Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (6): 154-164.DOI: 10.13304/j.nykjdb.2021.1035
• FOOD QUALITY & PROCESSING AND STORAGE • Previous Articles
Yilin YANG1(), Junxiong DING1, Xiaohua WU1(
), Peng WANG1, Dongliang SUN1, Xinyao YU1, Zhentao ZHANG2, Dong LI3
Received:
2021-12-03
Accepted:
2022-05-05
Online:
2023-06-01
Published:
2023-07-28
Contact:
Xiaohua WU
杨伊琳1(), 丁俊雄1, 吴小华1(
), 王鹏1, 孙东亮1, 于馨尧1, 张振涛2, 李栋3
通讯作者:
吴小华
作者简介:
杨伊琳E-mail:yangyilin210@163.com;
基金资助:
CLC Number:
Yilin YANG, Junxiong DING, Xiaohua WU, Peng WANG, Dongliang SUN, Xinyao YU, Zhentao ZHANG, Dong LI. Optimization of Hot-air Drying Process Parameters of Lentinus edodes Based on Response Surface[J]. Journal of Agricultural Science and Technology, 2023, 25(6): 154-164.
杨伊琳, 丁俊雄, 吴小华, 王鹏, 孙东亮, 于馨尧, 张振涛, 李栋. 基于响应曲面法优化香菇热风干燥工艺参数[J]. 中国农业科技导报, 2023, 25(6): 154-164.
参数 Parameter | 水平 Level | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
干燥温度 Drying temperature/℃ | 45 | 50 | 55 | 60 |
相对湿度 Relative humidity/% | 25 | 30 | 35 | 40 |
风速 Wind speed/(m·s-1) | 2 | 3 | 4 | 5 |
单位载荷量 Unit load/(kg·m-2) | 2 | 4 | 6 | 8 |
Table 1 Test plan for the moisture ratio of lentinus edodes to hot air drying
参数 Parameter | 水平 Level | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
干燥温度 Drying temperature/℃ | 45 | 50 | 55 | 60 |
相对湿度 Relative humidity/% | 25 | 30 | 35 | 40 |
风速 Wind speed/(m·s-1) | 2 | 3 | 4 | 5 |
单位载荷量 Unit load/(kg·m-2) | 2 | 4 | 6 | 8 |
水平 Level | 因素 Factor | ||
---|---|---|---|
X1:相对湿度 Relative humidity/% | X2:风速 Wind speed/(m·s-1) | X3:单位载荷量 Unit load/ (kg·m-2) | |
-1 | 25 | 3 | 4 |
0 | 30 | 4 | 6 |
1 | 35 | 5 | 8 |
Table 2 Response surface technology parameter and level
水平 Level | 因素 Factor | ||
---|---|---|---|
X1:相对湿度 Relative humidity/% | X2:风速 Wind speed/(m·s-1) | X3:单位载荷量 Unit load/ (kg·m-2) | |
-1 | 25 | 3 | 4 |
0 | 30 | 4 | 6 |
1 | 35 | 5 | 8 |
Fig. 1 Color difference of dry Lentinus edodes under drying parametersNote:Different small letters in the figure indicate significant differences at P<0.05 level.
Fig. 2 Water-soluble protein content of Lentinus edodes under different drying parametersNote:Different small letters in the figure indicate significant differences at P<0.05 level.
