Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (10): 215-225.DOI: 10.13304/j.nykjdb.2023.0587
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Hongbin ZHENG1(), Cong WANG1, Qiliang XI1, Zhongwen ZHANG1, Weimin WANG1, Xin WANG1, Jin GUO1, Huanhuan HE1, Weilong LU1, Zicheng XU2, Wenchao WANG2(
), Wei JIA2(
)
Received:
2023-08-07
Accepted:
2023-12-27
Online:
2024-10-15
Published:
2024-10-18
Contact:
Wenchao WANG,Wei JIA
郑宏斌1(), 王聪1, 席奇亮1, 张仲文1, 王卫民1, 王昕1, 郭进1, 何欢欢1, 芦伟龙1, 许自成2, 王文超2(
), 贾玮2(
)
通讯作者:
王文超,贾玮
作者简介:
郑宏斌 E-mail:zhb@zjtobacco.com
基金资助:
CLC Number:
Hongbin ZHENG, Cong WANG, Qiliang XI, Zhongwen ZHANG, Weimin WANG, Xin WANG, Jin GUO, Huanhuan HE, Weilong LU, Zicheng XU, Wenchao WANG, Wei JIA. Impact of Nitrogen Application Rate on Metabolism and Quality of Upper Leaves of Yunyan 121[J]. Journal of Agricultural Science and Technology, 2024, 26(10): 215-225.
郑宏斌, 王聪, 席奇亮, 张仲文, 王卫民, 王昕, 郭进, 何欢欢, 芦伟龙, 许自成, 王文超, 贾玮. 施氮量对云烟121上部烟叶代谢及品质的影响[J]. 中国农业科技导报, 2024, 26(10): 215-225.
性状Trait | 处理Treatment | ||
---|---|---|---|
LF | MF | HF | |
叶长Leaf length/cm | 67.4±4.0 a | 69.0±2.4 a | 70.4±3.2 a |
叶宽Leaf width/cm | 20.8±2.3 a | 20.8±1.8 a | 22.8±1.9 a |
叶夹角Leaf position angle/(°) | 34.0±3.1 b | 40.8±1.8 a | 42.8±1.8 a |
最大叶面积Maximum leaf area/cm2 | 887.5±90.1 a | 909.9±75.1 a | 101 9.8±113.0 a |
株高Plant height/cm | 67.0±8.0 a | 69.4±8.3 a | 72.2±5.1 a |
径围Stem girth/cm | 9.28±0.40 a | 9.24±0.20 a | 9.54±0.40 a |
节距Internode length/cm | 4.60±0.40 b | 5.63±0.60 a | 6.20±0.90 a |
株型Stock type | 腰鼓形 Waist-drum type | 腰鼓形、长筒形 Waist-drum type,cylindrical type | 长筒形 Cylindrical type |
气候斑发病率Incidence of tobacco weather fleck/% | 56 | 48 | 52 |
番茄斑萎发病率Incidence of tomato spotted wilt virus/% | 32 | 36 | 44 |
Table 1 Agronomic traits and incidence rate of tobacco plants with different nitrogen application rates
性状Trait | 处理Treatment | ||
---|---|---|---|
LF | MF | HF | |
叶长Leaf length/cm | 67.4±4.0 a | 69.0±2.4 a | 70.4±3.2 a |
叶宽Leaf width/cm | 20.8±2.3 a | 20.8±1.8 a | 22.8±1.9 a |
叶夹角Leaf position angle/(°) | 34.0±3.1 b | 40.8±1.8 a | 42.8±1.8 a |
最大叶面积Maximum leaf area/cm2 | 887.5±90.1 a | 909.9±75.1 a | 101 9.8±113.0 a |
株高Plant height/cm | 67.0±8.0 a | 69.4±8.3 a | 72.2±5.1 a |
径围Stem girth/cm | 9.28±0.40 a | 9.24±0.20 a | 9.54±0.40 a |
节距Internode length/cm | 4.60±0.40 b | 5.63±0.60 a | 6.20±0.90 a |
株型Stock type | 腰鼓形 Waist-drum type | 腰鼓形、长筒形 Waist-drum type,cylindrical type | 长筒形 Cylindrical type |
气候斑发病率Incidence of tobacco weather fleck/% | 56 | 48 | 52 |
番茄斑萎发病率Incidence of tomato spotted wilt virus/% | 32 | 36 | 44 |
