Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (5): 138-147.DOI: 10.13304/j.nykjdb.2023.0281
• ANIMAL AND PLANT HEALTH • Previous Articles
Lanxiong ZHANG1,2(), Wei ZHENG2,3, Yuan’an CHEN2,3, Jing SHEN2,3, Shuangquan ZOU2, Jianrong WU1(
), Lin NI2,3(
)
Received:
2023-04-10
Accepted:
2023-06-14
Online:
2024-05-15
Published:
2024-05-14
Contact:
Jianrong WU,Lin NI
张岚雄1,2(), 郑威2,3, 陈源桉2,3, 沈婧2,3, 邹双全2, 伍建榕1(
), 倪林2,3(
)
通讯作者:
伍建榕,倪林
作者简介:
张岚雄 E-mail:Harlan_515@outlook.com
基金资助:
CLC Number:
Lanxiong ZHANG, Wei ZHENG, Yuan’an CHEN, Jing SHEN, Shuangquan ZOU, Jianrong WU, Lin NI. Study on Extraction Process and Antibacterial Activity of Lignans from Cinnamomum camphora Leaves[J]. Journal of Agricultural Science and Technology, 2024, 26(5): 138-147.
张岚雄, 郑威, 陈源桉, 沈婧, 邹双全, 伍建榕, 倪林. 樟叶总木脂素提取工艺及其抑菌活性研究[J]. 中国农业科技导报, 2024, 26(5): 138-147.
菌株Strain | 名称Name | 类别Taxonomy |
---|---|---|
F-3 | 西瓜尖孢镰孢菌Fusarium oxysporumf | 半知菌类Deuteromycetes |
G-1 | 链孢粘帚霉菌Gliocladium catenulatum | 半知菌类Deuteromycetes |
V | 苹果黑腐皮壳菌Valsa mali Miyabe et Yamada | 子囊菌门Ascomycota |
P-3 | 瓜果腐霉菌Pythium aphanidermatum | 卵菌门Oomycetes |
Table 1 Tested fungal
菌株Strain | 名称Name | 类别Taxonomy |
---|---|---|
F-3 | 西瓜尖孢镰孢菌Fusarium oxysporumf | 半知菌类Deuteromycetes |
G-1 | 链孢粘帚霉菌Gliocladium catenulatum | 半知菌类Deuteromycetes |
V | 苹果黑腐皮壳菌Valsa mali Miyabe et Yamada | 子囊菌门Ascomycota |
P-3 | 瓜果腐霉菌Pythium aphanidermatum | 卵菌门Oomycetes |
水平level | 因素Factor | ||
---|---|---|---|
A:提取温度 Extraction temperature/℃ | B:料液比 Ratio of solid to liquid/(g·mL-1) | C:提取时间 Extraction time/min | |
-1 | 80 | 1∶6 | 30 |
0 | 85 | 1∶8 | 40 |
1 | 90 | 1∶10 | 50 |
Table 2 Factor level of response surface
水平level | 因素Factor | ||
---|---|---|---|
A:提取温度 Extraction temperature/℃ | B:料液比 Ratio of solid to liquid/(g·mL-1) | C:提取时间 Extraction time/min | |
-1 | 80 | 1∶6 | 30 |
0 | 85 | 1∶8 | 40 |
1 | 90 | 1∶10 | 50 |
Fig. 3 Extraction rate of lignan under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
序号 Number | A:提取温度 Extraction temperature/℃ | B:料液比 Ratio of solid to liquid/(g·mL-1) | C:提取时间 Extraction time/min | 木脂素提取率 Extraction rate of lignans/% |
---|---|---|---|---|
1 | 80 | 1∶6 | 40 | 0.358 5 |
2 | 90 | 1∶6 | 40 | 0.362 0 |
3 | 80 | 1∶10 | 40 | 0.357 0 |
4 | 90 | 1∶10 | 40 | 0.370 9 |
5 | 80 | 1∶8 | 30 | 0.356 6 |
6 | 90 | 1∶8 | 30 | 0.365 8 |
7 | 80 | 1∶8 | 50 | 0.364 7 |
8 | 90 | 1∶8 | 50 | 0.369 9 |
9 | 85 | 1∶6 | 30 | 0.357 9 |
10 | 85 | 1∶10 | 30 | 0.367 0 |
11 | 85 | 1∶6 | 50 | 0.368 8 |
12 | 85 | 1∶10 | 50 | 0.373 4 |
13 | 85 | 1∶8 | 40 | 0.381 1 |
14 | 85 | 1∶8 | 40 | 0.379 6 |
15 | 85 | 1∶8 | 40 | 0.377 5 |
16 | 85 | 1∶8 | 40 | 0.378 3 |