序号 Number | X1 | X2 | X3 | Y1 | Y2/(mg·g-1) | Y3/h |
---|---|---|---|---|---|---|
1 | 0 | -1 | -1 | 3.56 | 45.15 | 15.00 |
2 | -1 | 1 | 0 | 4.40 | 40.32 | 13.50 |
3 | 0 | 0 | 0 | 4.22 | 35.24 | 14.50 |
4 | -1 | -1 | 0 | 5.48 | 40.66 | 14.50 |
5 | 1 | 0 | -1 | 3.87 | 42.40 | 13.50 |
6 | 0 | 0 | 0 | 3.92 | 38.72 | 13.50 |
7 | 1 | 1 | 0 | 3.38 | 37.85 | 15.00 |
8 | 0 | 1 | -1 | 3.17 | 44.82 | 13.00 |
9 | 1 | -1 | 0 | 3.95 | 51.05 | 16.50 |
10 | -1 | 0 | 1 | 4.84 | 40.74 | 15.00 |
11 | 0 | 0 | 0 | 4.52 | 37.49 | 14.00 |
12 | 0 | 0 | 0 | 4.26 | 36.24 | 14.00 |
13 | 0 | -1 | 1 | 5.02 | 51.77 | 16.00 |
14 | 1 | 0 | 1 | 3.67 | 42.34 | 17.00 |
15 | 0 | 1 | 1 | 4.04 | 47.68 | 14.00 |
16 | -1 | 0 | -1 | 4.36 | 42.14 | 12.50 |
17 | 0 | 0 | 0 | 4.17 | 38.11 | 14.00 |
Table 3 Response surface experimental conditions and results
序号 Number | X1 | X2 | X3 | Y1 | Y2/(mg·g-1) | Y3/h |
---|---|---|---|---|---|---|
1 | 0 | -1 | -1 | 3.56 | 45.15 | 15.00 |
2 | -1 | 1 | 0 | 4.40 | 40.32 | 13.50 |
3 | 0 | 0 | 0 | 4.22 | 35.24 | 14.50 |
4 | -1 | -1 | 0 | 5.48 | 40.66 | 14.50 |
5 | 1 | 0 | -1 | 3.87 | 42.40 | 13.50 |
6 | 0 | 0 | 0 | 3.92 | 38.72 | 13.50 |
7 | 1 | 1 | 0 | 3.38 | 37.85 | 15.00 |
8 | 0 | 1 | -1 | 3.17 | 44.82 | 13.00 |
9 | 1 | -1 | 0 | 3.95 | 51.05 | 16.50 |
10 | -1 | 0 | 1 | 4.84 | 40.74 | 15.00 |
11 | 0 | 0 | 0 | 4.52 | 37.49 | 14.00 |
12 | 0 | 0 | 0 | 4.26 | 36.24 | 14.00 |
13 | 0 | -1 | 1 | 5.02 | 51.77 | 16.00 |
14 | 1 | 0 | 1 | 3.67 | 42.34 | 17.00 |
15 | 0 | 1 | 1 | 4.04 | 47.68 | 14.00 |
16 | -1 | 0 | -1 | 4.36 | 42.14 | 12.50 |
17 | 0 | 0 | 0 | 4.17 | 38.11 | 14.00 |
方差来源 Source of variance | Y1 | Y2 | Y3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
总和 Sum | 自由度 Degree of freedom | 平均值 Average value | F值 F value | P值 P value | 总和 Sum | 自由度 Degree of freedom | 平均值 Average value/(mg·g-1) | F值 F value | P值 P value | 总和 Sum | 自由度 Degree of freedom | 平均值 Average value/h | F值 F value | P值 P value | |
模型 Model | 4.76 | 9 | 0.53 | 4.52 | 0.029 7 | 338.30 | 9 | 37.59 | 6.94 | 0.009 1 | 20.63 | 9 | 2.29 | 5.70 | 0.015 9 |
X1 | 2.22 | 1 | 2.22 | 18.95 | 0.003 3 | 11.96 | 1 | 11.96 | 2.21 | 0.181 0 | 5.28 | 1 | 5.28 | 13.14 | 0.008 4 |
X2 | 1.14 | 1 | 1.14 | 9.75 | 0.016 8 | 40.32 | 1 | 40.32 | 7.44 | 0.029 4 | 5.28 | 1 | 5.28 | 13.14 | 0.008 4 |
X3 | 0.85 | 1 | 0.85 | 7.28 | 0.030 7 | 8.04 | 1 | 8.04 | 1.48 | 0.262 6 | 8.00 | 1 | 8.00 | 19.91 | 0.002 9 |
X1X2 | 0.07 | 1 | 0.07 | 0.56 | 0.480 0 | 41.34 | 1 | 41.34 | 7.63 | 0.028 0 | 0.06 | 1 | 0.06 | 0.16 | 0.705 0 |
X1X3 | 0.12 | 1 | 0.12 | 0.99 | 0.353 1 | 0.45 | 1 | 0.45 | 0.08 | 0.781 8 | 0.25 | 1 | 0.25 | 0.62 | 0.456 1 |
X2X3 | 0.09 | 1 | 0.09 | 0.74 | 0.416 8 | 3.53 | 1 | 3.53 | 0.65 | 0.445 8 | 0.00 | 1 | 0.00 | 0.00 | 1.000 0 |
X12 | 0.11 | 1 | 0.11 | 0.93 | 0.366 1 | 0.02 | 1 | 0.02 | 0.38×10-2 | 0.952 5 | 0.81 | 1 | 0.81 | 2.01 | 0.199 6 |
X22 | 0.02 | 1 | 0.02 | 0.21 | 0.660 0 | 121.87 | 1 | 121.87 | 22.49 | 0.002 1 | 0.81 | 1 | 0.81 | 2.01 | 0.199 6 |