Fig. 1 Ultrastructure of middle leaves of Yunyan 121 under different nitrogen application levelsA: LF treatment; B: MF treatment; C: HF treatment. CH—Chloroplast; N—Nucleus; GL—Grana lamella; CM—Chloroplast envelope; S—Starch granules; O—Osmiophilic particles; M—Mitochondria; CW—Cell wall
P | ||||
---|---|---|---|---|
亚油酸代谢 Linoleic acid metabolism | 0.295 5 | ath00591 | ||
0.137 1 | ath00400 | |||
0.181 2 | ath00350 |
Table 2 Enrichment of different metabolite metabolic pathway in Yunyan 121 under different nitrogen rates
P | ||||
---|---|---|---|---|
亚油酸代谢 Linoleic acid metabolism | 0.295 5 | ath00591 | ||
0.137 1 | ath00400 | |||
0.181 2 | ath00350 |
代谢物 | 峰响应值 | ||
---|---|---|---|
LF | MF | HF | |
亚油酸Linoleic acid | 9.04±0.06 a | 9.07±0.05 a | 8.86±0.09 b |
8,11,14-二十二碳三烯酸8,11,14-eicosatrienoic acid | 8.35±0.03 a | 8.39±0.09 a | 8.23±0.07 b |
13S-羟基十八碳二烯酸13S-hydroxyoctadecadienoic acid | 8.40±0.05 a | 8.43±0.06 a | 8.21±0.09 b |
9,10-环氧十八烯酸9,10-epoxyoctadecenoic acid | 10.46±0.05 a | 10.52±0.07 a | 10.23±0.04 b |
9,10-二羟基-12,13-环氧十八烷酸酯9,10-dihydroxy-12,13-epoxyoctadecanoate | 7.66±0.14 b | 7.70±0.01 b | 8.46±0.02 a |
9-氧代十八烷-10,12-二烯酸9-oxoODE | 8.02±0.43 b | 7.94±0.25 b | 8.42±0.23 a |
Table 3 Differential metabolite content in linoleic acid metabolic pathway under different nitrogen application rates
代谢物 | 峰响应值 | ||
---|---|---|---|
LF | MF | HF | |
亚油酸Linoleic acid | 9.04±0.06 a | 9.07±0.05 a | 8.86±0.09 b |
8,11,14-二十二碳三烯酸8,11,14-eicosatrienoic acid | 8.35±0.03 a | 8.39±0.09 a | 8.23±0.07 b |
13S-羟基十八碳二烯酸13S-hydroxyoctadecadienoic acid | 8.40±0.05 a | 8.43±0.06 a | 8.21±0.09 b |
9,10-环氧十八烯酸9,10-epoxyoctadecenoic acid | 10.46±0.05 a | 10.52±0.07 a | 10.23±0.04 b |
9,10-二羟基-12,13-环氧十八烷酸酯9,10-dihydroxy-12,13-epoxyoctadecanoate | 7.66±0.14 b | 7.70±0.01 b | 8.46±0.02 a |
9-氧代十八烷-10,12-二烯酸9-oxoODE | 8.02±0.43 b | 7.94±0.25 b | 8.42±0.23 a |
代谢物 | 峰响应值 | ||
---|---|---|---|
LF | MF | HF | |
L-酪氨酸L-tyrosine | 9.84±0.03 a | 9.85±0.03 a | 9.48±0.05 b |
苯基丙酮酸Phenylpyruvic acid | 8.19±0.02 a | 8.17±0.01 a | 7.90±0.03 b |
L-天冬氨酸半醛L-aspartate-semialdehyde | 6.21±0.05 a | 6.20±0.06 a | 6.10±0.02 b |
莽草酸Shikimic acid | 7.76±0.03 a | 7.85±0.02 a | 7.41±0.26 b |
3-羟基苯甲酸3-hydroxybenzoic acid | 7.42±0.02 a | 7.30±0.01 c | 7.40±0.02 b |
3-脱氢莽草酸3-dehydroshikimate | 8.87±0.02 a | 8.86±0.02 a | 8.74±0.04 b |
Table 4 Differential metabolite content in biosynthetic pathway of phenylalanine, tyrosine and tryptophan under different nitrogen rates
代谢物 | 峰响应值 | ||
---|---|---|---|
LF | MF | HF | |
L-酪氨酸L-tyrosine | 9.84±0.03 a | 9.85±0.03 a | 9.48±0.05 b |
苯基丙酮酸Phenylpyruvic acid | 8.19±0.02 a | 8.17±0.01 a | 7.90±0.03 b |
L-天冬氨酸半醛L-aspartate-semialdehyde | 6.21±0.05 a | 6.20±0.06 a | 6.10±0.02 b |
莽草酸Shikimic acid | 7.76±0.03 a | 7.85±0.02 a | 7.41±0.26 b |