17 | 85 | 1∶8 | 40 | 0.378 9 |
Table 3 Experimental results of response surface test
序号 Number | A:提取温度 Extraction temperature/℃ | B:料液比 Ratio of solid to liquid/(g·mL-1) | C:提取时间 Extraction time/min | 木脂素提取率 Extraction rate of lignans/% |
---|---|---|---|---|
1 | 80 | 1∶6 | 40 | 0.358 5 |
2 | 90 | 1∶6 | 40 | 0.362 0 |
3 | 80 | 1∶10 | 40 | 0.357 0 |
4 | 90 | 1∶10 | 40 | 0.370 9 |
5 | 80 | 1∶8 | 30 | 0.356 6 |
6 | 90 | 1∶8 | 30 | 0.365 8 |
7 | 80 | 1∶8 | 50 | 0.364 7 |
8 | 90 | 1∶8 | 50 | 0.369 9 |
9 | 85 | 1∶6 | 30 | 0.357 9 |
10 | 85 | 1∶10 | 30 | 0.367 0 |
11 | 85 | 1∶6 | 50 | 0.368 8 |
12 | 85 | 1∶10 | 50 | 0.373 4 |
13 | 85 | 1∶8 | 40 | 0.381 1 |
14 | 85 | 1∶8 | 40 | 0.379 6 |
15 | 85 | 1∶8 | 40 | 0.377 5 |
16 | 85 | 1∶8 | 40 | 0.378 3 |
17 | 85 | 1∶8 | 40 | 0.378 9 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 1.136×10-3 | 9 | 1.262×10-4 | 52.72 | <0.000 1 |
A | 1.271×10-4 | 1 | 1.271×10-4 | 53.06 | 0.000 2 |
B | 5.544×10-5 | 1 | 5.544×10-5 | 23.15 | 0.001 9 |
C | 1.090×10-4 | 1 | 1.090×10-4 | 45.53 | 0.000 3 |
AB | 2.721×10-5 | 1 | 2.721×10-5 | 11.36 | 0.011 9 |
AC | 3.978×10-6 | 1 | 3.978×10-6 | 1.66 | 0.238 4 |
BC | 5.067×10-6 | 1 | 5.067×10-6 | 2.12 | 0.189 1 |
A2 | 4.009×10-4 | 1 | 4.009×10-4 | 167.42 | <0.000 1 |
B2 | 2.196×10-4 | 1 | 2.196×10-4 | 91.72 | <0.000 1 |
C2 | 1.096×10-4 | 1 | 1.096×10-4 | 45.79 | 0.000 3 |
残差 Residual error | 1.676×10-5 | 7 | 2.395×10-6 | ||
失拟项 Lack of fit | 9.321×10-6 | 3 | 3.107×10-6 | 1.67 | 0.309 2 |
纯误差 Pure error | 7.440×10-6 | 4 | 1.860×10-6 | ||
总和 Summation | 1.153×10-3 | 16 |
Table 4 ANOVA for regerssion model with lignanoids contents as response value
方差来源 Source of variance | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 1.136×10-3 | 9 | 1.262×10-4 | 52.72 | <0.000 1 |
A | 1.271×10-4 | 1 | 1.271×10-4 | 53.06 | 0.000 2 |
B | 5.544×10-5 | 1 | 5.544×10-5 | 23.15 | 0.001 9 |
C | 1.090×10-4 | 1 | 1.090×10-4 | 45.53 | 0.000 3 |
AB | 2.721×10-5 | 1 | 2.721×10-5 | 11.36 | 0.011 9 |
AC | 3.978×10-6 | 1 | 3.978×10-6 | 1.66 | 0.238 4 |
BC | 5.067×10-6 | 1 | 5.067×10-6 | 2.12 | 0.189 1 |
A2 | 4.009×10-4 | 1 | 4.009×10-4 | 167.42 | <0.000 1 |
B2 | 2.196×10-4 | 1 | 2.196×10-4 | 91.72 | <0.000 1 |
C2 | 1.096×10-4 | 1 | 1.096×10-4 | 45.79 | 0.000 3 |
残差 Residual error | 1.676×10-5 | 7 | 2.395×10-6 | ||
失拟项 Lack of fit | 9.321×10-6 | 3 | 3.107×10-6 | 1.67 | 0.309 2 |
纯误差 Pure error | 7.440×10-6 | 4 | 1.860×10-6 | ||
总和 Summation | 1.153×10-3 | 16 |
Fig. 4 Response surface diagram (left) and contour diagram (right) of the influence of different factors and extraction time on the extraction rate of lignans