X32 | 0.16 | 1 | 0.16 | 1.36 | 0.282 4 | 97.62 | 1 | 97.62 | 18.02 | 0.003 8 | 0.02 | 1 | 0.02 | 0.04 | 0.845 4 |
残差 Residual | 0.82 | 7 | 0.17 | — | — | 37.93 | 7 | 5.42 | — | — | 2.81 | 7 | 0.40 | — | — |
失拟性 Lack of fit | 0.63 | 3 | 0.21 | 4.59 | 0.087 5 | 29.95 | 3 | 9.98 | 5.01 | 0.076 9 | 2.31 | 3 | 0.77 | 6.17 | 0.055 6 |
纯误差 Pure error | 0.18 | 4 | 0.05 | — | — | 7.98 | 4 | 1.99 | — | — | 0.50 | 4 | 0.13 | — | — |
总离差 Total deviation | 5.57 | 16 | — | — | — | 376.23 | 16 | — | — | — | 23.44 | 16 | — | — | — |
Table 4 Mushroom color difference regression equation coefficient and variance analysis table
方差来源 Source of variance | Y1 | Y2 | Y3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
总和 Sum | 自由度 Degree of freedom | 平均值 Average value | F值 F value | P值 P value | 总和 Sum | 自由度 Degree of freedom | 平均值 Average value/(mg·g-1) | F值 F value | P值 P value | 总和 Sum | 自由度 Degree of freedom | 平均值 Average value/h | F值 F value | P值 P value | |
模型 Model | 4.76 | 9 | 0.53 | 4.52 | 0.029 7 | 338.30 | 9 | 37.59 | 6.94 | 0.009 1 | 20.63 | 9 | 2.29 | 5.70 | 0.015 9 |
X1 | 2.22 | 1 | 2.22 | 18.95 | 0.003 3 | 11.96 | 1 | 11.96 | 2.21 | 0.181 0 | 5.28 | 1 | 5.28 | 13.14 | 0.008 4 |
X2 | 1.14 | 1 | 1.14 | 9.75 | 0.016 8 | 40.32 | 1 | 40.32 | 7.44 | 0.029 4 | 5.28 | 1 | 5.28 | 13.14 | 0.008 4 |
X3 | 0.85 | 1 | 0.85 | 7.28 | 0.030 7 | 8.04 | 1 | 8.04 | 1.48 | 0.262 6 | 8.00 | 1 | 8.00 | 19.91 | 0.002 9 |
X1X2 | 0.07 | 1 | 0.07 | 0.56 | 0.480 0 | 41.34 | 1 | 41.34 | 7.63 | 0.028 0 | 0.06 | 1 | 0.06 | 0.16 | 0.705 0 |
X1X3 | 0.12 | 1 | 0.12 | 0.99 | 0.353 1 | 0.45 | 1 | 0.45 | 0.08 | 0.781 8 | 0.25 | 1 | 0.25 | 0.62 | 0.456 1 |
X2X3 | 0.09 | 1 | 0.09 | 0.74 | 0.416 8 | 3.53 | 1 | 3.53 | 0.65 | 0.445 8 | 0.00 | 1 | 0.00 | 0.00 | 1.000 0 |
X12 | 0.11 | 1 | 0.11 | 0.93 | 0.366 1 | 0.02 | 1 | 0.02 | 0.38×10-2 | 0.952 5 | 0.81 | 1 | 0.81 | 2.01 | 0.199 6 |
X22 | 0.02 | 1 | 0.02 | 0.21 | 0.660 0 | 121.87 | 1 | 121.87 | 22.49 | 0.002 1 | 0.81 | 1 | 0.81 | 2.01 | 0.199 6 |
X32 | 0.16 | 1 | 0.16 | 1.36 | 0.282 4 | 97.62 | 1 | 97.62 | 18.02 | 0.003 8 | 0.02 | 1 | 0.02 | 0.04 | 0.845 4 |
残差 Residual | 0.82 | 7 | 0.17 | — | — | 37.93 | 7 | 5.42 | — | — | 2.81 | 7 | 0.40 | — | — |
失拟性 Lack of fit | 0.63 | 3 | 0.21 | 4.59 | 0.087 5 | 29.95 | 3 | 9.98 | 5.01 | 0.076 9 | 2.31 | 3 | 0.77 | 6.17 | 0.055 6 |
纯误差 Pure error | 0.18 | 4 | 0.05 | — | — | 7.98 | 4 | 1.99 | — | — | 0.50 | 4 | 0.13 | — | — |
总离差 Total deviation | 5.57 | 16 | — | — | — | 376.23 | 16 | — | — | — | 23.44 | 16 | — | — | — |
参数 Parameter | 优化结果 Optimization results | 相对湿度 Relative humidity/% | 风速 Wind speed/(m·s-1) | 单位载荷量 Unit load/(kg·m-2) |
---|---|---|---|---|
色差 Chromatic aberration | 3.301 | 33.58 | 5.0 | 4.0 |
水溶性蛋白含量 Water-soluble protein content/(mg·g-1) | 55.02 | 33.80 | 3.0 | 8.0 |
干燥时间 Drying time/h | 12.57 | 27.69 | 4.8 | 4.0 |
Table 5 Model regression validation data
参数 Parameter | 优化结果 Optimization results | 相对湿度 Relative humidity/% | 风速 Wind speed/(m·s-1) | 单位载荷量 Unit load/(kg·m-2) |
---|---|---|---|---|
色差 Chromatic aberration | 3.301 | 33.58 | 5.0 | 4.0 |