3-羟基苯甲酸3-hydroxybenzoic acid | 7.42±0.02 a | 7.30±0.01 c | 7.40±0.02 b |
3-脱氢莽草酸3-dehydroshikimate | 8.87±0.02 a | 8.86±0.02 a | 8.74±0.04 b |
代谢物 | 峰响应值 | ||
---|---|---|---|
LF | MF | HF | |
琥珀酸Succinic acid | 7.84±0.09 a | 7.73±0.08 a | 7.20±0.47 b |
酪胺Tyramine | 8.75±0.02 b | 8.76±0.03 b | 8.91±0.02 a |
均龙胆酸Homogentisic acid | 7.38±0.06 a | 7.39±0.02 a | 6.67±0.16 b |
4-香豆酸4-hydroxycinnamic acid | 7.19±0.03 b | 7.26±0.06 a | 7.00±0.03 c |
3,4-二羟基苯乙酸3,4-dihydroxybenzeneacetic acid | 7.26±0.10 a | 7.22±0.02 a | 6.67±0.15 b |
4-羟基苯乙醛4-hydroxyphenylacetaldehyde | 8.47±0.02 a | 8.43±0.02 b | 8.27±0.02 c |
香草扁桃酸Vanillylmandelic acid | 7.19±0.03 a | 7.26±0.06 a | 7.00±0.03 b |
酪醇Tyrosol | 7.68±0.02 a | 7.64±0.03 a | 7.32±0.19 b |
香草乙二醇Vanylglycol | 8.32±0.05 a | 8.28±0.04 a | 8.06±0.04 b |
Table 5 Content of different metabolites in tyrosine metabolism pathway under different nitrogen application rates
代谢物 | 峰响应值 | ||
---|---|---|---|
LF | MF | HF | |
琥珀酸Succinic acid | 7.84±0.09 a | 7.73±0.08 a | 7.20±0.47 b |
酪胺Tyramine | 8.75±0.02 b | 8.76±0.03 b | 8.91±0.02 a |
均龙胆酸Homogentisic acid | 7.38±0.06 a | 7.39±0.02 a | 6.67±0.16 b |
4-香豆酸4-hydroxycinnamic acid | 7.19±0.03 b | 7.26±0.06 a | 7.00±0.03 c |
3,4-二羟基苯乙酸3,4-dihydroxybenzeneacetic acid | 7.26±0.10 a | 7.22±0.02 a | 6.67±0.15 b |
4-羟基苯乙醛4-hydroxyphenylacetaldehyde | 8.47±0.02 a | 8.43±0.02 b | 8.27±0.02 c |
香草扁桃酸Vanillylmandelic acid | 7.19±0.03 a | 7.26±0.06 a | 7.00±0.03 b |
酪醇Tyrosol | 7.68±0.02 a | 7.64±0.03 a | 7.32±0.19 b |
香草乙二醇Vanylglycol | 8.32±0.05 a | 8.28±0.04 a | 8.06±0.04 b |
处理 Treatment | 结构 Organization structure | 身份 Identity | 油分 Oil | 色度 Color uniformity | 青杂 Green spotty | 成熟度 Maturity |
---|---|---|---|---|---|---|
LF | 疏松 Loosen | 中等 Medium | 稍有~有 Less oily~oily | 中~强 Medium~strong | 无 None | 成熟 Ripe |
MF | 疏松 Loosen | 中等 Medium | 有 Oily | 强 Strong | 无 None | 成熟 Ripe |
HF | 尚疏松 Firm | 稍厚 Fleshy | 有 Oily | 中~强 Medium~strong | 无 None | 成熟 Ripe |
Table 6 Appearance quality of tobacco leaves after curing under different nitrogen application rates
处理 Treatment | 结构 Organization structure | 身份 Identity | 油分 Oil | 色度 Color uniformity | 青杂 Green spotty | 成熟度 Maturity |
---|---|---|---|---|---|---|
LF | 疏松 Loosen | 中等 Medium | 稍有~有 Less oily~oily | 中~强 Medium~strong | 无 None | 成熟 Ripe |
MF | 疏松 Loosen | 中等 Medium | 有 Oily | 强 Strong | 无 None | 成熟 Ripe |
HF | 尚疏松 Firm | 稍厚 Fleshy | 有 Oily | 中~强 Medium~strong | 无 None | 成熟 Ripe |
处理Treatment | 香气特性 Aroma characteristic | 烟气特性 smoke characteristic | 口感特性 Taste characteristic | 总分 Total score | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