序号 Number | 提取率 Extraction rate/% | 平均提取率 Average extraction rate/% | 相对误差 Relative error/% |
---|---|---|---|
1 | 0.381 7 | ||
2 | 0.380 2 | 0.380 5 | 0.015 6 |
3 | 0.379 5 |
Table 5 Verification experiment
序号 Number | 提取率 Extraction rate/% | 平均提取率 Average extraction rate/% | 相对误差 Relative error/% |
---|---|---|---|
1 | 0.381 7 | ||
2 | 0.380 2 | 0.380 5 | 0.015 6 |
3 | 0.379 5 |
菌株 Strain | 毒力回归方程 Virulence regression equation | 相关系数 Correlation coefficient | EC50/(mg·mL-1) | 95%置信限 95% confidence limit/(mg·mL-1) |
---|---|---|---|---|
G-1 | y=1.911x-0.177 | 0.886 | 1.238 | 0.672~1.925 |
V | y=2.093x-0.224 | 0.889 | 1.280 | 0.617~2.164 |
F-3 | y=1.988x-0.342 | 0.923 | 1.486 | 0.843~2.387 |
P-3 | y=1.767x+0.667 | 0.998 | 0.419 | 0.013~0.882 |
Table 6 Toxicity determination of C. camphora lignans to 4 fungi
菌株 Strain | 毒力回归方程 Virulence regression equation | 相关系数 Correlation coefficient | EC50/(mg·mL-1) | 95%置信限 95% confidence limit/(mg·mL-1) |
---|---|---|---|---|
G-1 | y=1.911x-0.177 | 0.886 | 1.238 | 0.672~1.925 |
V | y=2.093x-0.224 | 0.889 | 1.280 | 0.617~2.164 |
F-3 | y=1.988x-0.342 | 0.923 | 1.486 | 0.843~2.387 |
P-3 | y=1.767x+0.667 | 0.998 | 0.419 | 0.013~0.882 |
1 | 中国科学院中国植物志编辑委员会.中国植物志.第31卷[M].北京:科学出版社,1982:1-184. |
2 | 姜少娟,王胜男,刘晓莉.响应面法优化香樟叶总黄酮的超声提取工艺[J].黑龙江农业科学,2018(6):90-97. |
JIANG S J, WANG S N, LIU X L. Optimization of ultrasound-assisted extraction of flavonoids from Cinnamomum camphors leaves using response surface methodology [J]. Heilongjiang Agric. Sci., 2018 (6):90-97. | |
3 | WU M T, NI L, LU H X, et al.. Terpenoids and their biological activities from Cinnamomum: a review [J]. J. Chem., 2020(1):1-14. |
4 | ZHANG C L, FAN L H, FAN S M, et al.. Cinnamomum cassia Presl: a review of its traditional uses, phytochemistry, pharmacology and toxicology [J]. Molecules, 2019, 24(19):1-31. |
5 | 张笮晦,童永清,钱信怡,等.香樟化学成分及药理作用研究进展[J].食品工业科技,2019,40(10) :320-333. |
ZHANG Z H, TONG Y Q, QIAN X Y, et al.. Research progress of chemical components and pharmacological activities of Cinnamomum camphora L. Presl [J]. Sci. Technol. Food Ind., 2019, 40(10):320-333. | |
6 | 黄新华.浙、赣、闽民间樟树信仰风俗及其成因分析[J].地方文化研究,2015(5):93-99. |
HUANG X H. The folk camphor belief customs in Zhejiang, Jiangxi, Fujian and its causes [J]. Local Cult. Res., 2015(5):93-99. | |
7 | CHEN H P, YANG K, YOU C X, et al.. Chemical constituents and insecticidal activities of the essential oil of Cinnamomum camphora leaves against Lasioderma serricorne [J]. J. Chem., 2014(1):1-5. |
8 | HSIEH T J, CHEN C H, LO W L, et al.. Lignans from the stem of Cinnamomum camphora [J]. Nat. Prod. Commun., 2006, 1(1):21-25. |
9 | 廖矛川,杨芳云,沙光普,等.樟树叶化学成分研究[J].中南民族大学学报(自然科学版),2012,31(3):52-55. |