水溶性蛋白含量 Water-soluble protein content/(mg·g-1) | 55.02 | 33.80 | 3.0 | 8.0 |
干燥时间 Drying time/h | 12.57 | 27.69 | 4.8 | 4.0 |
方差来源 Source of variance | 总和 Sum | 自由度 Degree of freedom | 平均值 Average value | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 0.308 6 | 9 | 0.034 3 | 4.11 | 0.038 0 |
X1 | 0.014 1 | 1 | 0.014 1 | 1.69 | 0.234 4 |
X2 | 0.002 5 | 1 | 0.002 5 | 0.30 | 0.600 7 |
X3 | 0.030 0 | 1 | 0.030 0 | 3.59 | 0.100 1 |
X1X2 | 0.042 4 | 1 | 0.042 4 | 5.08 | 0.058 8 |
X1X3 | 0.000 6 | 1 | 0.000 6 | 0.07 | 0.793 0 |
X2X3 | 0.000 8 | 1 | 0.000 8 | 0.09 | 0.771 4 |
X12 | 0.007 5 | 1 | 0.007 5 | 0.90 | 0.374 8 |
X22 | 0.091 0 | 1 | 0.091 0 | 10.90 | 0.013 1 |
X32 | 0.113 3 | 1 | 0.113 3 | 13.56 | 0.007 8 |
残差 Residual | 0.058 5 | 7 | 0.008 4 | — | — |
失拟性 Lack of fit | 0.038 0 | 3 | 0.012 7 | 2.49 | 0.199 9 |
纯误差 Pure error | 0.020 4 | 4 | 0.005 1 | — | — |
总离差 Total deviation | 0.367 0 | 16 | — | — | — |
Table 6 Mushroom drying time regression equation coefficient and variance analysis table
方差来源 Source of variance | 总和 Sum | 自由度 Degree of freedom | 平均值 Average value | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 0.308 6 | 9 | 0.034 3 | 4.11 | 0.038 0 |
X1 | 0.014 1 | 1 | 0.014 1 | 1.69 | 0.234 4 |
X2 | 0.002 5 | 1 | 0.002 5 | 0.30 | 0.600 7 |
X3 | 0.030 0 | 1 | 0.030 0 | 3.59 | 0.100 1 |
X1X2 | 0.042 4 | 1 | 0.042 4 | 5.08 | 0.058 8 |
X1X3 | 0.000 6 | 1 | 0.000 6 | 0.07 | 0.793 0 |
X2X3 | 0.000 8 | 1 | 0.000 8 | 0.09 | 0.771 4 |
X12 | 0.007 5 | 1 | 0.007 5 | 0.90 | 0.374 8 |
X22 | 0.091 0 | 1 | 0.091 0 | 10.90 | 0.013 1 |
X32 | 0.113 3 | 1 | 0.113 3 | 13.56 | 0.007 8 |
残差 Residual | 0.058 5 | 7 | 0.008 4 | — | — |
失拟性 Lack of fit | 0.038 0 | 3 | 0.012 7 | 2.49 | 0.199 9 |
纯误差 Pure error | 0.020 4 | 4 | 0.005 1 | — | — |
总离差 Total deviation | 0.367 0 | 16 | — | — | — |
响应值 Response value | 色差 Chromatic aberration | 水溶性蛋白含量 Water-soluble protein content/(mg·g-1) | 干燥时间 Drying time/h |
---|---|---|---|
预测值 Predictive value | 3.58 | 46.39 | 12.5 |
试验值 Experimental value | 3.79 | 49.82 | 13.5 |
相对误差 Relative error/% | 5.5 | 6.9 | 7.4 |
Table 7 Comparison of experimental value and predicted value
响应值 Response value | 色差 Chromatic aberration | 水溶性蛋白含量 Water-soluble protein content/(mg·g-1) | 干燥时间 Drying time/h |
---|---|---|---|
预测值 Predictive value | 3.58 | 46.39 | 12.5 |
试验值 Experimental value | 3.79 | 49.82 | 13.5 |
相对误差 Relative error/% | 5.5 | 6.9 | 7.4 |
1 | 王教领,宋卫东,任彩红,等.我国香菇干燥技术研究进展[J].中国农机化学报,2021,42(7):76-83. |
WANG J L, SONG W D, REN C H, et al.. Research on the drying progress of lentinus edodes in China [J]. J. Chin. Agric. Mech., 2021, 42(7): 76-83. | |
2 | SANODIYA G S, THAKUR G B, PRASAD K S. Lentinus edodes (a macrofungus with pharmacological activities) [J]. Curr. Med. Chem., 2010,17(22): 2419-2430. |
3 | CHEN H L, JU Y, LI J J, et al.. Antioxidant activities of polysaccharides from Lentinus edodes and their significance for disease prevention [J]. Int. J. Biol. Macromol., 2012, 50(1): 214-218. |