香气质 Aroma quality | 香气量 Aroma volume | 透发性 Penetrability | 杂气 Offensive odor | 细腻 程度 Tender degrees | 柔和 程度 Soft degrees | 圆润 感 Roun-dness | 刺激性 Irritation | 干燥感 Dry sensation | 余味 Agreeable aftertaste | ||
LF | 12.0 | 12.0 | 4.5 | 5.5 | 5.0 | 5.5 | 5.0 | 5.0 | 5.0 | 5.5 | 65.0 |
MF | 13.0 | 12.5 | 5.0 | 5.5 | 5.5 | 5.5 | 5.0 | 5.5 | 5.5 | 5.5 | 68.5 |
HF | 12.0 | 12.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 64.0 |
Table 7 Sensory quality evaluation of flue-cured tobacco leaves under different nitrogen application rates
处理Treatment | 香气特性 Aroma characteristic | 烟气特性 smoke characteristic | 口感特性 Taste characteristic | 总分 Total score | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
香气质 Aroma quality | 香气量 Aroma volume | 透发性 Penetrability | 杂气 Offensive odor | 细腻 程度 Tender degrees | 柔和 程度 Soft degrees | 圆润 感 Roun-dness | 刺激性 Irritation | 干燥感 Dry sensation | 余味 Agreeable aftertaste | ||
LF | 12.0 | 12.0 | 4.5 | 5.5 | 5.0 | 5.5 | 5.0 | 5.0 | 5.0 | 5.5 | 65.0 |
MF | 13.0 | 12.5 | 5.0 | 5.5 | 5.5 | 5.5 | 5.0 | 5.5 | 5.5 | 5.5 | 68.5 |
HF | 12.0 | 12.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 64.0 |
处理Treatment | 总糖 Total sugar/% | 还原糖Reducing sugar/% | 总碱 Total nicotine /% | 氯 Chlorine/% | 钾 Potassium/% | 两糖比 Reducing sugar/total sugar | 糖碱比 Reducing sugar/ nicotine | 钾氯比Potassium/ chloride |
---|---|---|---|---|---|---|---|---|
LF | 29.03±0.25 a | 25.61±0.23 a | 2.82±0.03 c | 0.18±0.03 b | 1.83±0.06 a | 0.88±0.02 b | 9.08±0.17 a | 10.17±1.35 a |
MF | 27.97±0.28 b | 25.05±0.40 ab | 2.94±0.08 b | 0.20±0.03 ab | 1.89±0.06 a | 0.90±0.02 ab | 8.52±0.32 b | 9.45±1.22 a |
HF | 26.65±0.56 c | 24.57±0.15 b | 3.12±0.14 a | 0.24±0.03 a | 1.95±0.05 a | 0.92±0.01 a | 7.88±0.06 c | 8.12±0.94 a |
Table 8 Chemical composition content of flue cured tobacco leaves under different nitrogen rates
处理Treatment | 总糖 Total sugar/% | 还原糖Reducing sugar/% | 总碱 Total nicotine /% | 氯 Chlorine/% | 钾 Potassium/% | 两糖比 Reducing sugar/total sugar | 糖碱比 Reducing sugar/ nicotine | 钾氯比Potassium/ chloride |
---|---|---|---|---|---|---|---|---|
LF | 29.03±0.25 a | 25.61±0.23 a | 2.82±0.03 c | 0.18±0.03 b | 1.83±0.06 a | 0.88±0.02 b | 9.08±0.17 a | 10.17±1.35 a |
MF | 27.97±0.28 b | 25.05±0.40 ab | 2.94±0.08 b | 0.20±0.03 ab | 1.89±0.06 a | 0.90±0.02 ab | 8.52±0.32 b | 9.45±1.22 a |
HF | 26.65±0.56 c | 24.57±0.15 b | 3.12±0.14 a | 0.24±0.03 a | 1.95±0.05 a | 0.92±0.01 a | 7.88±0.06 c | 8.12±0.94 a |
处理 Treatment | 产量 Yield/(kg·hm-2) | 均价/(元·kg-1) Average price/(yuan·kg-1) | 产值/(元·hm-2) Output value/(yuan·hm-2) | 上等烟比例 Proportion of upper class cigarettes/% |
---|---|---|---|---|
LF | 709.5±10.0 c | 27.8±0.9 b | 197 24.2±627.1 b | 63.7±0.7 b |
MF | 747.0±10.4 b | 30.6±0.9 a | 228 58.2±711.6 a | 68.1±0.9 a |
HF | 781.5±18.6 a | 26.2±0.2 c | 204 75.5±515.6 b | 60.6±1.0 c |