LIAO M C, YANG F Y, SHA G P, et al.. Study on chemical constituents of Cinamomum camphora leaves [J]. J. South-Central Univ. Nationalities (Nat. Sci.), 2012, 31(3):52-55. | |
10 | IMAI S, OGAWA K. Quantitative analysis of carbon balance in the reproductive organs and leaves of Cinnamomum camphora (L.) Presl [J]. J. Plant Res., 2009, 122(4):429-437. |
11 | 王智慧,凌铁军,张梁,等.樟树叶化学成分的研究[J].天然产物研究与开发,2014,26(6):860-863. |
WANG Z H, LING T J, ZHANG L, et al.. A study on the chemical constituents in the leaves of Cinnamomun camphora [J]. Nat. Prod. Res. Dev., 2014, 26(6):860-863. | |
12 | 吴美婷,刘诗瑶,黄达龙.等 .芳樟叶的化学成分及其抗炎活性研究[J].中国中药杂志,2021,46(14):3592-3598. |
WU M T, LIU S Y, HUANG D L, et al.. Chemical constituents from leaves of Cinnamomum camphora var. linaloolifera and their anti-inflammatory activities [J]. China J. Chin. Mater. Med., 2021, 46(14):3592-3598. | |
13 | 谷艳菲,闫伯前,丁轲,等.纯化作用对五味子木脂素抗氧化性的影响[J].林业科学,2015,51(9):96-105. |
GU Y F, YAN B Q, DING K, et al.. Effect on purification on antioxidative activity of lignan fractions from Schisandra chinensis [J]. Sci. Silvae Sin., 2015, 51(9):96-105. | |
14 | 周海旭.樟树叶中木脂素提取分离及其生物活性研究[D].长沙:中南林业科技大学,2017. |
ZHOU H X. Study on the extraction, purification and biological activities of lignans from Cinnamanum camphoral leaf [D]. Changsha: Central South University of Forestry and Technology, 2017. | |
15 | 伍平香. 樟树叶中木脂素提取纯化及其体外抗肝癌活性研究[D].长沙:中南林业科技大学,2018. |
WU P X. Study on extraction and separation of lignans from Cinnamomum camphora leaves and its anti-hepatic activity in vitor [D]. Changsha: Central South University of Forestry and Technology, 2018. | |
16 | 李艳蕾,黄闰玲,邱亚铁,等.圆齿野鸦椿中isobiflorin和biflorin的超声提取工艺[J].福建农林大学学报(自然科学版),2019,48(2):204-209. |
LI Y L, HUANG R L, QIU Y T, et al.. Ultrasonic extraction technology of isobiflorin and biflorin from Euscaphis konishii Hayata [J]. J. Fujian Agric. For. Univ. (Nat. Sci.), 2019, 48(2):204-209. | |
17 | 陈景新,倪林,王钦,等.圆齿野鸦椿果皮成分及抑菌活性研究[J].天然产物研究与开发,2019,31(11):1934-1940. |
CHEN J X, NI L, WANG Q, et al.. Study on the anti-fungal constituents from the pericarp of Euscaphis konishii Hayata [J]. Nat. Prod. Res. Dev., 2019, 31(11):1934-1940. | |
18 | 潘振泽,傅佳蕊,郑威,等.红豆树异黄酮类成分抑制番茄灰霉病菌的活性研究[J].福建农业学报,2022,37(6):794-801. |
PAN Z Z, FU J R, ZHENG W, et al.. Inhibitory activity of isoflavones from Ormosia hosiei seeds against Botrytis cinerea [J]. Fujian J. Agric. Sci., 2022, 37(6):794-801. | |
19 | 郑丽鋆,叶燕燕,吴美婷,等.香樟叶总黄酮提取工艺优化及其抗氧化性研究[J].中国野生植物资源,2022,41(7):11-17. |
ZHEN L J, YE Y Y, WU M T, et al.. Optimiation of extraction technique of total flavonoids from the leaves of Cinnamomum camphora and its antioxidant activity [J]. Chin Wild Plant Res., 2022, 41(7):11-17. | |