4 | FEENEY M J, DWYER J, HASLERLEWIS C M, et al.. Mushrooms and health summit proceedings [J]. J. Nutr., 2014, 144(7): 1128S-1136S. |
5 | CHEN L, GONG Y, CAI Y, et al.. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation [J/OL]. PLoS ONE, 2016, 11(8): e0160336 [2021-10-22]. . |
6 | WU F, ZHOU L W, YANG Z L, et al.. Resource diversity of Chinese macrofungi (edible) medicinal and poisonous species [J]. Fungal Divers., 2019, 98: 1-76. |
7 | LIU J, JIA L, KAN J, et al.. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus) [J]. Food Chem. Toxicol., 2013, 51: 310-316. |
8 | MATTILA P, KÖNKÖ K, EUROLA M, et al.. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms [J]. J. Agric. Food Chem., 2001, 49(5): 2343-2348. |
9 | TAX E N, COSAN G, ÖTLES S. Optimization of process conditions to improve the quality properties of healthy watermelon snacks developed by hot-air drying [J]. J. Food Meas. Charact., 2021(15): 2146-2160. |
10 | 陈新瑶,董星,陈景杰,等.响应曲面法优化猴头菇粗多糖的提取工艺[J].中国农业科技导报,2017,19(3):131-136. |
CHEN X Y, DONG X, CHEN J J, et al.. Optimization of extraction process for crude polysaccharide from Hericium erinaceus by response surface methodology [J]. J. Agric. Sci. Technol., 2017, 19(3): 131-136. | |
11 | 黎斌,彭桂兰,罗传伟,等.油菜籽真空干燥工艺优化[J].食品与发酵工业,2016,42(12):105-110. |
LI B, PENG G L, LUO C W, et al.. Optimization of rapeseed vacuum drying process [J]. Food Ferment. Ind., 2016, 42(12): 105-110. | |
12 | ZHANG W P, CHEN C, PAN Z L, et al.. Vacuum and infrared-assisted hot air impingement drying for improving the processing performance and quality of Poria cocos (Schw.) Wolf Cubes [J/OL]. Foods, 2021, 10(5): 992 [2021-10-22]. . |
13 | SHRIVASTAVA A, TRIPATHI A D, PAUL V, et al.. Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients [J/OL]. LWT-Food Sci. Technol., 2021, 151: 112091 [2021-10-22]. . |
14 | YE L, LI Y P, QIN X L, et al.. Evaluation research on agricultural informatization level in tropical areas of China based on entropy method [J]. Appl. Mech. Mater., 2014 (596): 280-285. |
15 | 杨伊琳,丁俊雄,吴小华,等.香菇热风干燥特性及动力学模型[J].中国农业大学学报,2022,27(4):135-144. |
YANG Y L, DING J X, WU X H, et al.. Characteristics of Lentinus edodes hot-air drying and its kinetic model [J]. J. China Agric. Univ., 2022, 27(4): 135-144. | |
16 | 于海明.山楂微波热风耦合干燥数学模型研究及干燥设备设计[D].长春:吉林大学,2015. |
YU H M. Research on mathematical model of microwave hot-air coupling drying of hawthorn and design of drying equipment [D]. Changchun: Jilin University, 2015. | |
17 | LAHSASNI S, KOUHILA M, MAHROUZ M, et al.. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficusindica) [J]. Energy, 2004, 29: 211-224. |
18 | 陈健凯,林河通,林艺芬,等.基于品质和能耗的杏鲍菇微波真空干燥工艺参数优化[J].农业工程学报,2014,30(3):277-284. |
CHEN J K, LIN H T, LIN Y F, et al.. Optimization of microwave vacuum drying process parameters of Pleurotus eryngii based on quality and energy consumption [J]. Trans. Chin. Soc. Agric. Eng., 2014, 30(3): 277-284. | |
19 | 张慧,张裕仁,杨佳,等.响应面法优化香菇热风-微波联合干燥工艺[J].食品工业科技,2019,40(14):214-221, 23. |