Table 9 Economic characters of upper tobacco leaves with different nitrogen rates
处理 Treatment | 产量 Yield/(kg·hm-2) | 均价/(元·kg-1) Average price/(yuan·kg-1) | 产值/(元·hm-2) Output value/(yuan·hm-2) | 上等烟比例 Proportion of upper class cigarettes/% |
---|---|---|---|---|
LF | 709.5±10.0 c | 27.8±0.9 b | 197 24.2±627.1 b | 63.7±0.7 b |
MF | 747.0±10.4 b | 30.6±0.9 a | 228 58.2±711.6 a | 68.1±0.9 a |
HF | 781.5±18.6 a | 26.2±0.2 c | 204 75.5±515.6 b | 60.6±1.0 c |
1 | 吕大树,陈小龙,藏照阳,等.贵州省烤烟上部烟叶成熟期主要气象因素分析[J].烟草科技,2021,54(8):18-25. |
LYU D S, CHEN X L, ZANG Z Y, et al.. Main meteorological factors influencing upper flue-cured tobacco leaves during mature period in Guizhou province [J]. Tob. Sci. Technol., 2021, 54(8):18-25. | |
2 | 许自成,黄平俊,苏富强,等.不同采收方式对烤烟上部叶内在品质的影响[J].西北农林科技大学学报(自然科学版),2005, 33(11):13-17. |
XU Z C, HUANG P J, SU F Q, et al.. Effects of different picking methods on quality of upper leaf in flue-cured tobacco [J]. J. Northwest. Agric. For. Univ. (Nat. Sci.), 2005, 33(11):13-17. | |
3 | 刘勇,黄昌军,曾建敏,等.抗PVY烤烟新品种‘云烟121’的选育及特征特性[J/OL].分子植物育种,2022:1-17[2023-04-30].. |
LIU Y, HUANG C J, ZENG J M, et al.. The breeding and characteristic of the PVY resistance new varieties ‘Yunyan 121’ [J/OL]. Mol. Plant Breed., 2022:1-17 [2023-04-30]. . | |
4 | 李晓闯,权佳锋,王得强,等.曲靖地区云烟系列品种间品质差异分析[J].安徽农业科学,2022,50(17):163-166. |
LI X C, QUAN J F, WANG D Q, et al.. The quality difference analysis of Yunyan series varieties in Qujing area [J]. J. Anhui Agric. Sci., 2022, 50(17):163-166. | |
5 | 张长华,蒋卫,蒋玉梅,等.施肥对烤烟产量、品质及土壤养分、酶活性的影响[J].中国土壤与肥料,2012(3):77-80. |
ZHANG C H, JIANG W, JIANG Y M, et al.. Influence of fertilization on the yield and quality of flue-cured tobacco, soil nutrient and enzyme activity [J]. Soil Fert. Sci. China., 2012(3):77-80. | |
6 | 李文卿,陈顺辉,江荣风,等.不同施氮量对烤烟总氮和烟碱积累的影响[J].中国烟草学报,2007, 13(4):31-35. |
LI W Q, CHEN S H, JIANG R F, et al.. Effects of nitrogenous fertilizer on total nitrogen and nicotine accumulation in flue-cured tobacco [J]. Acta Tab. Sin., 2007, 13(4):31-35. | |
7 | 刘碧荣,祖朝龙,马均,等.施氮量与留叶数调控对高海拔烟区烤烟烟叶结构、产量及品质的影响[J].烟草科技, 2017,50(4):25-30. |
LIU B R, ZU C L, MA J, et al.. Effects of nitrogen fertilization and number of residual leaves on structure, yield and quality of flue-cured tobacco in high altitude tobacco-planting areas [J]. Tob. Sci. Technol., 2017, 50(4):25-30. | |
8 | 申国明,陈爱国,王程栋,等. 烟草农艺性状调查测量方法: [S].北京:中国标准出版社,2010. |
9 | 薛小平,赵会纳,陈懿,等.贵州烟区烤烟K326株型特征研究[J].中国烟草科学,2013,34(1):34-39. |
XUE X P, ZHAO H N, CHEN Y, et al.. Studies on plant type characteristics of flue-cured tobacco K326 in Guizhou [J]. Chin. Tob. Sci., 2013, 34(1):34-39. | |
10 | 任广伟,孔凡玉,王凤龙,等. 烟草病虫害分级及调查方法: [S].北京:中国标准出版社,2008. |