20 | 张耀,林智熠,周文娟,等.圆齿野鸦椿枝条抗辣椒疫霉病菌活性成分[J].福建农林大学学报(自然科学学报) 2021,50(4):472-479. |
ZHANG Y, LIN Z Y, ZHOU W J, et al.. Chemical constituents against phytophthora capsici from twigs of Euscaphis konishii Hayata [J]. J. Fujian Agric. For. Univ. (Nat. Sci.), 2021, 50(4):472-479. | |
21 | 郭茂,黄冰冰,李林海,等. 香樟中芝麻素类成分测定方法构建及含量分析[J]. 药学研究,2023,42(1):23-27. |
GUO M, HUANG B B, LI L H, et al.. Construction of determination method and content analysis of sesamins in Cinnamomum camphora var. Linaloolifera fujita [J]. J. Pharm. Res., 2023,42(1):23-27. | |
22 | 周海旭,李忠海,张慧,等.微波辅助提取樟树叶木脂素工艺优化[J].食品与机械,2016,32(6):193-197. |
ZHOU H X, LI Z H, ZHANG H, et al.. Optimization of microwave assisted extraction process of lignans in Cinnamomum camphora leaf [J]. Food Mach., 2016, 32(6):193-197. | |
23 | 袁列江,伍平香. 响应面法优化热回流提取樟树叶中木脂素工艺[J].食品工业科技,2018,39(21):146-151. |
YUAN L J, WU P X. Optimization of hot reflux extraction process of lignans in Cinnamomum camphora leaves by response surface methodology [J]. Sci. Technol. Food Ind., 2018, 39(21):146-151. | |
24 | 何海清,杨莉娜,周金燕,等. 紫外分光光度法和HPLC法测定角毛壳菌CH-1发酵液中卵孢菌素含量的比较研究[J]. 中国抗生素杂志,2015,40(8):593-598. |
HE H Q, YANG L N, ZHOU J Y, et al.. Comparison of UV spectrophotometry and HPLC on quantitative detemination of oosporein in the broth of Chaetomium cupreum CH-1 [J]. Chin. J. Antibiot., 2015, 40(8):593-598. | |
25 | 杜悦,王振华,岳青青. 紫外分光光度法和高效液相色谱法检测食品塑料包装中荧光增白剂[J]. 塑料工业,2014,42(11):89-92. |
DU Y, WANG Z H, YUE Q Q. Fluorescent whitening agent in food plastic packaging test with UV spectrophotometry and HPLC [J]. China Plast. Ind., 2014, 42(11):89-92. |
[1] | Dongling LIU, Hao SI, Baojiang ZHENG, Yuhong ZHANG. Optimization of Enzyme Assisted-ultrasonic Extraction of Sinigrin in Thlaspi arvense Seeds by Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 225-233. |
[2] | Xiuying ZHAO, Qingwen HUANG, Haojie CAO, Jie WANG, Ruijiao LI, Dongxia NIE, Zheng HAN, Zhihui ZHAO. Optimization of Liquid Culture Conditions for the Production of Deoxynivalenol and Its Derivatives by Fusarium graminearum Using Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 222-233. |
[3] | Yilin YANG, Junxiong DING, Xiaohua WU, Peng WANG, Dongliang SUN, Xinyao YU, Zhentao ZHANG, Dong LI. Optimization of Hot-air Drying Process Parameters of Lentinus edodes Based on Response Surface [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 154-164. |
[4] | Shaobo LI, Kuo ZHANG, Jia WANG, Jianping LI, Shuteng LIU. Optimization of Air Duct Parameters of Air Supply Spray Device Based on CFD [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 93-102. |
