAI Y L, et al.. PGPR in atrazine contaminated soil: effect on the growth and physiology of Zoysia japonica Steud [J]. Chin. Agric. Sci. Bull., 2022, 38(5):124-131. | |
82 | WANG C, LI Y, LI M, et al.. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean [J]. J. Integr. Plant Biol., 2021, 63(6):1021-1035. |
83 | WANG Y, LI W, DU B, et al.. Effect of biochar applied with plant growth-promoting rhizobacteria (PGPR) on soil microbial community composition and nitrogen utilization in tomato [J]. Pedosphere, 2021, 31(6):872-881. |
84 | SANTOS M S, NOGUEIRA M A, HUNGRIA M. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture [J/OL]. AMB Express, 2019, 9(1):205[2023-08-01]. . |
85 | KESWANI C, PRAKASH O, BHARTI N, et al.. Re-addressing the biosafety issues of plant growth promoting rhizobacteria [J]. Sci. Total Environ., 2019, 690:841-852. |
86 | ZHUANG L, LI Y, WANG Z, et al.. Synthetic community with six Pseudomonas strains screened from garlic rhizosphere microbiome promotes plant growth [J]. Microb. Biotechnol., 2021, 14(2):488-502. |
87 | 葛艺, 徐绍辉, 徐艳. 根际微生物组构建的影响因素研究进展[J]. 浙江农业学报, 2019, 31(12):2120-2130. |
GE Y, XU S H, XU Y. Review on influencing factors of rhizosphere microbiome assemblage [J]. Acta Agric. Zhejiangensis, 2019, 31(12):2120-2130. | |
88 | NEEMISHA, KUMAR A, SHARMA P, et al.. Harnessing rhizobacteria to fulfil inter-linked nutrient dependency on soil and alleviate stresses in plants [J]. J. Appl. Microbiol., 2022, 133(5): 2694-2716. |
89 | 邵秋雨, 董醇波, 韩燕峰, 等. 植物根际微生物组的研究进展[J]. 植物营养与肥料学报, 2021, 27(1):144-152. |
SHAO Q Y, DONG C B, HAN Y F, et al.. Research progress in the rhizosphere microbiome of plants [J]. Plant Nutr. Fert. Sci., 2021, 27(1):144-152. | |
90 | 韦中,杨天杰,任鹏,等. 合成菌群在根际免疫研究中的现状与未来[J]. 南京农业大学学报,2021,44(4):597-603. |
WEI Z, YANG T J, REN P, et al.. Advances and perspectives on synthetic microbial community in the study of rhizosphere immunity [J]. J. Nanjing Agric. Univ., 2021, 44(4):597-603. |
[1] | 赵培强, 崔永峰, 徐亚, 李明丽. 工业集聚区土壤和农作物重金属赋存特征解析[J]. 中国农业科技导报, 2024, 26(8): 163-171. |
[2] | 刘霏霏, 何万荣, 孙强, 席琳乔, 廖结安, 韩路. 苜蓿绿肥对塔里木盆地苹果园土壤细菌多样性和功能的影响[J]. 中国农业科技导报, 2024, 26(8): 223-233. |
[3] | 柳亚峰, 方志超, 夏海峰, 曲永波, 吴明亮. 对辊拨刷式藠头收获机设计与试验[J]. 中国农业科技导报, 2024, 26(6): 72-81. |
[4] | 黄诗锐, 王天一, 文韬, 周江龙. 基于改进YOLOv7的农作物虫害识别[J]. 中国农业科技导报, 2024, 26(11): 107-116. |
[5] | 杨丽莹, 邰孟雅, 翟夜雨, 许自成, 黄五星. 硫对植物吸收积累镉的影响及其作用机制研究进展[J]. 中国农业科技导报, 2023, 25(8): 10-21. |
[6] | 孔令博, 林巧, 聂迎利, 王晶静, 魏虹. 中国农作物种业发展现状及对策分析[J]. 中国农业科技导报, 2023, 25(4): 1-13. |
[7] | 胡秀文, 邓波, 王金斌, 刘华, 唐雪明, 王宇, 曾海娟, 蒋玮, 李红. 基于RPA技术对转CP4-EPSPS基因产品的快速检测[J]. 中国农业科技导报, 2023, 25(2): 227-233. |
[8] | 李浩辉, 刘彩月, 张海文, 王旭静, 唐巧玲, 王友华. 2022年度全球转基因作物产业化发展现状及趋势分析[J]. 中国农业科技导报, 2023, 25(12): 6-16. |
[9] | 赵欣, 王怡霏, 王嘉嘉, 王佩瑶, 王桂端, 朱利霞, 李俐俐. 木霉菌对作物及土壤生态环境的影响[J]. 中国农业科技导报, 2023, 25(11): 166-172. |
[10] | 张琳, 杨艳涛, 宋莉莉, 毛世平. 北京市西瓜和甜瓜产业现状与高质量发展对策[J]. 中国农业科技导报, 2023, 25(11): 20-27. |
[11] | 卢闯, 胡海棠, 覃苑, 淮贺举, 李存军. 基于无人机多光谱影像的春玉米田管理分区研究[J]. 中国农业科技导报, 2022, 24(9): 106-115. |
[12] | 徐文, 李虎, 朱士江, 何卫平, 杜裕. 不同参照作物腾发量计算模型在鄂西地区的适用性研究[J]. 中国农业科技导报, 2022, 24(7): 141-149. |
[13] | 汪海, 赖锦盛, 王海洋, 李新海. 作物智能设计育种——自然变异的智能组合和人工变异的智能创制[J]. 中国农业科技导报, 2022, 24(6): 1-8. |
[14] | 李炜, 朱德利, 王青, 曾绍华. 监测生长状态和环境响应的作物数字孪生系统研究综述[J]. 中国农业科技导报, 2022, 24(6): 90-105. |
[15] | 崔遵康, 李丹阳, 徐小婷, 朱俊峰, 武拉平, 左文革. 粮食作物生物育种技术全球创新布局与竞争态势研究——基于核心专利数据挖掘的视角[J]. 中国农业科技导报, 2022, 24(5): 1-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||