ZHANG H, ZHANG Y R, YANG J, et al.. Response surface methodology to optimize the hot-air-microwave combined drying process of Lentinus edodes [J]. Food Ind. Tech., 2019, 40(14): 214-221, 232. | |
20 | 张宁.香菇中的化学成分及相关应用的基础研究[D].天津:天津大学,2013. |
ZHANG N. Basic research on chemical constituents and related applications in Lentinus edodes [D]. Tianjin: Tianjin University, 2013. | |
21 | 王生昌,付迪,陈娟娟,等.基于熵值法的汽车动力性能主观评价指标权重确定方法[J].公路交通科技,2015,32(7):153-158. |
WANG S C, FU D, CHEN J J, et al.. Method for determining weights of subjective evaluation indexes of automobile power performance based on entropy method [J]. J. Highway Transport. Res. Dev., 2015, 32(7): 153-158. | |
22 | KATAYAMA S, SAEKI H. Cooperative effect of relative humidity and glucose concentration on improved solubility of shellfish muscle protein by the Maillard reaction [J]. Fisheries Sci., 2004, 70: 159-166. |
23 | FURLAN A L, BIANUCCI E, GIORDANO W, et al.. Proline metabolic dynamics and implications in drought tolerance of peanut plants [J]. Plant Physiol. Biochem., 2020, 151: 566-578. |
24 | 赵昕源,欧阳杰,马田田,等.南极磷虾体内主要营养活性物质在热处理过程中的流向[J].水产学报,2021,45(7):1172-1180. |
ZHAO X Y, OUYANG J, MA T T, et al.. Flow direction of main nutrient substances in Antarctic krill (Euphausia superba) during heat treatment [J]. J. Fish. China, 2021, 45(7): 1172-1180. | |
25 | 魏荣男.南极磷虾粉加工工艺的优化[D].上海:上海大学,2017. |
WEI R N. The optimization of the technology of Antarctic krill powder processing [D]. Shanghai: Shanghai University, 2017. | |
26 | YU X L, ZIELINSKA M, JU H Y, et al.. Multistage relative humidity control strategy enhances energy and exergy efficiency of convective drying of carrot cubes [J/OL]. Int. J. Heat Mass Tran., 2020, 149: 119231 [2021-10-22]. . |
27 | DOYMAZ I. Drying behaviour of green beans [J]. J. Food Eng., 2005, 69: 161-165. |
28 | GIRI S K, PRASAD S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms [J]. J. Food Eng., 2007, 78: 512-521. |
29 | ELIK A. Hot air-assisted radio frequency drying of black carrot pomace (kinetics and product quality) [J/OL]. Innov. Food Sci. Emerg., 2021, 73: 102800 [2021-10-22]. . |
[1] | Dongmeng ZHANG, Dongping YAO, Jun WU, Qiuhong LUO, Wen ZHUANG, Xionglun LIU, Qiyun DENG, Bin BAI. Effect of Natural Low Temperature on Cooking and Eating Quality of Rice During Grain Filling Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 144-153. |
[2] | Lu TIAN, Xiaoxia GUO, Wenbin SU, Chunyan HUANG, Zhi LI, Peng ZHANG, Caiyuan JIAN, Jia LIU, Dejuan KONG, Kang HAN. Effects of Microbial Fertilizer on Growth, Yield and Quality of Continuous Cropping Sugar Beet [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 192-203. |
[3] | Zhengran SUN, Cuiping ZHANG, Jinli ZHANG, Hao WU, Xiuyan LIU, Zhenkai WANG, Yuzhen YANG, Daohua HE. Effects of Chemical Detopping on Cotton Plant Growth in Guanzhong Cotton Region [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 167-177. |
[4] | Wenjun ZHAO, Jizhou YANG, Mei YIN, Jianfeng CHEN, Kaizheng XUE, Baowen HU, Libo FU, Wei WANG, Zhiyuan WANG, Yanxian YANG, Hua CHEN. Effects of Combined Application of Green Manure with Reduced Nitrogen Fertilizer on Yield and Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 189-196. |