[5] | Xiaoqing ZHANG, Zhuangzhuang LI, Shibao CHEN, Yu MENG, Dajun REN, Shuqing ZHANG. Sensitivity Differences of Shrub Seedlings to Cadmium Toxicity [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 173-184. |
[6] | Fuhui CHEN, Naikun SHEN, Mingguo JIANG, Yibing WANG. Research Progress of Autotoxic Secretions in Crops Replant Successive Cropping Obstacles [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 125-132. |
[7] | Kaiqiang WANG, Xue YANG, Changfeng LI, Xiao DUAN, Qing PENG, Yu QIAO, Bo SHI. Optimization of Glyceollins Synthesis Condition Induced by Xylooligosaccharides Based on Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 208-217. |
[8] | Yin HUANG, Qing PENG, Quan WANG, Xiaoqing XU, Yuwei ZHANG, Lan MA, Bo SHI, Yu QIAO. [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 202-210. |
[9] | ZHOU Maochao1,2, HUANG Yanna2, DUAN Saifei1,2, SHU Shiyuan1,2, TANG Xueming2*. Development of Microbial Seed Coating Agents and Their Effects on the Growth of Maize Seedlings [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 110-118. |
[10] | GUO Huihui, LIN Congfa, JIANG Yuanbin, LI Zhigang. Optimization of Protocorm Proliferation Medium of Dendrobium huoshanense by Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2020, 22(3): 173-180. |
[11] | LIANG Zhaochao, GUO Xianwei, SONG Yanjuan, MA Tianfu, WANG Feng, WANG Liyan, JING Ruiyong*. Extraction Process of Polysaccharide in Agaricus bisporus Optimized by Response Surface Method and Its Antioxidant Activity in vitro [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 161-168. |
[12] | WU Qi1,2,3§, ZHANG Yuhui1,2§, SU Rongrong1,2, SUN Bo1,3, WU Qiuyun1,2, XIA Zhilan1,2*. Optimization of Submerged Fermentation Medium of Agaricus blazei Murrill for Mycelial Biomass Accumulation Using Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2019, 21(3): 152-160. |
[13] | WANG Dongfang, WANG Qingzhong, GAO Minggang. Insecticidal and Antibacterial Activity of Euphorbia esula Linn. Extract [J]. Journal of Agricultural Science and Technology, 2018, 20(8): 128-133. |
[14] | DAI Yangjun1, HU Jian1,2, ZHOU Ying2, ZUO Bo1, SHI Yixue1. Optimization of Compound Enzymolysis Process of Dried Figs by Plackett-Burman Design and Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2018, 20(7): 146-153. |
[15] | CHEN Jine, LIU Hui, ZHAO Zhigang, ZHANG Hairong*. Optimization of Ultrasound-assisted Extraction of Panax notoginseng Root Polysaccharides Using Response Surface Methology [J]. Journal of Agricultural Science and Technology, 2018, 20(4): 138-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||