11 | 于华堂,冯国桢,王卫康,等. 烤烟: [S].北京:中国标准出版社,1992. |
12 | 张建平,谢雯燕,束茹欣,等.烟草化学成分的近红外快速定量分析研究[J].烟草科技,1999(3):37-38. |
13 | 罗登山,王兵,马宇平,等. 烤烟烟叶质量风格特色感官评价方法: [S].北京:中国标准出版社,2015. |
14 | 余小芬,杨树明,邹炳礼,等.云南多雨烟区增密减氮对烤烟产质量及养分利用率的调控效应[J].水土保持学报,2020,34(5):327-333. |
YU X F, YANG S M, ZOU B L, et al.. The regulatory effects of enhanced density combined with reduced nitrogen fertilizer on yield, quality and nutrient use efficiency of flue-cured tobacco in rainy areas, Yunnan province [J]. J. Soil Water Conserv., 2020, 34(5):327-333. | |
15 | 陈黎.施氮量和留叶数对烤烟赤星病发病程度及产值效益的影响[D].长沙:湖南农业大学,2014. |
CHEN L. The effects of nitrogen and leaves-remained number on the occurence extent of tobacco brown spot and output value of tobacco [D]. Changsha: Hunan Agricultural University, 2014. | |
16 | 叶贤文.会理不同海拔烟叶嗜锇颗粒的分布特征及其与烤烟品质的关系[D].郑州:河南农业大学, 2011. |
YE X W. The distribution characteristics of osmiophilic granules in tobacco leaves at different altitudes and the relationship with the quality of flue-cured tobacco leaves of Huili [D]. Zhengzhou: Henan Agricultural University, 2011. | |
17 | 郑小雨,李常军,路晓崇,等.烤烟不同成熟期色素含量变化及其与叶绿体超微结构的关系探究[J].中国农业科技导报,2020,22(10):60-68. |
ZHENG X Y, LI C J, LU X C, et al.. Study on changes of pigment content in flue-cured tobacco at different maturity stage and its relationship with chloroplast ultrastructure [J]. J. Agric. Sci. Technol., 2020, 22(10):60-68. | |
18 | 智磊,罗定棋,熊莹,等.施氮量对烤烟叶片组织结构和细胞发育的影响[J].烟草科技,2012(7):81-85. |
ZHI L, LUO D Q, XIONG Y, et al.. Effects of nitrogen application rates on tissue structure and cell development of flue-cured tobacco leaves [J]. Tob. Sci. Technol., 2012 (7):81-85. | |
19 | DUNKLE M N, YOSHIMURA Y, KINDT R, et al.. Lipidomics of tobacco leaf and cigarette smoke [J]. J. Chromatogr. A Including, 2016, 1439:54-64. |
20 | TANG G Y, WEI L Q, LIU Z J, et al.. Ectopic expression of peanut acyl carrier protein in tobacco alters fatty acid composition in the leaf and resistance to cold stress [J]. Biol. Plant., 2012, 3:493-501. |
21 | 王瑞新.烟草化学品质分析法[M].北京:中国农业出版社,2003:1-276. |
22 | 尚军,吴旺泽,马永贵.植物苯丙烷代谢途径[J].中国生物化学与分子生物学报,2022,38(11):1467-1476. |
SHANG J, WU W Z, MA Y G, et al.. Phenylpropanoid metabolism pathway in plants [J]. Chin. J. Biochem. Mol. Biol., 2022, 38(11):1467-1476. | |
23 | 沈丹红.新鲜烟叶中的酚类物质研究[D].南京:南京理工大学,2014. |
SHEN D H. Research on phenolic compounds in fresh tobacco leaves [D]. Nanjing: Nanjing University of Science and Technology, 2014. | |
24 | 王玉华,褚建忠,徐丙升,等.烤烟自然醇化过程美拉德反应产物变化及与感官质量的关系[J].中国烟草科学,2015,36(4):85-90. |
WANG Y H, CHU J Z, XU B S, et al.. Study on changes of maillard reaction compounds during natural aging of flue-cured tobacco and their impact on smoking quality [J]. Chin. Tob. Sci., 2015, 36(4):85-90. | |