[5] | Xiangdong WANG, Yue SONG, Yanzhi MA. Quality Comparison and Comprehensive Evaluation of Different Zingiber officinale Rosc. Varieties [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 56-66. |
[6] | Nali XU, Huixia YU, Mingming YAO, Yanqing WANG, Qingfeng LI, Caixia LIU, Gang SUN, Jiajing CHEN, Jiaohui LONG, Zhangjun WANG. Analysis of Genetic Diversity Based on SSR and SRAP Markers and Agronomic Traits of Wheat Resources [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 30-46. |
[7] | Weixin DONG, Dongxiao LI, Yuechen ZHANG. Effects of Different Nitrogen Levels on Physiological Parameters, Yield and Quality of Maize [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 142-152. |
[8] | Geng LI, Yuanyuan ZHAO, Yuyuan CHENG, Jiang WU, Weidong DUAN, Guangting YIN, Qian LI, Chen CHEN, Fei ZHENG, Yuan LIU, Hongzhi SHI. Effects of Different Organic-inorganic Nitrogen Ratios on Soil Carbon and Nitrogen and Upper Leaf Quality in Nanyang Tobacco Area [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 175-186. |
[9] | Yuanwei CHEN, Huabin ZHENG, Weiqin WANG, Na KUANG, Youyi LUO, Dan ZOU, Qiyuan TANG. Effect of Mowing Treatment on the Main Season Whole Plant Biomass and Silage Quality and Yield in Regeneration Season of Ratooning Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 161-171. |
[10] | Jiazhi ZHANG, Wenyu WANG, Xingyu WANG, Changyu ZHANG, Shuwen SHI, Yuxuan HE, Hongyuan ZHOU, Lihua LIU, Guiping ZHENG. Effect of Hole Seedling Number on Quality of Northern Japonica Rice Under Different Cultivation Modes [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 150-158. |
[11] | Chenguang ZHAO, Siyun NIU, Xun CHEN, Li FANG, Haitao LI, Peixing WANG, Binbin SHEN, Yuanzhi SHI. Effects of Compound Fertilizer on Tea Yield, Quality and Fertility of Tea Garden Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 206-217. |
[12] | Liuxi YI, Rula SA, Xin FAN, Can ZHAO, Ru LI, Bateer SIQIN. Evaluation of Flax Germplasm Phenotype [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 56-67. |
[13] | Yuan YI, Huiyun ZHANG, Liwei LIU, Jing WANG, Xuecheng ZHU, Na ZHAO, Guohua FENG. Effects of Slow-released Fertilizer Compound Humic Acid Instead of Urea on Grain Yield and Population Quality in Xumai New Varieties [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 144-153. |
[14] | Zengyun WEI, Fangjuan DONG, Yilan BO. Optimization of Ultrasonic⁃assisted Extraction of Polysaccharides from Astragalus by Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 203-209. |
[15] | Guanglei CHENG, Jun QIU, Xiaoguang WANG, Tianjun XU, Chuanyong CHEN, Chunyuan ZHANG, Qianqian XIA, Yuanqi WU, Jiuran ZHAO, Ronghuan WANG. Changes of Agronomic Traits, Biomass Yield and Quality of National Silage Maize Combinations (Varieties) [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 30-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||