25 | 黎旺姐,李勇,崔明昆,等.烟草氨基酸代谢及其调控机制[J].安徽农业科学,2016,44(21):15-19. |
LI W J, LI Y, CUI M K, et al.. Amino acid metabolism and its regulation mechanism in tobacco plants [J]. J. Anhui Agric. Sci., 2016, 44(21):15-19. | |
26 | 翁飞.氮素对水稻茎秆强度的影响及其生理机制[D].南京:南京农业大学,2019. |
WENG F. Effects of nitrogen on the stem strength in rice and its physiological mechanisms [D]. Nanjing: Nanjing Agriculture University, 2019. | |
27 | FABIOLA M V, MAO X Y, CHAPPLE C. Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition [J]. Curr. Opin. Biotechnol., 2019, 56:202-208. |
28 | ZHANG X B, LIU C J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids [J]. Mol. Plant., 2015, 8(1):17-27. |
29 | 梁洪波,李念胜,元建,等.烤烟烟叶颜色与内在品质的关系[J].中国烟草科学,2002(1):9-11. |
30 | 张升华,乐涛.动物性食品卫生检验[M].北京:化学工业出版社,2010:1-259. |
31 | 王育军,周冀衡,李强,等.曲靖烟叶化学成分可用性及其对感官评吸质量的影响[J].烟草科技,2014(11):67-73. |
WANG Y J, ZHOU J H, LI Q, et al.. Chemical component usability of Qujing tobacco leaves and its influences on sensory quality [J]. Tob. Sci. Technol., 2014(11):67-73. | |
32 | 欧阳文,陈雨,李佛琳,等.基于卷烟品牌的云南省烟叶基地烟叶常规化学成分隶属度评价[J].安徽农业科学,2016,44(25):79-82, 115. |
OUYANG W, CHEN Y, LI F L, et al.. Evaluation of the membership degree on conventional chemical components of tobacco leaf in Yunnan province based on cigarette brand [J]. J. Anhui Agric. Sci., 2016, 44(25):79-82, 115. | |
33 | 包勤,张艳玲,王爱国,等.2002—2013年间我国烤烟主要化学成分变化趋势及原因分析[J].烟草科技,2015,48(7):14-19. |
BAO Q, ZHANG Y L, WANG A G, et al.. Variation of main chemical components in flue-cured tobacco leaves in china during 2002-2013 and causal analysis [J]. Tob. Sci. Technol., 2015, 48(7):14-19. |
[1] | Bo PANG, Shengmei LI, Yanlin LI, Tao YANG, Weiwei LIANG, Ru ZHANG, Yajie HUANG, Dan REN, Jinxin CUI, Jing LI, Jingjing MA, Wenwei GAO. Genetic Diversity Analysis in 192 Gossypium hirsutum L. F1 Hybrids [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 34-50. |
[2] | Yongfang ZHANG, Shiyan DONG, Jiaxuan WANG, Xuhu GUO, Chang ZHANG, Yanxing WANG, Yuye WANG, Jingfeng WU, Tianfang BAO, Hongfa ZHANG, Ping YU, Fuheng LI. Analysis of Differential Seed Metabolites Before and After Stratification of Heracleum moellendorffii Hance [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 37-49. |
[3] | Yanhong ZHANG, Zhanbin GUO, Ruixiang LIU. Comprehensive Analysis and Evaluation of Agronomic Characters of 50 Chenopodium Quinoa Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 45-54. |
[4] | Zhaodi YANG, Fenggen GUO, Shiyu WANG, Zhengjie LIU, Wenhong LONG. Effect of Plant Growth Inhibitors on Agronomic Traits and Pre-harvest Sprouting Resistance of Quinoa [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 44-51. |
[5] | Ziwen KONG, Ruxia TIAN, Ruyi MIAO, Yanping LIANG. Analysis of Agronomic Traits and Genetic Diversity of 60 Screw Pepper Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 40-47. |
[6] | Yan JIN, Quanhao SONG, Jiajing SONG, Liang CHEN, Lishang ZHAO, Jie CHEN, Dong BAI, Tongquan ZHU. Comprehensive Evaluation of 69 Wheat Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 33-45. |
[7] | Caihong ZHANG, Li ZHANG, Weimin WANG, Jiongping ZHAO, Dan HAN, Zicheng XU, Zhongwen ZHANG, Huifang SHAO. Difference Analysis of Different Maturity of Upper Tobacco Leaves Based on Non-targeted Metabolomics [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 58-70. |
[8] | Xuemin JIANG, Xiangqian CHEN, Hongyan LI, Qiyan JIANG. Metabolomic Analysis of Wheat Response to Salt Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 43-56. |
[9] | Pengfei LIU, Xiaoshuang LU, Dilimurat Reheman, Tangnur Slay, Yanying QU, Quanjia CHEN, Xiaojuan DENG. Genetic Variation Analysis of Main Quality Traits and Agronomic Traits in Upland Cotton Seed [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 22-32. |
[10] | Zhigang ZHENG, Li XIANG, Gongyi LIU, Cai XU, Bin QIN, Weiqin WANG, Huabin ZHENG, Qiyuan TANG. Effects of Nitrogen Application Rate and Density on Growth and Yield of Orderly Machine-thrown Early Rice [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 132-143. |
[11] | Yaxuan MENG, Wei MA, Xuhang YAO, Yingqi SUN, Xin ZHONG, Shan HUANG, Qiaoyun WENG, Yinghui LIU, Jincheng YUAN. Study on the Response Factors of Maize Yield to Nitrogen Fertilizer [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 153-160. |
[12] | Shan HE, Wei HAN, Yuancheng ZHOU, Weili HAO, Zhixia LIU, Yafei LAN, Dongchen NA, Min CHAI, Yiling WANG. Main Agronomic Characters Analysis and High Quality Germplasm Selection of Introduced Fagopyrum esculentum Moench [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 22-31. |
[13] | Ding DING, Lingjie ZHENG, Hongbao WANG, Lijin ZHENG, Yanchao GUO. Agronomic Traits and Effective Components of Different Tea Chrysanthemum Varieties in Coastal Area [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 45-53. |
[14] | Lingwei SUN, Mengxian HE, Jianjun DAI, Caifeng WU, Defu ZHANG, Yuexia LIN. Metabolomics in Neonatal Lambs of Hu-sheep with Intrauterine Growth Retardation [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 123-131. |
[15] | Guanglei CHENG, Jun QIU, Xiaoguang WANG, Tianjun XU, Chuanyong CHEN, Chunyuan ZHANG, Qianqian XIA, Yuanqi WU, Jiuran ZHAO, Ronghuan WANG. Changes of Agronomic Traits, Biomass Yield and Quality of National Silage Maize Combinations (Varieties) [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 30-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||